
�2-instantons on Resolutions of

�2-orbifolds

Daniel Platt

�esis presented for the degree of

Doctor of Philosophy

Department of Mathematics

Imperial College London

7th February 2022

1



Statement of Originality

�e work is my own except where indicated otherwise.

2



Copyright Declaration

�e copyright of this thesis rests with the author. Unless otherwise indicated, its contents are

licensed under a Creative Commons A�ribution-NonCommercial 4.0 International Licence

(CC BY-NC).

Under this licence, you may copy and redistribute the material in any medium or format. You

may also create and distribute modified versions of the work. �is is on the condition that:

you credit the author and do not use it, or any derivative works, for a commercial purpose.

When reusing or sharing this work, ensure you make the licence terms clear to others by

naming the licence and linking to the licence text. Where a work has been adapted, you

should indicate that the work has been changed and describe those changes.

Please seek permission from the copyright holder for uses of this work that are not included

in this licence or permi�ed under UK Copyright Law.

3

https://creativecommons.org/licenses/by-nc/4.0/


A�nowledgements

I am indebted to my supervisors Jason Lotay and Simon Donaldson for sharing their ideas and

supporting me during mywork on this thesis. I was fortunate to have two supervisors who are

not only outstanding mathematicians but also brilliant teachers who so patiently explained a

lot of mathematics to me.

I thank the PhD students of the London School of Number �eory and Geometry and my

mathematical friends formany helpful discussions and providing amathematically stimulating

atmosphere. In particular Benjamin Aslan, Kael Dixon, Chris Evans, Lorenzo Foscolo, Yang
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Abstract

�e resolution of the �2-orbifold )
7/Γ, where Γ is a suitably chosen finite group, admits a 1-

parameter family of�2-structures with small torsioniC , obtained by gluing in Eguchi-Hanson

spaces. It was shown in [Joy96b] that iC can be perturbed to a torsion-free�2-structure ĩ
C for

small values of C . Using norms adapted to the geometry of the manifold we give an alternative

proof of the existence of ĩC . �is alternative proof produces the estimate
����ĩC − iC ����

�0 ≤ 2C5/2.

�is is an improvement over the previously known estimate
����ĩC − iC ����

�0 ≤ 2C1/2. As part of

the proof, we show that Eguchi-Hanson space admits a unique (up to scaling) harmonic form

with decay, which is a result of independent interest.

More generally, there exists a construction of torsion-free �2-structures on resolutions of a

more general class of�2-orbifolds, given in [JK21]. We explain a construction of�2-instantons

on thesemanifolds, which includes the case of�2-instantons on resolutions of)
7/Γ as a special

case. �e ingredients needed are a �2-instanton on the orbifold and a Fueter section over the

singular set of the orbifold. In the general case, we make the very restrictive assumption that

the Fueter section is pointwise rigid. In the special case of resolutions of ) 7/Γ, the improved

estimate for ĩC − iC allows to remove this assumption. As an application, we construct one

new example of a�2-instanton on the resolution of () 3 × K3)/ℤ2
2.
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1 Introduction

In [Ber55], Berger presented a list of groups which can possibly occur as the holonomy groups

of Riemannian manifolds. However, constructing manifolds which realise these holonomy

groups remained a wide-open problem for decades. A milestone in this direction was the for-

mulation and proof of the Calabi conjecture in [Cal54, Cal57] and [Yau77, Yau78] respectively.

Among other things, the proof of this conjecture gives a powerful characterisation of man-

ifolds admi�ing a metric with holonomy SU(=), giving rise to a wealth of examples of such

manifolds. For the exceptional holonomy group �2, such a general characterisation remains

out of reach, and even the construction of examples persists to be a challenging task.

�e first compact examples of Riemannian manifolds with holonomy equal to �2 were con-

structed in [Joy96b] by resolving an orbifold of the form ) 7/Γ, where Γ is a finite group of

isometries of ) 7. In [JK21], this construction was extended to resolutions of orbifolds of the

form ./Γ, where . is a manifold with holonomy contained in�2, but not necessarily flat, and

Γ is a finite group of�2-involutions. In [Joy96b] and [JK21] this was done by constructing�2-

structures with small torsion, and subsequently perturbing them to torsion-free�2-structures.

�is perturbation made use of a general existence result for torsion-free �2-structures that

holds on all 7-manifolds. An immediate question is: how far away is the torsion-free �2-

structure from the�2-structure with small torsion? �is is important in applications, such as

the construction of associative submanifolds and �2-instantons. In Section 3 we give a par-

tial answer to this question by proving an improved estimate for the difference between the

torsion-free �2-structure and the one with small torsion for the �2-manifolds from [Joy96b].

�e main result of this section is �eorem 3.84:

�eorem. Choose U ∈ (0, 1) and V ∈ (−1, 0) both close to 0. Let #C be the resolution of ) 7/Γ

from Eq. (3.31) and iC ∈ Ω
3 (#C ) the �2-structure with small torsion from Eq. (3.33). �ere exists

2 > 0 independent of C such that the following is true: for C small enough, there exists [C ∈ Ω
2(#C )

such that ĩ = iC + d[C is a torsion-free�2-structure, and [
C satisfies

����[C ����
�
2,U/2
V ;C

≤ 2C7/2−V .
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In particular,

����ĩ − iC
����
!∞ ≤ 2C5/2 and

����ĩ − iC
����
�0,U/2 ≤ 2C5/2−U/2 as well as

����ĩ − iC
����
�1,U/2 ≤ 2C3/2−U/2.

Here, the norm | | · | |
�
2,U/2
V ;C

is a weighted Hölder norm. �e norms in the last line of the theorem

are ordinary, unweighted norms. �e group Γ is a finite group acting through �2-involutions

on ) 7. In [Joy96b, Joy00] the estimate | |ĩ − i | |!∞ ≤ 2C1/2 was shown. In this sense, the

estimates from�eorem 3.84 are an improvement. �e theorem hinges on an estimate for the

inverse of the Laplacian acting on 2-forms on the resolution of) 7/Γ. �e crucial idea necessary

for obtaining this estimate is to split 2-forms into a part that is harmonic on the 4-dimensional

fibres orthogonal to the singular set of ) 7/Γ, and a rest. �e 4-dimensional fibres are subsets

of Eguchi-Hanson space -EH, and the proof of �eorem 3.84 uses detailed knowledge of the

harmonic forms on-EH. �e space-EH admits a harmonic 2-form a1 that can be wri�en down

explicitly and comes from rescaling the metric. In �eorem 3.26, we denote the Laplacian on

-EH acting on ?-forms by Δ?,6(1) , and we prove that a1 is essentially the only form with decay:

�eorem. For _ ∈ (−4, 0), the !2
2,_
-kernels of Δ?,6(1) acting on ?-forms of different degrees are

the same as the !2-kernels, namely:

Ker(Δ6(1) : !22,_ (Λ
2 (-EH)) → !20,_−2 (Λ

2(-EH))) = 〈a1〉,

Ker(Δ6(1) : !22,_ (Λ
? (-EH)) → !20,_−2 (Λ

? (-EH))) = 0 for ? ≠ 2.

