MATH70060 – Complex Manifolds – Exercise Sheet 1

Release date: 15 Jan 2025 Submission date: 22 Jan 2025

You *can* choose to hand in written solutions to this exercise sheet in hardcopy in class on 22 Jan 2025 and I will correct them. This is optional and does not count towards your module grade.

- 1.1. Let $f : \mathbb{R}^2 \to \mathbb{R}^2$. Show that the following are equivalent:
 - (a) Under the identification $\mathbb{R}^2 = \mathbb{C}$ the function f is holomorphic.
 - (b) For all $(x_0, y_0) \in \mathbb{R}^2$ the differential $df_{(x_0, y_0)} : \mathbb{R}^2 \to \mathbb{R}^2$ is complex linear if we identify $\mathbb{R}^2 = \mathbb{C}$.
 - (c) For the Wirtinger derivatives $\frac{\partial}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x} i \frac{\partial}{\partial y} \right)$ and $\frac{\partial}{\partial \overline{z}} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right)$ we have $\frac{\partial}{\partial \overline{z}} f = 0$.

Notation suggestion: write multiplication by *i* on \mathbb{C} as *i* · and the induced map on \mathbb{R}^2 as $J : \mathbb{R}^2 \to \mathbb{R}^2$.

- 1.2. Define a smooth manifold structure on $\hat{\mathbb{C}} := \mathbb{C} \cup \{\infty\}$ so that $\hat{\mathbb{C}}$ is diffeomorphic to S^2 .
- 1.3. Identify $\mathbb{C} = \mathbb{R}^2$ via z = x + iy. Compute

$$\int_{\mathbb{C}} \left| \frac{1}{z} \right| \mathrm{d}x \wedge \mathrm{d}y.$$