MATH70060 - Complex Manifolds - Exercise Sheet 6

Release date: 19 Feb 2025 Submission date: 26 Feb 2025

You *can* choose to hand in written solutions to this exercise sheet in hardcopy in class on 26 Feb 2025 and I will correct them. This is optional and does not count towards your module grade.

- 6.1. Consider the trivial vector bundle $E = X \times \mathbb{C}^r$ and let $\nabla = d+A$ be a connection on it. Show that the following three definitions of an induced connection on End *E* are equivalent:
 - (a) Identifying End *E*, we define a connection ∇' via:

$$(\nabla'\phi)(s) = \nabla(\phi(s)) - \phi(\nabla s)$$
 for $\phi \in C^{\infty}(X, \operatorname{End} E), s \in C^{\infty}(X, E)$.

(b) On E^* , define a connection ∇'' via

$$(\nabla''\eta)(s) = d(\eta(s)) - \eta(\nabla s)$$
 for $\eta \in C^{\infty}(X, E^*), s \in C^{\infty}(X, E).$

For vector bundles E_1, E_2 with connections ∇_1, ∇_2 , defined a connection ∇''' on $E_1 \otimes E_2$ via

$$\nabla^{\prime\prime\prime}(s_1 \otimes s_2) = (\nabla_1 s_1) \otimes s_2 + s_1 \otimes (\nabla_2 s_2). \tag{(*)}$$

Using the identification $\operatorname{End} E \cong E \otimes E^*$, the two definitions taken together induce a connection on $\operatorname{End} E$.

(c) Locally, define ∇'''' via

$$\nabla^{\prime\prime\prime\prime}\phi = \mathrm{d}\phi + [A,\phi] \quad \text{for} \quad \phi \in C^{\infty}(X,\mathfrak{gl}(r,\mathbb{C})),$$

where $[\cdot, \cdot]$ denotes taking the commutator on the endomorphism part.

6.2 By using (*) from above repeatedly, one can define a connection on $E^{\otimes k}$. Write down a formula for it.

Show that the same formula is well defined on $\bigwedge^k E$ given as $(\bigwedge^k E)_x = E_x^{\otimes k}/I$, where $I \subset E^{\otimes k}$ is the ideal generated by elements $v \otimes v$ for $v \in E$. Show that this gives rise to the following connection:

$$\nabla(s_1 \wedge \cdots \wedge s_k) = \sum_{i=1}^k s_1 \wedge \cdots \wedge \nabla s_i \wedge \cdots \wedge s_k.$$

Show if $\nabla = d+A$ is a connection on $E = X \times \mathbb{C}^r$, then the connection induced on det *E* in this way is $d+\operatorname{tr}(A)$.

6.3. Show that a connection ∇ on a Hermitian vector bundle (E, h) is Hermitian if and only if $\nabla h = 0$, where by ∇ we also denote the naturally induced connection on the bundle $(E \otimes \overline{E})^*$.