Here !2
2,_

(Λ? (-EH)) denote the usual weighted Sobolev spaces on asymptotically conical man-

ifolds. �ey consist of, roughly speaking, !2-sections with 2 weak derivatives that decay like

A_ as A → ∞, where A is a radius function.

Using the idea from [Joy96b], some millions of �2-manifolds can be constructed, see [Joy00,

p.322]. However, using Be�i numbers alone, only around 100 of them can be distinguished.

�is prompts the question: how many of these �2-structures are deformation equivalent?

An idea that may potentially help to answer this question comes from gauge theory: in the

seminal article [Don83], the moduli space of anti-self-dual connections was used to define in-
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variants of smooth 4-manifolds. Following this, a rich theory of gauge theoretical invariants

and their relations to other manifold invariants in 4 dimensions was developed. �e article

[DT98] then recognised some of the 4-dimensional phenomena in dimension 7, for example

the existence of a functional whose critical points are instantons. With great optimism, one

may hope to recreate the four-dimensional success story in dimension 7, and use the moduli

space of �2-instantons to define deformation invariants of �2-manifolds. �ere are analytic

difficulties present in dimension 7 that were not there in dimension 4, and therefore the study

of�2-instantons has mainly focused on the construction of examples. �e examples that have

appeared in the literature so far are [Wal13a, SEW15, Wal16, MNSE21, LO20, LO18]. In Sec-

tion 4 we add to this as follows: we prove a gluing theorem that can be used to construct �2-

instantons on the �2-manifolds from [JK21]. Such a manifold is a resolution of a �2-orbifold,

obtained by taking the quotient of a �2-manifold . by a �2-involution ]. �e resolution # is

obtained by gluing Eguchi-Hanson spaces over the singular set of./〈]〉. Given a�2-instanton

\ on ./〈]〉 one may be able to construct from it a �2-instanton on # . To do this, one needs a

connection over the glued in part. One way to get such a connection is by taking a suitable

family of anti-self-dual instantons over Eguchi-Hanson space, say B. Our main result is that

one can glue together \ and B to a genuine �2-instanton if B consists of a rigid instanton in

each fibre and they satisfy a simple compatibility condition (cf. �eorem 4.130):

�eorem. Assume now that the section B is given by a rigid ASD-instanton in every point G ∈ !,

and assume that the connection \ used to define the approximate �2-instanton �C from Proposi-

tion 4.27 is infinitesimally rigid.

�ere exists 2 > 0 such that for small C there exists 0C = (0C , bC ) ∈ �1,U (Ω0 ⊕ Ω
1 (Ad�C )) such

that �̃C := �C + 0C is a�2-instanton. Furthermore, 0C satisfies
����0C �����1,U

−1,X ;C
≤ 2C1/18.

Here, U ∈ (0, 1) must be a small number and | | · | |�1,U
−1,X ;C

denotes a weighted Hölder norm. We

use this theorem to construct a new�2-instanton on the resolution of () 3 × K3)/ℤ2
2.

�anks to the improved estimate for the difference ĩ − iC on resolutions of ) 7/Γ from the

aforementioned �eorem 3.84 we have an even stronger gluing theorem on these manifolds.

In this case, we need not require that the section B is given by rigid instantons, only that it is

a rigid solution of the Fueter equation (cf. �eorem 4.131):

12



�eorem. Let # → . ′ be the resolution of the orbifold . ′ = ) 7/Γ from before. Assume that the

connection \ used to define the approximate�2-instanton�C from Proposition 4.27 is infinitesim-

ally rigid and that B is an infinitesimally rigid Fueter section.

�ere exists 2 > 0 such that for small C there exists an 0C = (0C , bC ) ∈ �1,U (Ω0 ⊕ Ω
1 (Ad�C )) such

that �̃C := �C + 0C is a�2-instanton. Furthermore, 0C satisfies
����0C ����XC

≤ 2C2−2U .

Here, | | · | |XC
denotes a complicated composite norm. �e basic idea of this norm is the same as

in the previous chapter: it consists of a part that is harmonic in the Eguchi-Hanson directions

in the gluing region and a rest, and the two parts are scaled differently.

Unfortunately, no genuine examples of these more general ingredients are known. �at is:

all known rigid Fueter sections are actually sections of rigid instantons. �erefore, we were

unable to use this theorem to produce new examples so far.
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2 Ba�ground

2.1 Riemannian Holonomy Groups

Let (",6) be a smooth, =-dimensional Riemannian manifold and denote its Levi-Civita con-

nection by ∇.

Definition 2.1. Given a piecewise smooth curve W : [0, 1] → " from W (0) = G to W (1) = ~,

denote the parallel transport induced by ∇ along W by PW : )G" → )~" . For ? ∈ " we then

define the holonomy group of 6 at ? as

Hol(6, ?) = {PW : W smooth loop based at ?} ⊂ End()?").

�e following are standard properties of holonomy groups, see e.g. [KN63, Chapters II and

IV]:

Lemma 2.2. 1. �e groups Hol(6, ?) and Hol(6, @) are isomorphic groups for all ?, @ ∈ " .

2. For all ? we have that Hol(6, ?) preserves the metric on )?" , i.e. Hol(6, ?) ⊂ $ ()?").

Because of the this, we can fix a point ? ∈ " and an isometry)?" ≃ ℝ
= and speak ofHol(6, ?)

as a subgroup of $ (=) and call it the holonomy group of (",6), denoted by Hol(6).

Figure 1: Parallel transport on the sphere (2 ⊂ ℝ
3 endowedwith the round metric. �e tangent

vector+ is transported along the yellow curve, resulting in the vector PW (+ ). �e holonomy

group of (2 endowed with the round metric is SO(2).

Not every Lie group can appear as the holonomy group of a Riemannian manifold. A list of

possible holonomy groups was given by Berger:
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�eorem 2.3 ([Ber55]). Suppose (",6) is a simply-connected manifold of dimension = that is

irreducible and nonsymmetric. �en exactly one of the following holds:

1. Hol(6) = SO(=),

2. = = 2< with< ≥ 2, and Hol(6) = U(<) ⊂ SO(2<),

3. = = 2< with< ≥ 2, and Hol(6) = SU(<) ⊂ SO(2<),

4. = = 4< with< ≥ 2, and Hol(6) = Sp(<) ⊂ ($ (4<),

5. = = 4< with< ≥ 2, and Hol(6) = Sp(<) Sp(1) ⊂ ($ (4<),

6. = = 7 and Hol(6) = �2 ⊂ SO(7),

7. = = 8 and Hol(6) = Spin(7) ⊂ SO(8).

