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Abstract: Approximations of Calabi-Yau metric are a popular tool to produce
heuristics, but so far have not been leveraged to rigorously prove theorems in geometry.
I present one work in progress, in which we prove that the real loci of certain
Calabi-Yau manifolds admit harmonic nowhere vanishing 1-forms, which are needed for
an application in G2-geometry. I will explain the proof strategy, which consists of two
parts: first, I formulate an estimate for the difference between approximate metric and
true Calabi-Yau metric in terms of the Ricci curvature of the approximate metric which
is of independent interest. Second, I explain the connection between nowhere vanishing
1-forms with respect to the two different metrics. This is joint work with Rodrigo
Barbosa, Michael Douglas, and Yidi Qi.



Pure maths and machine learning

▶ Use machine learning for conjecture generation
e.g. [Davies et al., 2021]: conjecture connecting algebraic and geometric
properties of knots

▶ Machine learning applied to pure mathematics datasets
e.g. [He, 2017]: inputs are Calabi-Yau manifolds, outputs are their Hodge
numbers (previously computed exactly)

▶ Numerical verification methods for PDE solutions
e.g. [Nakao et al., 2019]: proof there exists smooth solution near a finite element
solution to Navier-Stokes equation



Background

▶ Let Y be Calabi-Yau 3-fold with Calabi-Yau metric gCY
▶ σ : Y → Y anti-holomorphic involution, L := fix(σ)

example: quintic with real coefficients in CP4 and σ([z0 : · · · : z4]) = [z0 : · · · : z4]
▶ S1 × Y has dimension 7 and holonomy SU(3). Problem: want holonomy G2

▶ Define σ̂ : S1 × Y → S1 × Y as (x , y) 7→ (−x , σ(y))

(S1 × Y )/⟨σ̂⟩ {0, 12} × L N7

Theorem ([Joyce and Karigiannis, 2017])

If there exists λ ∈ Ω1(L) harmonic w.r.t. gCY |L that is nowhere 0, then there exists a
resolution N7 → (S1 × Y )/⟨σ̂⟩ with holonomy equal to G2.

▶ Goal: check if such a 1-form exists
▶ First Betti number → harmonic 1-forms. Nowhere 0? Must know the metric!



Strategy for checking if nowhere zero harmonic λ ∈ Ω1(L) exists

Goal: Check if L admits harmonic nowhere zero 1-form

Step 1: Approximate gCY by gapprox

Step 2: Prove: for all ϵ1 > 0 exists δ1 > 0 such that:

if ||Ric(gapprox)||C0 < δ1, then ||gCY − gapprox ||C1 < ϵ1.

Step 3: Find λ ∈ Ω1(L) harmonic w.r.t. gapprox and compute min
x∈L

|λ(x)|.

Step 4: Prove: for all ϵ2 > 0 exists δ2 > 0 such that:

if λ ∈ Ω1(L) harmonic w.r.t gapprox and ||λ||L2 = 1 and
minx∈L |λ(x)| > ϵ2 and ||gCY − gapprox ||C1 < δ2, then exists
η ∈ Ω0(L) s.t. λ+ dη is nowhere 0 and harmonic w.r.t. gCY .

Result: ▶ Compute gapprox
▶ Check that ||Ric(gapprox)||C 0 is small
▶ Find λ ∈ Ω1(L) harmonic w.r.t. gapprox s.t. min |λ| is big
▶ Then exists η ∈ Ω0(L) s.t. λ+ dη harmonic w.r.t. gCY and nowhere 0



Step 1: approximate gCY by gapprox

▶ Holomorphic volume form locally Ω = dz1 ∧ dz2 ∧ dz3 ⇝ volΩ := Ω ∧Ω ∈ Ω6(Y )

▶ Ample line bundle L → Y and l ∈ N such that L⊗l very ample
Example: Y ⊂ CP4 quintic, (O(1)|Y )⊗l

▶ s1, . . . , sN ∈ H0(L⊗l) basis of holomorphic sections
⇒ embedding s = (s1, . . . , sN) : Y → CPN−1

