MATH70060 - Complex Manifolds - Exercise Sheet 8

Release date: 5 Mar 2025 Submission date: 12 Mar 2025

You *can* choose to hand in written solutions to this exercise sheet in hardcopy in class on 12 Mar 2025 and I will correct them. This is optional and does not count towards your module grade.

8.1. Let (X, ω) be a Kähler manifold of complex dimension *n*. Show that

$$\langle \omega^n, \omega^n \rangle \in C^{\infty}(X, \mathbb{C})$$

is constant on X.

- 8.2. Show that ω_{FS} is a Kähler form on \mathbb{CP}^n .
- 8.3. Let *X* be a complex manifold of complex dimension one. Show that *X* admits a Kähler form.
- 8.4. Let X be a compact complex curve (i.e. compact complex manifold of complex dimension 1), and L be a holomorphic line bundle over X. Let s be a holomorphic section of L that has k simple zeros $p_1, ..., p_k \in X$. In this problem, we will prove that $\int_X c_1(L) = k$.

Recall that $c_1(L) = \begin{bmatrix} \frac{i}{2\pi}F_\nabla \end{bmatrix}$, where F_∇ is the curvature 2-form of a connection ∇ on *L*. (For line bundles there is no need to take the trace in the definition of Chern class.)

For each i = 1, ..., k, let U_i be a small open set containing p_i , and z_i be a coordinate on U_i such that the point p_i is given by $z_i = 0$. Let $U_0 = X \setminus \{p_1, ..., p_k\}$. Note that *s* gives a frame of *L* over U_0 ; choose the connection ∇ with the local formula d+*A* for A = 0 in this frame.

- (a) Given $i \in \{1, ..., k\}$, write down the expression for ∇ in the local frame $s_i = \frac{1}{z_i} s$ of L over $U_i \cap U_0$. Check that ∇ is not well-defined at $z_i = 0$.
- (b) Using smooth cut-off functions (e.g. from a partition of unity), modify the expression for ∇ near each $z_i = 0$, so that the new connection $\widetilde{\nabla}$ is well-defined everywhere.
- (c) Calculate the curvature F_v and the integral ∫_X F_v.
 Hint: arrange that Θ_v vanishes outside small annuli around p_i; use Stokes' theorem.