�e list originally also included the group Spin(9), but it was shown in [Ale68] and inde-

pendently in [BG72] to only occur in symmetric spaces. Berger did not prove that all these

groups occur as holonomy groups of Riemannian manifolds, and it took a long time to find

example manifolds for each group. In the cases�2 and Spin(7), metrics with these holonomy

groups were shown to exist on non-complete Riemannian manifolds in [Bry87]. �e next step

was the construction of complete noncompact examples in [BS89]. Finally, compact manifolds

with these holonomy groups were constructed in [Joy96b, Joy96a]. In the rest of this section,

we will introduce the holonomy groups Sp(<) and �2 in detail. A thorough discussion of all

holonomy groups can be found in [Sal89].

2.2 Hyperkähler Geometry and the Egu�i-Hanson Space

We now turn to the holonomy group Sp(<), the holonomy group of Hyperkähler manifolds.

Because of our later applications, we will be particularly interested in dimension four, that is

the group Sp(1).

To this end, consider the blowup ofℂ2/{±1}, which is again a complex surface. More than that,

it admits a Hyperkähler structure that is asymptotically locally Euclidean (ALE), see [Joy00,
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Section 7.2] and [Dan99] for surveys listing these and more properties. In this section, we will

define ALEHyperkählermanifolds, write down an explicit formula for the Hyperkählermetric

on the blowup ofℂ2/{±1} (cf. Proposition 2.5), and show that it satisfies the ALE Hyperkähler

property (cf. Proposition 2.10).

We begin with the definition of Hyperkähler manifolds.

Definition 2.4. Define the quaternions ℍ to be the associative, nonabelian real algebra

ℍ = {G0 + G18 + G2 9 + G3: : G 9 ∈ ℝ} ≃ ℝ
4,

endowed with the unique multiplication satisfying

8 9 = − 98 = :, 9: = −: 9 = 8, :8 = −8: = 9, 82 = 92 = :2 = −1.

Let ℍ< have coordinates (@1, . . . , @<), with @; = G;0 + G;18 + G;2 9 + G;3: ∈ ℍ and G;B ∈ ℝ. Define a

metric and 2-forms on ℍ
< by

6 =

<∑
;=1

3∑
B=0

(dG;B )2, l1 =

<∑
;=1

dG;0 ∧ dG;1 + dG;2 ∧ dG;3,

l2 =

<∑
;=1

dG;0 ∧ dG;2 + dG;3 ∧ dG;1, l3 =

<∑
;=1

dG;0 ∧ dG;3 + dG;1 ∧ dG;2 .

Define complex structures �, � ,  on ℍ
< to be le� multiplication with 8, 9, : respectively. �e

subgroup of GL(4<,ℝ) preserving 6, l1, l2, l3 is Sp(<). It also preserves �, � ,  .

A 4<-dimensional Riemannian manifold (",6) is called Hyperkähler if Hol(6) ⊂ Sp(<).

�us, on a Hyperkähler manifold we have the data of a metric and three compatible complex

structures and symplectic forms. Conversely, a metric together with three parallel symplectic

structures that are compatible in this sense defines a Hyperkähler structure on a manifold.

We will now define the Eguchi-Hanson space and the Eguchi-Hanson metrics, which are a

1-dimensional family of Hyperkähler metrics, controlled by a parameter : ∈ ℝ≥0. For : > 0

we get a metric on a smooth 4-manifold (this is point one of the following proposition), and

for : = 0 we get the standard metric on ℍ/{±1} or equivalently ℂ2/{±1} (this is point two of

16



the following proposition).

Proposition 2.5. Let A be a coordinate on the ℝ≥0-factor of ℝ≥0 × SO(3). Let

[1 = 2

©«

0 0 0

0 0 1

0 −1 0

ª®®®®®¬
, [2 = 2

©«

0 0 −1

0 0 0

1 0 0

ª®®®®®¬
, [3 = 2

©«

0 −1 0

1 0 0

0 0 0

ª®®®®®¬
∈ so(3)

and denote the dual basis extended to le�-invariant 1-forms on SO(3) by the same symbols. For

: ≥ 0, let 5: : ℝ>0 × SO(3) → ℝ>0 be defined by 5: (A ) = (: + A 2)1/4 and set

dC = 5 −1: (A ) dA, 41 (A ) = A 5 −1: (A )[1, 42 (A ) = 5: (A )[2, 43 (A ) = 5: (A )[3.

Define l
(:)
1 , l

(:)
2 , l

(:)
3 ∈ Ω

2 (ℝ>0 × SO(3)) to be

l
(:)
1 = dC ∧ 41 + 42 ∧ 43, l

(:)
2 = dC ∧ 42 + 43 ∧ 41, l

(:)
3 = dC ∧ 43 + 41 ∧ 42, (2.6)

and denote by 6(:) the metric on ℝ>0 × SO(3) that makes (dC, 41, 42, 43) an orthonormal basis.

1. If : > 0, consider the copy of SO(2) in SO(3) defined by {exp(B · [1) : B ∈ ℝ}, defining a

right action of SO(2) on SO(3). Denote by + ≃ ℝ
2 the standard representation of SO(2).

Define Ψ : SO(3) ×ℝ>0 → SO(3) ×+ as Ψ(6, A ) = (6, (A, 0)). Denote

-EH = SO(3) ×SO(2) + .

�en Ψ induces a smooth injective map Ψ̂ : SO(3) ×ℝ>0 → -EH that is a diffeomorphism

onto its image, and the forms Ψ̂∗(l (:)
8 ) can be extended to smooth 2-forms on all of -EH.

Furthermore, Ψ̂∗ (6(:) ) can also be extended to a metric on all of -EH, and (-EH, Ψ̂∗ (6(:) ))

is a Hyperkähler manifold.

2. If : = 0: parametrise the quaternions as G0 + G18 + G2 9 + G3: with G0, G1, G2, G3 ∈ ℝ, embed

(3 ⊂ ℍ as the unit sphere, and fix the identification q : (3/{±1} → SO(3) that maps G

onto the map ~ ↦→ G ·~ · G−1, where we use (3/{±1} ⊂ ℍ/{±1} and · denotes quaternionic
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multiplication, for G ∈ (3/{±1} ⊂ ℍ/{±1}. Denote

Φ : SO(3) ×ℝ>0 → ℍ/{±1}

(G, C) ↦→ C · q−1(G).

�en Φ∗l8 = l
(0)
8 for 8 ∈ {1, 2, 3} and Φ∗6 = 6( (0) , where 6, l1, l2, l3 ∈ Ω

2 (ℍ) are defined

as in Definition 2.4.

