An application of numerical techniques to rigorous proof in special holonomy

Daniel Platt 15 November 2022

Abstract: Approximations of Calabi-Yau metric are a popular tool to produce heuristics, but so far have not been leveraged to rigorously prove theorems in geometry. I present one work in progress, in which we prove that the real loci of certain Calabi-Yau manifolds admit harmonic nowhere vanishing 1-forms, which are needed for an application in G2-geometry. I will explain the proof strategy, which consists of two parts: first, I formulate an estimate for the difference between approximate metric and true Calabi-Yau metric in terms of the Ricci curvature of the approximate metric which is of independent interest. Second, I explain the connection between nowhere vanishing 1-forms with respect to the two different metrics. This is joint work with Rodrigo Barbosa, Michael Douglas, and Yidi Qi.

- Use machine learning for conjecture generation e.g. [Davies et al., 2021]: conjecture connecting algebraic and geometric properties of knots
- Machine learning applied to pure mathematics datasets
 e.g. [He, 2017]: inputs are Calabi-Yau manifolds, outputs are their Hodge numbers (previously computed exactly)
- Numerical verification methods for PDE solutions e.g. [Nakao et al., 2019]: proof there exists smooth solution near a finite element solution to Navier-Stokes equation

Background

- Let Y be Calabi-Yau 3-fold with Calabi-Yau metric g_{CY}
- $\sigma: Y \to Y$ anti-holomorphic involution, $L := fix(\sigma)$ example: quintic with real coefficients in \mathbb{CP}^4 and $\sigma([z_0:\cdots:z_4]) = [\overline{z_0}:\cdots:\overline{z_4}]$
- ▶ $S^1 \times Y$ has dimension 7 and holonomy SU(3). Problem: want holonomy G_2
- ▶ Define $\widehat{\sigma} : S^1 \times Y \to S^1 \times Y$ as $(x, y) \mapsto (-x, \sigma(y))$

Theorem ([Joyce and Karigiannis, 2017]) If there exists $\lambda \in \Omega^1(L)$ harmonic w.r.t. $g_{CY}|_L$ that is nowhere 0, then there exists a resolution $N^7 \to (S^1 \times Y)/\langle \hat{\sigma} \rangle$ with holonomy equal to G_2 .

Goal: check if such a 1-form exists

► First Betti number → harmonic 1-forms. Nowhere 0? Must know the metric!

Goal: Check if *L* admits harmonic nowhere zero 1-form

- Step 1: Approximate g_{CY} by g_{approx}
- Step 2: Prove: for all $\epsilon_1 > 0$ exists $\delta_1 > 0$ such that:

 $\text{if } ||\textit{Ric}(\textit{g}_{\textit{approx}})||_{\textit{C}^{0}} < \delta_{1}, \text{ then } ||\textit{g}_{\textit{CY}} - \textit{g}_{\textit{approx}}||_{\textit{C}^{1}} < \epsilon_{1}.$

Step 3: Find $\lambda \in \Omega^1(L)$ harmonic w.r.t. g_{approx} and compute $\min_{x \in L} |\lambda(x)|$.

Step 4: Prove: for all $\epsilon_2 > 0$ exists $\delta_2 > 0$ such that:

if $\lambda \in \Omega^1(L)$ harmonic w.r.t g_{approx} and $||\lambda||_{L^2} = 1$ and $\min_{x \in L} |\lambda(x)| > \epsilon_2$ and $||g_{CY} - g_{approx}||_{C^1} < \delta_2$, then exists $\eta \in \Omega^0(L)$ s.t. $\lambda + d\eta$ is nowhere 0 and harmonic w.r.t. g_{CY} .

- Result: 🕨 🕨
- Compute *g_{approx}*
 - Check that ||Ric(g_{approx})||_{C⁰} is small
 - Find $\lambda \in \Omega^1(L)$ harmonic w.r.t. g_{approx} s.t. min $|\lambda|$ is big
 - ► Then exists $\eta \in \Omega^0(L)$ s.t. $\lambda + d\eta$ harmonic w.r.t. g_{CY} and nowhere 0

