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Gauge theory is the study of principal bundle connections. In the talk I explained what
these are, mentioned the existence of exotic R4’s as one remarkable application, and gave
a handwavy outlook at open problems.

1 Definitions

References for this section are [Bau09, KN63].

Definition 1.1. Let P
π
→ M be a G-principal bundle. A one-form A ∈ Ω1(P, g) is called

connection if

1. it is right-invariant, i.e. r∗gA = Ad(g−1) ◦ A for all g ∈ G,

2. it reproduces fundamental vector fields, i.e. A(X̃) = X for all X ∈ g.

Here X̃(u) = d
dt
(u · exp(tX))|t=0. Denote by A(P ) the space of all connections on P .

b x

b u

X̃(u)

1

mailto:d.platt@web.de


Definition 1.2. Let A ∈ A(P ). The map

DA : Ω1(P, g) → Ω2(P, g)

ω 7→ dω +
1

2
[ω ∧A]

(1)

is called the absolute differential with respect to A. FA := DAA ∈ Ω2(P, g) is called the
curvature of A.

Proposition 1.3. There is a 1:1-correspondence

Ωk(P, g)hor,G ↔ Ωk(M,Ad(P ))
{

horizontal, right-invariant

forms with values in g on P

}

1:1
↔

{
forms with values in

Ad(P ) = P ×Ad,G g on M

}

.
(2)

For ω ∈ Ωk(P, g)hor,G and ω ∈ Ωk(M,Ad(P )) the correspondence is given by:

ω(dπ(X1), . . . ,dπ(Xk)) = [u, ω(X1, . . . ,Xk)], (3)

where u ∈ P , and X1, dots, Xk ∈ TuP .

Together with line 2, the map DA from line 1 induces a differential da : Ω1(M,AdP ) →
Ω2(M,AdP ).

Proposition 1.4. Let A1, A2 ∈ A(P ). Then A1−A2 is a horizontal and right-invariant

form on P . Thus, A(P ) is an affine space with vector space Ω1(M,AdP ).

Proposition 1.5. For A ∈ A(P ) its curvature FA is horizontal and right-invariant.

Thus we can consider FA as an element in Ω2(M,Ad(P )), which is the viewpoint we will
adopt for the rest of the document.

2 ASD-Instantons

References for this section are [Bau09, Siv18].

Let M and G be compact.

Definition 2.1. A ∈ A(M) is called Yang-Mills connection if δAFA = 0. Here δA =
∗dA∗ : Ω2(M,AdP ) → Ω1(M,AdP ) denotes the co-differential of dA.

Proposition 2.2. Let A ∈ A(M). Then the following are equivalent:

1. A is a Yang-Mills connections.
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2. A is a critical point of the Yang-Mills functional

L : Ω1(M,AdP ) → R

A 7→ 〈FA, FA〉L2 .
(4)

On a four-dimensional manifold we have ∗ : Ω2(M) → Ω2(M), ∗2 = Id, and therefor

Ω2(M) = Ω2
+(M) ⊕Ω2

−(M) = {ω : ∗ω = ω} ⊕ {ω : ∗ω = −ω}. (5)

This allows the following definition:

Definition 2.3. A ∈ A(P ) is called anti-self-dual (ASD) isntantons if FA ∈ Ω2
−(M,AdP ).

Proposition 2.4. If A ∈ A(M) ASD instanton, then A is a Yang-Mills connection.

Proof.

δAFA = ∗dA ∗ FA = − ∗ dAFA
︸ ︷︷ ︸

= 0,

where the last step followed from the Bianchi identity dAFA = 0, which holds for all
connections.

The Yang-Mills connection is a second order PDE, the ASD condition is a first order
PDE. In general it is not true that all Yang-Mills connections are ASD instantons,
however ASD instantons are the same as minimisers of the Yang-Mills functional, as
stated in the following proposition:

Proposition 2.5. We have p1(AdP ) = 1
8π2 〈FA, ∗FA〉L2 for any connection A ∈ A(P )

and therefore:

1. p1(AdP ) > 0 implies that there exist not ASD instantons on P .

2. A is a minimum of the Yang-Mills function L if and only if A is and ASD instanton.

Proof. The identity p1(AdP ) = 1
8π2 〈FA, ∗FA〉L2 follows from Chern-Weil theory and we

omit the proof here.

1. If A ∈ A(P ) is an ASD instantons, then 1
8π2 〈FA, ∗FA〉L2 ≤ 0, thus there can be no

ASD instantons under the assumption p1(AdP ) > 0.
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2. We have

L(A) = 〈FA, FA〉

=
1

2
(〈FA, FA〉+ 〈∗FA, ∗FA〉)

=
1

2
(〈FA, FA〉+ 〈∗FA, ∗FA〉+ 2〈FA, ∗FA〉)− 〈FA, ∗FA〉

=
1

2
〈FA + ∗FA, FA + ∗FA〉 − 〈FA, ∗FA〉

≥ −〈FA, ∗FA〉

with equality if and only if A is and ASD instanton.