By slight abuse of notation, we will denote the extensions of l
(:)
8 for 8 ∈ {1, 2, 3} and 6(:) to

-EH in the case : > 0 by the same symbol, suppressing the pushforward under Ψ̂.

Proof. For : > 0: the fact that l
(:)
1 , l

(:)
2 , l

(:)
3 , 6(:) can be extended to all of -EH was proven,

for example, in [LM17, Section 2.4]. One checks using a direct computation that l
(:)
8 for 8 ∈

{1, 2, 3} is closed and [Hit87, Lemma 6.8] implies thatl
(:)
8 is also parallel for 8 ∈ {1, 2, 3}. Both

the symplectic forms and the metric are defined using the same orthonormal basis, which

proves that they are compatible. �e case : = 0 is a direct calculation. �

Remark 2.7. A possible point of confusion is that the function A : -EH → ℝ is approximately

the squared distance to the bolt SO(3) ×($ (2) {0} of -EH, so it is not a radius function.

It is a folklore result that the group of isometries of -EH that also preserve �
(:)
1 is isomorphic

to U(2)/{±1}. �is can be seen rather explicitly using the description of the metric from

Proposition 2.5, and we give a proof of that in Proposition A.1.

�eHyperkähler structure on-EH also has the important property that it approximates the flat

Hyperkähler structure on ℝ
4 for large values of A . �e following definition makes this notion

precise, and Proposition 2.10 proves that the Hyperkähler structure on -EH does indeed have

this property.

Definition 2.8 (Definition 7.2.1 in [Joy00]). Let� be a finite subgroup of Sp(1), and let (l̂1, l̂2, l̂3, 6̂)

be the Euclidean Hyperkähler structure on ℍ, and f : ℍ/� → [0,∞) the radius function on

ℍ/� . We say that a Hyperkähler 4-manifold (-,l1, l2, l3, 6) is asymptotically locally Euc-

lidean (ALE) asymptotic to ℍ/� , if there exists a compact subset ( ⊂ - and a map c : - \ ( →

18



ℍ/� that is a diffeomorphism between - \ ( and {G ∈ ℍ/� : f (G) > '} for some ' > 0, such

that

∇̂: (c∗(6) − 6̂) = O(f−4−: ) and ∇̂: (c∗(l8) − l̂8 ) = O(f−4−: ) (2.9)

as f → ∞, for 8 ∈ {1, 2, 3} and : ≥ 0, where ∇̂ is the Levi-Civita connection of 6̂.

Proposition 2.10.

1. �e 2-sphere . := SO(3) ×SO(2) {0} ⊂ -EH has radius :1/4.

2. �ere exists g
(:)
1 ∈ Ω

1 (-EH \ SO(3) ×SO(2) {0}) such that l
(:)
1 −l (0)

1 = dg
(:)
1 and for any

; ∈ ℤ

���∇;g (1)1

���
6(0)

= O(A−3−; ), (2.11)

where ∇ denotes the Levi-Civita connection of 6(0) . Furthermore, l
(:)
2 − l (0)

2 = 0, and

l
(:)
3 −l (0)

3 = 0. In particular, (-EH, l
(:)
1 , l

(:)
2 , l

(:)
3 , 6(:) ) is ALE asymptotic to ℍ/{±1}.

3. For :, : ′ > 0 there exists a diffeomorphism q:,:′ : -EH → -EH s.t. q∗
:,:′ (6(:) ) = _

26(:′) for

_4 = :
:′ , which restricts to the identity on . .

Proof.

1. �e curve W (B) = [expId (B[2), 0] is a geodesic in . ⊂ -EH with W (0) = W (2c ) of length

2c:1/4, so (2 has radius :1/4.

2. Explicitly, g
(:)
1 = ( 5 2

:
− 5 20 )[1. �e ALE property is [Joy00, Example 7.2.2].

3. �e fact that 6(:) and 6(:′) are conformally equivalent is clear on abstract grounds, as

there exists a classification of asymptotically locally EuclideanHyperkählermetrics (this

argument is used in [Joy00, p. 154]). Explicitly,

q : SO(3) ×SO(2) + → SO(3) ×SO(2) +

[D, (A, 0)] →
[
D, (_2A, 0)

] (2.12)

19



satisfies the claim in the proposition.

�

Remark 2.13. By definition,-EH is an associated bundle over SO(3)/SO(2) = (2. In fact,-EH is

diffeomorphic to the total space of) ∗(2, which itself is diffeomorphic to) ∗
ℂℙ

1. It is a folklore

result that (-EH, �
(:)
1 ) is biholomorphic to ) ∗

ℂℙ
1 for all : > 0, which in turn is the blowup of

ℂ
2/{±1} in the origin, see e.g. [Dan99, p. 17] for the statement. We thus have a blowup map

d : -EH → ℂ
2/{±1}.

�ere is another description of the ALE metric on Eguchi-Hanson space arising from two

different Hyperkähler quotient constructions: first, -EH is a special case of the Calabi-Yau

metrics on ) ∗
ℂℙ

= explained in [GRG97]. Second, -EH is a special case of ALE manifolds

asymptotic to the metric on ℂ
2/Γ, where Γ ⊂ SU(2) is a finite subgroup, which is explained in

[Kro89a]. (�e special case of Eguchi-Hanson space in this construction is described in [GN92,

Section 2].)

We briefly describe the construction from [GRG97], as it will be needed in Section 2.4.2. Let

M = ℍ
2 with quaternionic coordinates @0 , 0 ∈ {1, 2}, and let U(1) act on M via

@0 ↦→ @04
8C , C ∈ (0, 2c ]. (2.14)

A Hyperkähler moment map for this action is given by

` : M → Im(ℍ) ≃ ℝ
3 ⊗ u(1)

(@1, @2) ↦→
1

2

∑
0∈{1,2}

@08@0 .
(2.15)

Let Z = 8
2 ∈ Im(ℍ). �e group U(1) acts freely on `−1 (Z ) and the general theory of Hy-

perkähler reduction gives rise to a Hyperkähler structure on the four-dimensional manifold

- ′ = `−1 (Z )/U(1), denoted byM///U(1).

It will turn out that - ′ and -EH are isomorphic as Hyperkähler manifolds. We now identify

the group of holomorphic isometries of - ′, thereby recovering the result of Proposition A.1.

We view SU(2) embedded in ℍ
2×2 as quaternion valued matrices with no 9 or : components.
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�en SU(2) acts on M by right multiplication. �is action restricts to `−1 (Z ) and commutes

with the action ofU(1). �e action is not effective, as −1 ∈ SU(2) acts trivially, but the induced

action of the quotient group SU(2)/{±1} ≃ SO(3) is effective. Next, let SO(2) act on M from

the le� via

@0 ↦→ 48C · @0, C ∈ (0, 2c ].