Step 1: approximate g_{CY} by g_{approx}

- $\blacktriangleright \text{ Holomorphic volume form locally } \Omega = \mathsf{d} z^1 \wedge \mathsf{d} z^2 \wedge \mathsf{d} z^3 \rightsquigarrow \mathsf{vol}_\Omega := \Omega \wedge \overline{\Omega} \in \Omega^6(Y)$
- Ample line bundle L → Y and I ∈ N such that L^{⊗I} very ample Example: Y ⊂ CP⁴ quintic, (O(1)|_Y)^{⊗I}
- ► $s_1, ..., s_N \in H^0(L^{\otimes l})$ basis of holomorphic sections ⇒ embedding $s = (s_1, ..., s_N) : Y \to \mathbb{CP}^{N-1}$
- ► *h* positive definite Hermitian form on $H^0(L^{\otimes l}) \rightsquigarrow$ Fubini-Study metric Kähler potential: $\log \sum_{i,j} h_{i,j} s^i \overline{s}^j$. Volume form: $\operatorname{vol}_h \in \Omega^6(Y)$
- [Donaldson, 2009]: choose h cleverly to approximate CY metric (Ignoring a constant) If vol_h = 1, then Ricci-flat
- Choose $x_1, \ldots, x_k \in Y$ and find

$$\min_{h} \int_{\{x_1, \dots, x_k\}} \left(\frac{\operatorname{vol}_h}{\operatorname{vol}_\Omega} - 1 \right)^2$$

 Convenient: there is fast machine learning software to find local minima [Douglas et al., 2022]

Step 2: $||Ric(g_{approx})|| \text{ small} \Rightarrow ||g_{CY} - g_{approx}|| \text{ small}$

Theorem (Yau's theorem. [Yau, 1978] and p.105-107 in [Joyce, 2000]) (Y, ω, g) Kähler manifold of cx. dimension m with holomorphic volume form $\Omega \in \Omega^m(Y, \mathbb{C})$. Then there exists a unique $K \in \Omega^0_{mean-0}(Y)$ s.t.

- i. $\omega + dd^c K$ is Kähler
- ii. $(\omega + \mathrm{dd}^{c} \mathsf{K})^{m} = \Omega \wedge \overline{\Omega}$ (ignoring a constant)
- iii. (New) Up to cx. dimension 3: there exists C depending on $||f-1||_{C^0}$ and $||f^{-1}-1||_{C^0}$ such that $||dd^cK||_{C^1} < C$, where $f = \frac{vol_\Omega}{vol_\omega}$ and $C \to 0$ as $f \to 1$

Proof of iii.: Yau proves estimate $||dd^cK||_{C^0} \leq C$ for some C, now want C small. Computations around $p \in Y$ from Yau's proof: ex. functions a_1, a_2, a_3 s.t.

$$\begin{split} \Delta K &= 3 - \sum a_j \leq 3 \cdot (1 - f), & -\Delta K &= 3 - \sum a_j^{-1} \leq 3 \cdot (1 - f^{-1}), \\ \prod a_j &= f(p), & |\operatorname{dd}^c K|^2 = 2 \sum (a_j - 1)^2. \end{split}$$

So $f \approx 1 \Rightarrow \Delta K \approx 0$ (first two eqns) $\Rightarrow a_1 \approx a_2 \approx a_3 \approx 1$ (first three equations, only in dim ≤ 3) $\Rightarrow dd^c K \approx 0$ (last eqn) \Box \sim Then expect C^k -estimates, because K satisfies elliptic equation

Step 3: Find $\lambda \in \Omega^1(L)$ harmonic w.r.t. g_{approx}

• T simplicial complex, triangulation of L

► Discrete exterior calculus [Hirani, 2003]: *k*-forms $\Omega^{k}(\mathcal{T}) := \text{Hom}\left(\bigoplus_{\sigma \in \mathcal{T}^{k}} \mathbb{R}\sigma, \mathbb{R}\right)$

Discretisation
$$R: \Omega^{k}(L) \to \Omega^{k}(T)$$

 $\omega \mapsto \left(\sigma \mapsto \int_{\sigma} \omega\right) \longrightarrow 0^{1/2}$
 $i = 0^{1/2}$

n 10

Have $d_{\mathcal{T}}$, $d_{\mathcal{T}}^*$, $\Delta_{\mathcal{T}}$ on \mathcal{T}

 Fix ω ∈ Ω¹(L) closed ^{Hodge thm} unique η ∈ Ω⁰_{mean-0}(L) s.t. ω + dη harmonic
 discrete Hodge thm ⇒ unique η_T ∈ Ω⁰_{mean-0}(T) s.t. Rω + d_Tη_T is Δ_T-harmonic

