MATH70060 - Complex Manifolds - Exercise Sheet 3

Release date: 29 Jan 2025 Submission date: 5 Feb 2025

You *can* choose to hand in written solutions to this exercise sheet in hardcopy in class on 5 Feb 2025 and I will correct them. This is optional and does not count towards your module grade.

3.1. Let X be a complex manifold.

Prove the following: A holomorphic line bundle $L \rightarrow X$ is isomorphic to the the trivial line bundle if and only if it admits a section that is nowhere zero.

3.2. Let *E* and *F* be vector bundles with trivialisations ψ_i and ϕ_i . Denote their transition functions by g_{ij} and h_{ij} . Define a trivialisation for $E \oplus F$ and E^* and find an expression for their transition functions in terms of g_{ij} and h_{ij} .

Use this to show that the transition functions of O(1) over \mathbb{CP}^n with respect to the trivialisations of O(-1) defined in the lecture are

$$g_{ij}: U_i \cap U_j \to \operatorname{GL}(1, \mathbb{C})$$
$$([x_0: \cdots: x_n]) \mapsto \frac{x_j}{x_j}.$$

3.3. Let *V* be an \mathbb{R} -vector space. Show that the following \mathbb{C} -vector spaces are isomorphic:

$$\left(\bigwedge_{\mathbb{R}}^{k} V\right) \otimes_{\mathbb{R}} \mathbb{C} \cong \bigwedge_{\mathbb{C}}^{k} (V \otimes_{\mathbb{R}} \mathbb{C}).$$

Check that this implies that the following complex vector bundles (over some smooth manifold *X*) are isomorphic:

$$\Omega_X^{k+1} \otimes_{\mathbb{R}} \mathbb{C} \cong \Omega_{X,\mathbb{C}}^{k+1}.$$

3.4. The goal of this exercise is to prove that holomorphic sections of O(1) over \mathbb{CP}^1 are in one-to-one correspondence with homogeneous degree one polynomials in the variables x_0, x_1 . As usual, $\mathbb{CP}^1 = U_0 \cup U_1$ denotes the standard affine cover, and ψ_0, ψ_1 the trivialisations and g_{01} the transition function from exercise 3.2.

(a) Let

$$\begin{split} s_0 &: U_0 \to U_0 \times \mathbb{C} \\ [1:x_1] &\mapsto ([1:x_1], f(x_1)), \end{split} \qquad \qquad s_1 &: U_1 \to U_1 \times \mathbb{C} \\ [x_0 &: 1] \mapsto ([x_0 : 1], h(x_0)) \end{split}$$

for some $f, h : \mathbb{C} \to \mathbb{C}$.

Show the following: if there exists $s \in H^0(\mathbb{CP}^1, O(1))$ such that $\psi_0 \circ s |_{U_0} = s_0$ and $\psi_1 \circ s |_{U_1} = s_1$, then f and h are holomorphic and $g_{01}s_1 |_{U_0 \cap U_1} = s_0 |_{U_1 \cap U_0}$. This last equation implies that $h(x) = x \cdot f(1/x)$ for $x \in \mathbb{C} \setminus \{0\}$. Deduce that f and h are polynomials of degree 1 (not necessarily homogeneous).

(b) Let p be a homogeneous polynomial of degree 1 in x_0, x_1 . Denote

$$f: \mathbb{C} \to \mathbb{C} \qquad \qquad h: \mathbb{C} \to \mathbb{C} \\ x \mapsto p(1, x), \qquad \qquad x \mapsto p(x, 1).$$

Show the following: there exists $s \in H^0(\mathbb{CP}^1, O(1))$ such that $\psi_0 \circ s \mid_{U_0} = s_0$ and $\psi_1 \circ s \mid_{U_1} = s_1$, where s_0, s_1 are defined by the equations above.

(c) Use part (b) to define a map from homogeneous polynomials of degree 1 into $H^0(\mathbb{CP}^1, O(1))$. Use part (a) to show surjectivity of this map. Check that it is also injetive.