Again, the action restricts to `−1 (Z ) and commutes with the action of U(1), but is not effective

as −1 ∈ SO(2) acts trivially. �e actions of SO(2)/{±1} and SU(2)/{±1} commute, as the first

group is acting from the le�, the second is acting from the right. We thus get that the group

SO(2)/{±1} × SU(2)/{±1} acts through isometries on - ′. Last, one readily confirms that the

map

* (1)/{±1} × SU(2)/{±1} → U(2)/{±1}

[_], [�] ↦→ [_�]

is a group isomorphism. Its inverse is given by [�] ↦→ ([
√
det�], [�/

√
det�]) which is not

well-defined as a map U(1) × SU(2) → U(2) but is well-defined a�er dividing out {±1}. One

may also recover the full isometry group of the Eguchi-Hanson space by noticing that there

is an additional isometry induced by the map on M that swaps coordinates, i.e. M → M,

(@1, @2) ↦→ (@2, @1).

As a smooth manifold, - ′ ≃ ) ∗
ℂℙ

1, so -EH and - ′ are diffeomorphic by Remark 2.13. �e

Hyperkähler metric on - ′ is asymptotically locally Euclidean by [CGLP01, Section 2.4]. By

[Joy96b, Example 7.2.2], - ′ is isomorphic as a Hyperkähler manifold to (-EH, 6(:) ) for some

: > 0. �e curve W : [0, 2c ] → - ′ given by

(1, 0) · exp
©«
C ·

©«
0 −1

1 0

ª®®¬
ª®®¬

parametrises a perimeter of the minimal 2-sphere (1, 0) · SO(3) in - ′. It has length 2c , so - ′

is isomorphic to the Hyperkähler manifold (-EH, 6
(1) ) by the first point of Proposition 2.10.

We sum up the results:
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Proposition 2.16. Under the U(1)-action on M := ℍ
2 from Eq. (2.14) we have that M///U(1) ≃

(-EH, 6
(1) ) as Hyperkähler manifolds.

2.3 �2-structures

2.3.1 Torsion of�2-structures on 7-manifolds

We now introduce�2-structures and their torsion, following the treatment in [Joy00].

Definition 2.17 (Definition 10.1.1 in [Joy00]). Let (G1, . . . , G7) be coordinates onℝ7. Write dG8 9 ...;

for the exterior form dG8 ∧ dG 9 ∧ · · · ∧ dG; . Define i0 ∈ Ω
3(ℝ7) by

i0 = dG123 + dG145 + dG167 + dG246 − dG257 − dG347 − dG356. (2.18)

�e subgroup of GL(7,ℝ) preserving i0 is the exceptional Lie group �2. It also fixes the

Euclidean metric 60 = dG21 + · · · + dG27 , the orientation on ℝ
7, and ∗i0 ∈ Ω

4 (ℝ7).

Definition 2.19. �e skew-symmetric bilinear map × : ℝ7 → ℝ
7 defined by

i0(D, E,F ) = 60 (D × E,F )

for D, E,F ∈ ℝ
7 is called the cross product induced by i .

�eorem 2.20 (�eorem 8.5 in [SW17]). Let k = ∗i0. �en Λ
∗(ℝ7)∗ splits into irreducible

representations of�2 as follows:

Λ
1+ ∗ = Λ

1
7,

Λ
2+ ∗ = Λ

2
7 ⊕ Λ

2
14,

Λ
3+ ∗ = Λ

3
1 ⊕ Λ

3
7 ⊕ Λ

3
27
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and correspondingly for Λ: (ℝ7)∗ ≃ Λ
7−: (ℝ7)∗ with : = 4, 5, 6. Here, dimΛ

:
3
= 3 and

Λ
2
7 := {U : ∗(U ∧ i0) = 2U} = {8 (D)i0 : D ∈ ℝ

7} ≃ Λ
1
7,

Λ
2
14 := {U : ∗(U ∧ i0) = −U} = {U : U ∧k = 0} ≃ g2,

Λ
3
1 := 〈i0〉,

Λ
3
7 := {8 (D)k : D ∈ ℝ

7} ≃ Λ
1
7, and

Λ
3
27 := {U : U ∧ i0 = 0 and U ∧k = 0} ≃ Sym0 (ℝ7)

Definition 2.21. Let " be an oriented 7-manifold. A principal subbundle & of the bundle of

oriented frames with structure group �2 is called a �2-structure. Viewing & as a set of linear

maps from tangent spaces of" to ℝ7, there exists a unique i ∈ Ω
3 (") such that & identifies

i with i0 ∈ Ω
3 (ℝ7) at every point.

Such �2-structures are in 1-1 correspondence with 3-forms on " for which there exists an

oriented isomorphism mapping them to i0 at every point. We will therefore also refer to such

3-forms as�2-structures.

Let" be a manifold with�2-structure i . We call ∇i the torsion of a�2-structure i ∈ Ω
3 (").

Here, ∇ denotes the Levi-Civita induced by i in the following sense: we have �2 ⊂ SO(7), so

i defines a Riemannian metric 6 on " , which in turn defines a Levi-Civita connection. As a

shorthand, we also use the following notation: writeΘ(i) = ∗i , where “∗” denotes the Hodge

star defined by 6. Using this, the following theorem gives a characterisation of torsion-free

�2-manifolds:

�eorem 2.22 (Propositions 10.1.3 and 10.1.5 in [Joy00]). Let " be an oriented 7-manifold with

�2-structure i with induced metric 6. �e following are equivalent:

(i) Hol(6) ⊆ �2,

(ii) ∇i = 0 on" , where ∇ is the Levi-Civita connection of 6, and

(iii) di = 0 and dΘ(i) = 0 on" .

If these hold then 6 is Ricci-flat.
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�e goal of Section 3 will be to construct �2-structures that induce metrics with holonomy

equal to�2. A torsion-free�2-structure alone only guarantees holonomy contained in�2, but

in the compact se�ing a characterisation of manifolds with holonomy equal to�2 is available:

�eorem 2.23 (Proposition 10.2.2 and�eorem 10.4.4 in [Joy00]). Let" be a compact oriented

manifold with torsion-free �2-structure i and induced metric 6. �en Hol(6) = �2 if and only

if c1(") is finite. In this case the moduli space of metrics with holonomy �2 on " , up to diffeo-

morphisms isotopic to the identity, is a smooth manifold of dimension 13 (").

Note that this theoremmakes no statement about the existence of a torsion-free�2-structure in

the first place. Finding a characterisation of manifolds which admit a torsion-free�2-structure

and even the construction of examples remain challenging problems in the field.