Conjecture ([Schulz and Tsogtgerel, 2020]) $||R\eta - \eta_{\mathcal{T}}||_{C^{1}_{\mathcal{T}}} = \mathcal{O}(\operatorname{diam}(\mathcal{T})^{2})$

Remark: in FEM get L²-estimates; on space Ω^k(T) all norms equivalent → C¹
 ⇒ if Rω + d_Tη_T far away from 0, then ω + dη nowhere 0

Step 4: Perturb g_{approx} -harmonic to g_{CY} -harmonic

Theorem For all $\epsilon_2 > 0$ exists $\delta_2 > 0$ such that: $if \lambda \in \Omega^1(L)$ harmonic w.r.t g_{approx} and $||\lambda||_{L^2} = 1$ and $\min_{x \in L} |\lambda(x)| > \epsilon_2$ and $||g_{CY} - g_{approx}||_{C^1} < \delta_2$, then exists $\eta \in \Omega^0(L)$ s.t. $\lambda + d\eta$ is nowhere 0 and harmonic w.r.t. g_{CY} .

Proof:
$$\Delta_{approx}(\lambda) = 0 \Rightarrow ||\Delta_{CY}(\lambda)||_{L^2} \leq C \cdot \delta_2$$

Let $\eta \in \Omega^0_{0-\text{mean}}(L)$ s.t. $\Delta_{CY}(\eta) = -d^*\lambda \Rightarrow \Delta_{CY}(\lambda + d\eta) = 0$

 $||\eta||_{\mathcal{C}^{0,\alpha}} \lesssim ||\eta||_{L^2_2} \lesssim ||\Delta_{CY}\eta||_{L^2} = ||\mathsf{d}^*_{CY}\lambda||_{L^2} \lesssim ||\Delta_{CY}\lambda||_{L^2} \lesssim \delta$

by Sobolev embedding and elliptic regularity (to do: C^1 -estimate) Then min $|\lambda + d\eta| \ge (\min |\lambda|) - (\max d\eta) \ge \epsilon_2 - C \cdot \delta_2$. Bigger than 0 for δ_2 small \Box

Need all constants explicit!

► For $||\eta||_{L^2_3} \lesssim ||\Delta_{CY}\eta||_{L^2_1}$ need smallest eigenvalue of Δ , e.g. [Li and Yau, 1980]

Result

- 1. Compute g_{approx} and compute $\left| \left| \frac{\operatorname{vol}_{\Omega}}{\operatorname{vol}_{\omega}} 1 \right| \right|_{I^{\infty}}$ and $\left| \left| \frac{\operatorname{vol}_{\omega}}{\operatorname{vol}_{\Omega}} 1 \right| \right|_{I^{\infty}}$, hopefully small
- 2. $\Longrightarrow^{\text{step 2}} ||g_{CY} g_{approx}||_{C^1}$ small
- 3. Find $\lambda \in \Omega^1(L)$ harmonic w.r.t. g_{approx} , hopefully large bound from below 4. $\stackrel{\text{step 4}}{\Longrightarrow}$ exists nowhere 0 harmonic 1-form w.r.t. g_{CY}

Harmonic 1-form w.r.t. gapprox

Perturbed 1-form, it has a worse bound from below w.r.t.

 g_{CY} , but still nowhere 0

Example 0: [Joyce and Karigiannis, 2017, Example 7.6]

► Singular Calabi-Yau $Y_0 := \{([w_0 : w_1], [x_0 : x_1], [y_0 : y_1], [z_0 : z_1]) \in \mathbb{CP}^1 \times \mathbb{CP}^1 \times \mathbb{CP}^1 \times \mathbb{CP}^1 : \frac{(w_0 x_0 y_0 z_0)^2 + (w_1 x_1 y_1 z_1)^2 = 0}{0}\}$

► Real locus $Y_0(\mathbb{R}) \equiv T^3$ smooth \Rightarrow small perturbation Y is smooth, still has $Y(\mathbb{R}) = T^3$

- ▶ Conjecture: metric on T^3 is close to flat metric. \Rightarrow exist nowhere zero 1-forms
- Proof idea (by Yang Li):
 - ▶ Y₀ admits singular Calabi-Yau metric g₀ [Eyssidieux et al., 2009]]
 - ▶ Y_0 has complex T^3 symmetry \Rightarrow isometric T^3 -action w.r.t. g_0
 - Let Y_{ϵ} be a 1-parameter family of Calabi-Yaus with $Y_{\epsilon=0} = Y_0$ and metric g_{ϵ}
 - Then $g_{\epsilon} \rightarrow g_0$ away from singularities of Y_0 [Rong and Zhang, 2011]
 - ▶ \Rightarrow $g_{\epsilon}|_{T^3}$ approximately flat