3 Deformation Theory

Write M̂ = {A ∈ A(P ) : A ASD instanton on P}. Our goal is to describe M̂. There is
a problem with this, as described below.

Definition 3.1. Denote by

G(P ) = {f : P → P : πf = f, f(pg) = f(p)g for all p ∈ P, g ∈ G} (6)

the gauge group of P .

Let A ∈ M̂, and f ∈ G(P ), then f∗A ∈ M̂ . In other words: if we fix just one ASD
instanton, we already get a whole infinite-dimensional family of them as the orbit under
the action of the gauge group.

b A

G(P ) · A

Im(LA(G(P )))

So, what we really want to study is

M = M̂/G(P ). (7)
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As a first attempt, let us determine the dimension of M, wherever it is a smooth mani-
fold.

• Describe TAM̂:

Assume we have a deformation of A ∈ M̂, say ω ∈ Ω1(M,AdP ) such that A+tω ∈
M̂ for t ∈ (−ǫ, ǫ). Then

0 = F+
A+tω = (FA + t dAω +

1

2
[ω ∧ ω])+

and differentiating gives 0 = d+Aω, i.e. TAM̂ = Ker d+A.

• Quotient out by the infinitesimal action of the gauge group G(P ):

We have an action of G(P ) on M̂, and therefor an infinitesimal action of the Lie
algebra LA(G(P )) on M̂, i.e. θ ∈ LA(G(P )) defines a vector field Xθ on M̂.

We now compute Xθ(A) for θ ∈ LA(G(P )):

Xθ(A) =
d

dt
exp(tθ)∗A|t=0

=
d

dt
exp(tθ) · A · exp(−tθ)− (dexp(tθ)) · exp(−tθ)|t=0

= θA−Aθ − dθ

= [θ,A]− dθ

= − dAθ,

where we assumed that G is a matrix Lie group and used · to denote matrix
multiplication. The first equality is [DK90, line 2.1.9]. So, {Xθ : θ ∈ LA(G(P ))} =
ImdA.

Combine the two points in a complex, where we omit the (M,AdP ) from the notation:

0 → Ω0 dA→ Ω1 d+
A→ Ω2

+ → 0, (∗)

This is called the deformation complex. Then

T[A]M =
Ker d+A
ImdA

= H1(∗), (8)

and ind(∗) = ind(dA ⊕ d+A) = dimH0(∗)− dimH1(∗) + dimH2(∗), thus

dimM = − ind(∗) + dimH0(∗) + dimH2(∗). (9)

For special choices of M and G we have H0(∗) = H2(∗) = 0. In these cases dimM can
be computed through an Atiyah-Singer index formula.
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4 Generalized Instantons

A reference for this section is [LM17].

• On R
4:

Λ2
R
4 ≃ so(4) and su(2) ⊂ so(4) by forgetting the complex structure. Under this

inclusion su(2) = Λ2
−R

4 (check!). Thus:

∗FA = −FA in a point ↔ FA ∈ su(2)⊗Ad(P ) ⊂ Λ2
R
4 ⊗Ad(P ). (10)

• On M4:

We have Ω2(M) = Fr ×SO(4) Λ
2
R
4 ≃ Fr ×SO(4) so(4). Now assume the manifold

has an SU(2)-structure, then

Ω2
−(M) = Fr ×SU(2) su(2) ⊂ Fr ×SU(2) Λ

2
R
4, (11)

thus we can characterise ASD instantons as connections which satisfy

FA ∈ (Fr ×SU(2) su(2)) ⊗AdP. (12)

This allows us to make the following definition:

Definition 4.1. Let M be a manifold with H-structure and P a G-bundle over M . We
say that A ∈ A(P ) is an H-instanton if

FA ∈ (Fr ×H h)⊗AdP. (13)

Example 4.2. Assume M to have holonomy contained in H. This gives rise to an H-
structure and therefor to the definition of H-instantons on M .

Then the Levi-Civita connection A on the frame bundle of M is an H-instanton. This
is because in a local trivialisation the Riemann curvature tensor R can be regarded as a
two-form on M with values in h, i.e. R ∈ (M×so(n))⊗h. And because of its symmetries
it even belongs to the subbundle M × (h⊗ h). (cf. [Car98, p. 2])

Thus, the Levi-Civita connection on a K3-surface is an ASD-instanton.

So, why all of this?

M. Freedman showed that the homeomorphism type of a 4-manifold depends only on its
intersection form and an additional invariant in its top cohomology group. S. Donaldson
assigned polynomial invariants to the moduli space of ASD-instantons which only depend
on the smooth structure, and not on the metric structure. There then exist examples of
manifolds which are homeomorphic by Freedman’s results, but cannot be diffeomorphic
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because they have different polynomial invariants. This led to the discovery of exotic
R
4’s. (cf. [DK90])

It is hoped that one can create a similar theory for higher dimensional manifolds. For
example, there is a hope that G2-instantons can be used to find non-homotopic G2-
structures on a manifold. All of the results presented in this talk carry over from the
ASD case to the G2 case, but the construction of a suitable compactification of the
moduli space of instantons turned out to be more difficult in the G2 case and remains
an open problem as of now.
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