Later on, we will investigate perturbations of �2-structures and analyse how that changes

their torsion. To this end, we will use the following estimates for the map Θ defined before:

Proposition 2.24 (Proposition 10.3.5 in [Joy00] and eqn. (21) of part I in [Joy96b]). �ere exists

n > 0 and 2 > 0 such that whenever " is a 7-manifold with �2-structure i satisfying di = 0,

then the following is true. Suppose j ∈ �∞ (Λ3) ∗") and |j | ≤ n. �en i + j is a �2-structure,

and

Θ(i + j) = ∗i −) (j) − � (j), (2.25)

where “∗” denotes the Hodge star with respect to the metric induced by i , ) : Ω3 (") → Ω
4 (")

is a linear map (depending on i), and � is a smooth function from the closed ball of radius n in

Λ
3) ∗" to Λ4) ∗" with � (0) = 0. Furthermore,

|� (j) | ≤ 2 |j |2 ,

|d(� (j)) | ≤ 2
{
|j |2 |d∗i | + |∇j | |j |

}
,

[d(� (j))]U ≤ 2
{
[j]U | |j | |!∞ | |d∗i | |!∞ + ||j | |2!∞ [d∗i]U + [∇j]U | |j | |!∞ + ||∇j | |!∞ [j]U

}
,
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as well as

|∇(� (j)) | ≤ 2
{
|j |2 |∇i | + |∇j | |j |

}
,

[∇(� (j))]�0,U ≤ 2
{
[j]U | |j | |!∞ | |∇i | |!∞ + ||j | |2!∞ [∇i]U + [∇j]U | |j | |!∞ + ||∇j | |!∞ [j]U

}
.

Here, |·| denotes the norm induced byi ,∇ denotes the Levi-Civita connection of the metric induced

by i , and [·]�0,U denotes the unweighted Hölder semi-norm induced by this metric.

Finally, the landmark result on the existence of torsion-free �2-structures is the following

theorem. It first appeared in [Joy96b, part I, �eorem A], and we present a rewri�en version

in analogy with [JK21, �eorem 2.7]:

�eorem 2.26. Let U,  1,  2,  3 be any positive constants. �en there exist n ∈ (0, 1] and  4 > 0,

such that whenever 0 < C ≤ n, the following holds.

Let " be a compact oriented 7-manifold, with �2-structure i with induced metric 6 satisfying

di = 0. Suppose there is a closed 3-formk on" such that d∗i = d∗k and

(i) | |k | |�0 ≤  1C
U , | |k | |!2 ≤  1C

7/2+U , and | |k | |!14 ≤  1C
−1/2+U .

(ii) �e injectivity radius inj of 6 satisfies inj ≥  2C .

(iii) �e Riemann curvature tensor Rm of 6 satisfies | |Rm| |�0 ≤  3C
−2.

�en there exists a smooth, torsion-free �2-structure ĩ on " such that | |ĩ − i | |�0 ≤  4C
U and

[ĩ] = [i] in � 3 (",ℝ). Here all norms are computed using the original metric 6.

�e main purpose of Section 3 will be to prove an improved existence theorem, specialised to

the resolution of ) 7/Γ. �is will be achieved in �eorem 3.82.
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2.3.2 �2-manifolds and Hyperkähler 4-manifolds

Onℍwith coordinates (~0, ~1, ~2, ~3) we have the three symplectic formsl1, l2, l3 fromDefin-

ition 2.4 given as

l0 = d~0 ∧ d~1 + d~2 ∧ d~3, l1 = d~0 ∧ d~2 − d~1 ∧ d~3, l2 = d~0 ∧ d~3 + d~1 ∧ d~2.

Identifyℝ7with coordinates (G1, . . . , G7)withℝ3⊕ℍwith coordinates ((G1, G2, G3), (~1, ~2, ~3, ~4)).

�en we have for i0, ∗i0 from Definition 2.17:

i0 = dG123 −
3∑
8=1

dG8 ∧l8 , ∗i0 = volℍ −
∑

(8, 9,:)=(1,2,3)
and cyclic permutation

l8 ∧ dG 9: . (2.27)

�is linear algebra statement easily extends to product manifolds in the following sense: if

- is a Hyperkähler 4-manifold, and ℝ
3 is endowed with the Euclidean metric, then ℝ

3 × -

has a �2-structure. �e �2-structure is given by the same formula as in the flat case, namely

Eq. (2.27), a�er replacing (l1, l2, l3) with the triple of parallel symplectic forms defining the

Hyperkähler structure on - . �is product �2-structure will be glued into �2-orbifolds in the

following sections.

2.4 Gauge �eory in Dimension 4

In this part we briefly review the theory of ASD instantons on compact 4-manifolds as well as

the (non-compact) ALE spaces. We follow the treatment of [DK90] for the compact case, and

the treatment of [Nak90] for ALE spaces.

Let (- 4, 6) be an oriented Riemannian 4-manifold. Let Ω2 (- ) = Ω
+ (- ) ⊕Ω

−(- ) be the decom-

position of Ω2 (- ) into positive and negative eigenspaces of the Hodge ∗-operator. A connec-

tion � on a principal �-bundle % is then called an anti-self-dual instanton (or ASD instanton)

if its curvature �� satisfies ∗�� = −��, where �� is viewed as an element in Ω
2 (-,Ad�), and

∗ acts on the 2-form part while leaving the Ad % part unchanged.
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2.4.1 On Compact Manifolds

Now, let . be a compact 4-manifold.

Definition 2.28. Fix some smooth connection �0 on % and assume there exists a faithful rep-

resentation+ of� . Write � = % ×� + and for fixed ; ∈ ℕ, ; ≥ 3, we then define:

�
;
asd := {�0 + 0 : 0 ∈ !2; (Λ

1 (Ad%), �0 + 0 is anti-self-dual)},

�
;+1 := {B ∈ !2;+1 (Λ

0(End(�))) : B (~) ∈ � for all ~ ∈ . },

" (;) := �
;
asd/�

;+1 .

Here,�;+1 can be identified with gauge transformations of the bundle % , and through this acts

on �
;
asd

via pullback. �en," := " (3) is called the moduli space of ASD instantons.

Remark 2.29. By the Sobolev Embedding�eorem, equivalence classes in" (3) have continu-

ous representatives. Elements in �
;
asd

need not have continuous representatives for ; ≤ 2,

which is the reason for the choice ; ≥ 3 here. On the other hand, Proposition 2.30 states,

roughly speaking, that the exact value of ; does not ma�er, as long as it is at least 3.

It is now that we make use of the compactness assumption. If. is compact, then the definition

of" actually turns out to be independent of the chosen regularity ; in the following sense:

Proposition 2.30 (Proposition 4.2.16 in [DK90]). �e natural inclusion of" (; + 1) in" (;) is a

homeomorphism for ; ≥ 3.

