MATH70060 - Complex Manifolds - Exercise Sheet 4

Release date: 5 Feb 2025 Submission date: 13 Feb 2025

Please submit solutions to these exercises on Blackboard. The grade for your submission will count for 5% of your total grade for this course.

- 4.1. Let $E \to X$ be a holomorphic vector bundle over a complex manifold. In the lecture, the \mathbb{C} -linear operator $\overline{\partial}_E : C^{\infty}(X, \Omega_X^{p,q}(E)) \to C^{\infty}(X, \Omega_X^{p,q+1}(E))$ was defined. It was shown that is satisfies the following two properties:
 - (a) $\overline{\partial}_E s = 0$ for every holomorphic section of *E*,
 - (b) for $\alpha \in C^{\infty}(X, \Omega_X^{p,q}), \beta \in C^{\infty}(X, \Omega_X^{r,s}(E))$ the Leibniz rule

$$\overline{\partial}_E(\alpha \wedge \beta) = (\overline{\partial}\alpha) \wedge \beta + (-1)^{p+q} \alpha \wedge \overline{\partial}_E \beta$$

holds.

Prove that any \mathbb{C} -linear operator $C^{\infty}(X, \Omega_X^{p,q}(E)) \to C^{\infty}(X, \Omega_X^{p,q+1}(E))$ satisfying these two properties must be equal to $\overline{\partial}_E$.

4.2. Let $E, F \to X$ be holomorphic vector bundles over a complex manifold *X*. Let $\alpha : E \to F$ be a bundle morphism. Show that

$$\alpha^* : C^{\infty}(X, \Omega^{0,q}(E)) \to C^{\infty}(X, \Omega^{0,q}(F))$$
$$\omega \otimes s \mapsto \omega \otimes \alpha(s)$$

is well defined as a map $H^q(X, E) \to H^q(X, F)$.

4.3. On \mathbb{R}^2 we write (x, y) for the standard coordinates and define an almost complex structure via

$$J: T(\mathbb{R}^2) \to T(\mathbb{R}^2)$$
$$\frac{\partial}{\partial x} \mapsto e^x \frac{\partial}{\partial y}$$
$$\frac{\partial}{\partial y} \mapsto -e^{-x} \frac{\partial}{\partial x}$$

Prove that *J* is integrable.

4.4. Compute the Hodge numbers of \mathbb{CP}^1 .

Hint: there are different ways to compute this. If you want, you can use without proof that the *Euler* sequence on \mathbb{CP}^1 is a short exact sequence, i.e. there are linear maps making the following a short exact sequence:

$$0 \to \Omega^{1,0}_{\mathbb{CP}^1} \to O(-1)^{\oplus 2} \to O_{\mathbb{CP}^1} \to 0$$