▶ h positive definite Hermitian form on H0(L⊗l) ⇝ Fubini-Study metric

Kähler potential: log
∑
i ,j

hi ,js
i s j . Volume form: volh ∈ Ω6(Y )

▶ [Donaldson, 2009]: choose h cleverly to approximate CY metric
(Ignoring a constant) If volh

volΩ
= 1, then Ricci-flat

▶ Choose x1, . . . , xk ∈ Y and find

min
h

∫
{x1,...,xk}

(
volh
volΩ

− 1

)2

▶ Convenient: there is fast machine learning software to find local minima
[Douglas et al., 2022]



Step 2: ||Ric(gapprox)|| small ⇒ ||gCY − gapprox || small

Theorem (Yau’s theorem. [Yau, 1978] and p.105-107 in [Joyce, 2000])

(Y , ω, g) Kähler manifold of cx. dimension m with holomorphic volume form
Ω ∈ Ωm(Y ,C). Then there exists a unique K ∈ Ω0

mean-0(Y ) s.t.

i. ω + ddcK is Kähler

ii. (ω + ddcK )m = Ω ∧ Ω (ignoring a constant)

iii. (New) Up to cx. dimension 3: there exists C depending on ||f − 1||C0 and∣∣∣∣f −1 − 1
∣∣∣∣
C0 such that ||ddcK ||C1 < C, where f = volΩ

volω
and C → 0 as f → 1

Proof of iii.: Yau proves estimate ||ddcK ||C0 ≤ C for some C , now want C small.
Computations around p ∈ Y from Yau’s proof: ex. functions a1, a2, a3 s.t.

∆K = 3−
∑

aj ≤ 3 · (1− f ) , −∆K = 3−
∑

a−1
j ≤ 3 ·

(
1− f −1

)
,∏

aj = f (p), | ddcK |2 = 2
∑

(aj − 1)2.

So f ≈ 1 ⇒ ∆K ≈ 0 (first two eqns) ⇒ a1 ≈ a2 ≈ a3 ≈ 1 (first three equations, only
in dim ≤ 3) ⇒ ddcK ≈ 0 (last eqn)
⇝ Then expect C k -estimates, because K satisfies elliptic equation



Step 3: Find λ ∈ Ω1(L) harmonic w.r.t. gapprox

▶ T simplicial complex, triangulation of L

▶ Discrete exterior calculus [Hirani, 2003]: k-forms Ωk(T ) := Hom

⊕
σ∈T k

Rσ,R


Discretisation R : Ωk(L)→ Ωk(T )

ω 7→
(
σ 7→

∫
σ
ω

) 7→

1.2
1.0

-0.1 -0.4
0.2 1.3

0.9
0.1

-0.5

0.3

-0.3

1.2

Have dT , d
∗
T , ∆T on T

▶ Fix ω ∈ Ω1(L) closed
Hodge thm

=⇒ unique η ∈ Ω0
mean-0(L) s.t. ω + dη harmonic

▶ discrete Hodge thm
=⇒ unique ηT ∈ Ω0

mean-0(T ) s.t. Rω + dT ηT is ∆T -harmonic

Conjecture ([Schulz and Tsogtgerel, 2020])

||Rη − ηT ||C1
T
= O(diam(T )2)

▶ Remark: in FEM get L2-estimates; on space Ωk(T ) all norms equivalent ⇝ C 1

▶ ⇒ if Rω + dT ηT far away from 0, then ω + dη nowhere 0



Step 4: Perturb gapprox -harmonic to gCY -harmonic

Theorem

For all ϵ2 > 0 exists δ2 > 0 such that:

if λ ∈ Ω1(L) harmonic w.r.t gapprox and ||λ||L2 = 1 and
minx∈L |λ(x)| > ϵ2 and ||gCY − gapprox ||C1 < δ2, then exists
η ∈ Ω0(L) s.t. λ+ dη is nowhere 0 and harmonic w.r.t. gCY .