Because of this proposition, we may think of the moduli space to be made up of smooth ASD

instantons and smooth gauge transformations. Define the operator

X� : Ω1 (.,Ad %) → Ω
0 (.,Ad %) ⊕ Ω

2
+(.,Ad %)

0 ↦→ (d∗�0, d+�0),
(2.31)

where d+�0 : Ω1 (.,Ad %) → Ω
2
+(.,Ad %) denotes the composition of the differential d� and the

projection of the 2-form part ontoΩ+ (. ). �is operator governs the infinitesimal deformations

of ASD instantons, as stated in the following proposition:
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Proposition 2.32 (Proposition 4.2.23 in [DK90]). For any connection � on % let

Γ� := {D ∈ � : D (�) = �}.

If � is an ASD instanton, then a neighbourhood of [�] in" is modelled on a neighbourhood of 0

of the quotient 5 −1 (0)/Γ� where

5 : KerX� → CoKer d+�

is a Γ�-equivariant map.

We will also make use of the following Weitzenböck formula for the operator X�:

Proposition 2.33 (Equation 6.2.5 in [FU91]). Let % be a principal bundle over . , and� a connec-

tion on % and X̃� = d∗� ⊕
√
2 d+� : Ω1 (.,Ad %) → Ω

0(.,Ad %) ⊕ Ω
2
+ (.,Ad %). �en

X̃∗�X̃�0 = ∇∗
�∇�0 + {Ric, 0} + {�−� , 0},

where �−� denotes the projection of the 2-form part of �� onto Ω−(. ), and {·, ·} denote universal

bilinear forms.

We then have the following index formula for X�:

Proposition 2.34 (Equation 4.2.22 in [DK90]). Let % be a bundle with structure group SO(3)

over . , and � an ASD instanton. �en

indX� = −2?1 (�) − 3(1 − 11 (. ) + 1+ (. )).

One last result to mention is the classification of SO(3)-bundles and SU(2)-bundles. It will be

mentioned in passing in Sections 2.5 and 4.6 but is not used in an essential way anywhere.

�eorem 2.35 (�eorem 1 in [DW59] and �eorem E.8 in [FU91]). Let %,& be SO(3)-bundles

over a compact 4-manifold . . �en % and & are isomorphic if and only if ?1 (%) = ?1 (&) and

F2(%) = F2 (&).
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�eorem 2.36 (�eorem E.5 in [FU91]). Let %,& be SU(2)-bundles over a compact 4-manifold

. . �en % and & are isomorphic if and only if 22 (%) = 22 (&).

2.4.2 On ALE Manifolds

Let Γ ⊂ SU(2) be a finite subgroup and let - be an ALE 4-manifold asymptotic to ℂ2/Γ. Even

though - is non-compact, some of the results from gauge theory on compact manifolds carry

over to this se�ing. First, we explain a correspondence between gauge equivalence classes

of connections on - and on its one point compactification -̂ = - ∪ {∞}. �e following

proposition explains the orbifold structure on -̂ :

Proposition 2.37 (p.687 in [Kro89b] and Proposition 2.36 in [Wal13b]). Let (-,6) be an ALE

manifold asymptotic to ℂ2/Γ by means of a map c : - → ℂ
2/Γ in the sense of Definition 2.8,

and let -̂ = - ∪ {∞} be the one point compactification of - .

1. �e topological space -̂ is an orbifold and there exist a neighbourhood + of ∞ and an

orbifold chart 5 : �4/Γ → + , where �4 is the unit ball in ℝ
4.

2. �e orbifold -̂ carries an orbifold metric 6̂ of regularity �3,U for any U ∈ (0, 1) such that

the restriction of 6̂ to - ⊂ -̂ is conformally equivalent to 6.

Proof sketch.

1. Fix an orientation reversing linear isometry f of ℝ4. Let Γ act on �4 ⊂ ℝ
4 by (6, G) ↦→

f−1 (6 · f (G)) and define

5 : �4/Γ → -̂

G ↦→



∞ if G = 0

c−1(f (G)/|G |2) otherwise.

(2.38)
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2. �e metric 6̂ := (1 + |c |2)−26 on - is shown in [Kro89b, p.687] to extend to -̂ as an

orbifold metric with regularity �3,U and is by definition conformally equivalent to 6.

�

Let � be a compact connected Lie group with a faithful representation � → GL(+ ). Let %̂

be an orbifold �-bundle over -̂ and denote its restriction to - by % , i.e. % = %̂ |- . �at is, %̂

restricted to+ ≃ �4/Γ from Proposition 2.37 is the trivial bundle �4 ×� together with a fixed

li� of the action of Γ on �4 to �4 × � . Over the point 0 ∈ �4, this defines a homomorphism

d : Γ → � . �e following proposition states that this homomorphism essentially characterises

the orbifold bundle over �4 completely.

Proposition 2.39. �ere exists a trivialisation ^ : %̂ |�4 → �4 × � such that Γ acts through le�

multiplication by d :

W · ^−1 (1, 6) = ^−1 (W · 1, d (W)6) for W ∈ Γ, (1, 6) ∈ �4 ×�. (2.40)

Proof. �e li� of the action of Γ to �4×� can be viewed as an elementF ∈ �∞(�4,Hom(Γ,�))

viaW · (1, 6) = (W ·1,F (1) (W) ·6). �e space �4 is connected, so by Corollary A.12 the conjugacy

class of F does not change over �4. �at is, there exists f ∈ �∞ (�4,�) such that ;fAf−1F ∈

�∞ (�4,Hom(Γ,�)) is constant and ;fAf−1F (0) = d . �us f defines a trivialisation of �4 ×� in

which Γ acts through le� multiplication via d . �

Because of Proposition 2.39 we can fix a trivialisation of %̂ over �4 such that Γ acts through le�

multiplication by d . �en denote by �0 any extension of the product connection with respect

to this trivialisation to all of %̂ . Different choices of extension will give rise to the very same

spaces in Eq. (2.43). We identify [',∞) × (3/Γ ≃ - \  for some ' > 0 big enough and a

compact set  ⊂ - . �en the monodromy representation of �0 restricted to {C} × (3/Γ, say

ℎ : c1 ({C} × (3/Γ) → � , satisfies

ℎ = d (2.41)
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under the canonical identification Γ ≃ c1 ({C} × (3/Γ). Extend the projection onto the first

component - \  ≃ [',∞) × (3 → [',∞) to a smooth positive function A on all of - . For a

non-negative integer ; , a weight X ∈ ℝ, and ? ≥ 1 define the weighted Sobolev norm on the

:-forms with values in the adjoint bundle with compact support Ω:0 (Ad%) via

| |U | |!?
;,X

=

;∑
9=0

(∫
-

|∇9
�0
U |?A−(X−9 )?−4 d+

)1/?
, (2.42)

and denote by !
?

;,X
(Λ: (Ad %)) the completion of Ω:0 (Ad %) with respect to the norm | |U | |!?

;,X
.