Example 1: $S^1 \times S^2$

- ▶ $Y_0^{aff} := Z(Q) \cap Z(S) \subset \mathbb{C}^5$. Viewed projective is $Y_0 \subset \mathbb{CP}^4$
- ▶ Y_0 singular, real locus $Y_0(\mathbb{R}) \simeq S^1 \times S^2$ smooth
- Small perturbation Y_{ϵ} smooth and has $Y_{\epsilon}(\mathbb{R}) \simeq S^1 \times S^2$, may be an example
- ▶ Problem: for epsilon small, have $\frac{\text{vol}_{\Omega}}{\text{vol}_{\Omega}}$ of g_{approx} large \rightarrow programme fails at step 4
- Potential solution: find perturbation of Y₀ with maximum distance to singular Calabi-Yaus (suggested in [Douglas et al., 2022] for quintics)

• Check topological type of Y_{ϵ} using persistent homology [Di Rocco et al., 2022]

- Diffeomorphism type of real cubics C ⊂ ℝP⁴ classified in [Krasnov, 2009]: Possible are ℝP³#(S¹ × S²)#...#(S¹ × S²) with 0, 1, 2, 3, 4, 5 handles (plus ℝP³ ∪ S³ and one exotic possibility that is not understood)
- Then $Q = Z(C \cdot (x_0^2 + \cdots + x_4^2))$ quintic
- ▶ Smooth in \mathbb{RP}^4 , perturb to be smooth in $\mathbb{CP}^4 \rightsquigarrow Y_\epsilon$
- ▶ If C has harmonic nowhere zero 1-form \Rightarrow closed nowhere zero 1-form \Rightarrow Tischler's theorem: C is a fibration over S^1
- Topological condition, not satisfied for these diffeomorphism types
- ▶ In that case: $\lambda \in \Omega^1(C)$ must have zeros; use steps 1-4 to check how many
- Conjecture: resolution construction for 1-forms with zeros yields orbifolds with isolated conical singularities; local analysis around zeros not yet worked out

Thank you for the attention!

References I

- Davies, A., Veličković, P., Buesing, L., Blackwell, S., Zheng, D., Tomašev, N., Tanburn, R., Battaglia, P., Blundell, C., Juhász, A., et al. (2021).
 Advancing mathematics by guiding human intuition with ai. *Nature*, 600(7887):70–74.
- Di Rocco, S., Eklund, D., and Gäfvert, O. (2022). Sampling and homology via bottlenecks. Mathematics of Computation, 91(338):2969–2995.
- Donaldson, S. K. (2009).

Some numerical results in complex differential geometry. *Pure Appl. Math. Q.*, 5(2, Special Issue: In honor of Friedrich Hirzebruch. Part 1):571–618.

Douglas, M., Lakshminarasimhan, S., and Qi, Y. (2022).
 Numerical calabi-yau metrics from holomorphic networks.
 In Mathematical and Scientific Machine Learning, pages 223–252. PMLR.

References II

ArXiv e-prints.

References III

Joyce, D. D. (2000).

Compact manifolds with special holonomy.

Oxford Mathematical Monographs. Oxford University Press, Oxford.

Krasnov, V. A. (2009).

On the topological classification of real three-dimensional cubics. *Mat. Zametki*, 85(6):886–893.

Li, P. and Yau, S. T. (1980).

Estimates of eigenvalues of a compact Riemannian manifold.

In Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979), Proc. Sympos. Pure Math., XXXVI, pages 205–239. Amer. Math. Soc., Providence, R.I.

Nakao, M. T., Plum, M., and Watanabe, Y. (2019). Numerical verification methods and computer-assisted proofs for partial differential equations. Springer.

Rong, X. and Zhang, Y. (2011).

Continuity of extremal transitions and flops for Calabi-Yau manifolds. J. Differential Geom., 89(2):233–269. Appendix B by Mark Gross.

 Schulz, E. and Tsogtgerel, G. (2020).
 Convergence of discrete exterior calculus approximations for Poisson problems. Discrete Comput. Geom., 63(2):346–376.

Yau, S. T. (1978).

On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I.

Comm. Pure Appl. Math., 31(3):339-411.