Proof: ∆approx(λ) = 0 ⇒ ||∆CY (λ)||L2 ≤ C · δ2
Let η ∈ Ω0

0-mean(L) s.t. ∆CY (η) = − d∗λ ⇒ ∆CY (λ+ dη) = 0

||η||C0,α ≲ ||η||L22 ≲ ||∆CY η||L2 = ||d∗CYλ||L2 ≲ ||∆CYλ||L2 ≲ δ

by Sobolev embedding and elliptic regularity (to do: C 1-estimate)
Then min |λ+ dη| ≥ (min |λ|)− (max dη) ≥ ϵ2 − C · δ2. Bigger than 0 for δ2 small

▶ Need all constants explicit!

▶ For ||η||L23 ≲ ||∆CY η||L21 need smallest eigenvalue of ∆, e.g. [Li and Yau, 1980]



Result

1. Compute gapprox and compute
∣∣∣∣∣∣ volΩvolω

− 1
∣∣∣∣∣∣
L∞

and
∣∣∣∣∣∣ volωvolΩ

− 1
∣∣∣∣∣∣
L∞

, hopefully small

2.
step 2
=⇒ ||gCY − gapprox ||C1 small

3. Find λ ∈ Ω1(L) harmonic w.r.t. gapprox , hopefully large bound from below

4.
step 4
=⇒ exists nowhere 0 harmonic 1-form w.r.t. gCY

Harmonic 1-form w.r.t. gapprox Perturbed 1-form, it has a worse bound from below w.r.t.

gCY , but still nowhere 0



Example 0: [Joyce and Karigiannis, 2017, Example 7.6]

▶ Singular Calabi-Yau
Y0 := {([w0 : w1], [x0 : x1], [y0 : y1], [z0 : z1]) ∈ CP1 × CP1 × CP1 × CP1 :

(w0x0y0z0)
2 + (w1x1y1z1)

2 = 0}
▶ Real locus Y0(R) ≡ T 3 smooth

⇒ small perturbation Y is smooth, still has Y (R) = T 3

▶ Conjecture: metric on T 3 is close to flat metric. ⇒ exist nowhere zero 1-forms
▶ Proof idea (by Yang Li):

▶ Y0 admits singular Calabi-Yau metric g0 [Eyssidieux et al., 2009]]
▶ Y0 has complex T 3 symmetry ⇒ isometric T 3-action w.r.t. g0
▶ Let Yϵ be a 1-parameter family of Calabi-Yaus with Yϵ=0 = Y0 and metric gϵ
▶ Then gϵ → g0 away from singularities of Y0 [Rong and Zhang, 2011]
▶ ⇒ gϵ|T 3 approximately flat



Example 1: S1 × S2

Q = x41 + x42 − 1 S = x23 + x24 + x25 − 1

▶ Y aff
0 := Z (Q) ∩ Z (S) ⊂ C5. Viewed projective is Y0 ⊂ CP4

▶ Y0 singular, real locus Y0(R) ≃ S1 × S2 smooth
▶ Small perturbation Yϵ smooth and has Yϵ(R) ≃ S1 × S2, may be an example
▶ Problem: for epsilon small, have volΩ

volω
of gapprox large ⇝ programme fails at step 4

▶ Potential solution: find perturbation of Y0 with maximum distance to singular
Calabi-Yaus (suggested in [Douglas et al., 2022] for quintics)

YY00

YY

▶ Check topological type of Yϵ using persistent homology [Di Rocco et al., 2022]



Example 2: from real cubics

▶ Diffeomorphism type of real cubics C ⊂ RP4 classified in [Krasnov, 2009]:
Possible are RP3#(S1 × S2)# . . .#(S1 × S2) with 0, 1, 2, 3, 4, 5 handles
(plus RP3 ∪ S3 and one exotic possibility that is not understood)

▶ Then Q = Z (C · (x20 + · · ·+ x24 )) quintic

▶ Smooth in RP4, perturb to be smooth in CP4 ⇝ Yϵ

▶ If C has harmonic nowhere zero 1-form ⇒ closed nowhere zero 1-form
⇒ Tischler’s theorem: C is a fibration over S1

▶ Topological condition, not satisfied for these diffeomorphism types

▶ In that case: λ ∈ Ω1(C ) must have zeros; use steps 1-4 to check how many

▶ Conjecture: resolution construction for 1-forms with zeros yields orbifolds with
isolated conical singularities; local analysis around zeros not yet worked out



Thank you for the attention!



References I
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