As before, set � = % ×� + and for ; ≥ 3 define

�
;,X = {�0 + U : U ∈ !2;,X (Λ

1(Ad %))},

�
;+1,X+1
0 = {B ∈ !2;+1,loc (Λ

0(End(�)) : B (G) ∈ � for all G ∈ �, | |B − Id| |!2
;+1,X+1

< ∞},

�d = {B ∈ � : BdB−1 = d},

�
;+1,X+1 = {B ∈ !2;+1,loc (Λ

0(End(�)) : B (G) ∈ � for all G ∈ �,

| |B − B∞ | |!2
;+1,X+1

< ∞ for some B∞ ∈ �d }.

(2.43)

In the definition of�;+1,X+1 we regarded B∞ ∈ �d as an element in�∞ (Λ0(End(�)) as follows:

consider %̂ over �4 defined by the orbifold chart around ∞. Using the trivialisation from Pro-

position 2.39, this canonically defines a gauge transformation over �4. (It is the same to say

that we obtain a gauge transformation by parallel transport with respect to �0.) �is gauge

transformation is Γ-equivariant by definition of �d and Proposition 2.39. We then extend it

arbitrarily on the rest of -̂ to an element in�∞ (Λ0(End(�)). �e choice of the extension does

not ma�er for the condition | |B − B∞ | |!2
;+1,X+1

< ∞.

�e gauge groups�;+1,X+1
0 and�;+1,X+1 both act on�

;,X , and the quotient spaces�;,X/�;+1,X+1
0

and �
;,X/�;+1,X+1 are called the moduli space of framed connections and the moduli space of

unframed connections, respectively. We can restrict to anti-self-dual connections:

�
;,X
asd

= {� ∈ �
;,X : � is anti-self-dual}

and obtain the moduli space of framed ASD connections ";,X := �
;,X
asd

/�;+1,X+1
0 and the moduli
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space of ASD connections �;,X
asd

/�;+1,X+1 .

�e four quotient spaces �;,X/�;+1,X+1
0 , �;,X/�;+1,X+1, ";,X , and �

;,X
asd

/�;+1,X+1 are topological

spaces. For ";,X we will observe explicitly (cf. �eorem 2.49) that it is metrisable and there-

fore Hausdorff, and the same argument works for the other three quotient spaces, cf. [DK90,

Lemma 4.2.4].

Moving on to the orbifold, we define:

Definition 2.44. For ; ≥ 3 let

�
;,orb
asd

= {�0 + U : U ∈ !2; (Λ
1(Ad %̂))},

�
;+1,orb = {B ∈ !2;+1 (Λ

0 (End+ )) : B (G) ∈ � for all G ∈ -̂ , B (∞) ∈ �d },

�
;+1,orb
0 = {B ∈ �

;+1,orb : B (∞) = Id}.

�en�;+1,orb and�;+1,orb
0 both act on�;,orb

asd
andwe can form the quotient spaces�;,orb

asd
/�;+1,orb

and ";,orb = �
;,orb
asd

/�;+1,orb
0 . Here, ";,orb is called the moduli space of framed ASD connections

on -̂ .

We also have the following analogue of Proposition 2.30.

Proposition 2.45. For 3 ≤ ;1 < ;2, the inclusion maps

";1,orb
↩→ ";2,orb, ";1,−2

↩→ ";2,−2

are homeomorphisms.

�e proof of Proposition 2.45 works the same as in the compact case, i.e. the proof of Propos-

ition 2.30 given in [DK90, Proposition 4.2.16]. �e only difference is that in the non-compact

case, i.e. for the claim ";1,−2 ↩→ ";2,−2, one has to take the weighted Sobolev norms from

Eq. (2.42). �ese have their own versions of the Sobolev embedding theorem and, if the weight

is non-positive, the multiplication theorem for Sobolev norms also holds. �ese properties of

weighted Sobolev norms are proved in [Pac13, Corollary 6.8].

Proposition 2.46. For any � ∈ �
;,−2
asd

there exists a connection �̂ ∈ � (%̂) satisfying �̂ |% = �.
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Proof. Corollary A.17 gives a bundle % ′ over -̂ with connection �′ together with an injective

bundle homomorphism b : % → % ′. A�er fixing a trivialisation of %̂ around∞, this canonically

defines an isomorphism of orbifold �-bundles ℎ : %̂ → % ′, and �̂ := ℎ∗ (�′) satisfies �̂|% =

�. �

Definition 2.47. Define the map

Ψ : "3,−2 → "3,orb

as follows: for [�0 +0] ∈ "3,−2 let �̂ ∈ � (%̂) be the induced connection from Proposition 2.46

and set Ψ([�0 + 0]) := [�̂].

Proposition 2.48. �e function Ψ from Definition 2.47 is bijective.

Proof. Ψ is injective: let [�0 + 0], [�0 + 0̃] ∈ "3,−2 such that Ψ([�0 + 0]) = [�̂] as well as

Ψ([�0 + 0̃]) = [�̂′]. If [�̂] = [�̂′], then �̂′ = B�̂ for some B ∈ �
4,orb
0 . We have B (∞) = Id,

so (B − Id) = O(|G |) and ∇:�0
(B − Id) = O(1) for : ∈ {1, 2, 3, 4}. Here, ∇:�0

includes terms

containing the Levi-Civita connection for the orbifold metric 6̂ on -̂ for : > 1, and |G | denotes

the distance from∞ ∈ -̂ in this metric. In particular, ∇:�0
(B − Id) = O(|G |1−:). We have

���∇:�0
(B − Id)

���
6
= (1 + A 2)−:

���∇:�0
(B − Id)

���
6̂
= O(A−2: |G |1−: ) = O(A−1−: ),

where 6 denotes the ALE metric, in the first step we used the definition of 6̂ from the proof

of Proposition 2.37 and the fact that we are measuring a tensor with : covariant indices and

0 contravariant indices. �us, B ∈ �
4,−1
0 . �erefore, [�0 + 0] = [�0 + 0̃] as elements in "3,−2,

which shows the claim.

Ψ is surjective: Let [�0 + 0] ∈ "3,orb, i.e. �0 + 0 ∈ �
3,orb
asd

. Similar to the previous point we

find that ∇:�0
0 = O(A−2−: ). By construction Ψ([(�0 + 0) |- ]) = [�0 + 0], which proves the

claim. �

Because of Proposition 2.45 we will drop the regularity and decay from the notation of our

moduli spaces most of the time. �at is, we will o�en write " for ";,X with any ; ≥ 3 and

X = −2. Likewise for�,�,�0,�
orb, "orb,�orb, and�orb

0 .
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�e important results about the local structure of" are the following:

�eorem 2.49 (�eorem 2.4 and Proposition 5.1 in [Nak90]). " is a nonsingular smooth man-

ifold and for [�] ∈ " its tangent space is isomorphic to

� 1
�,−2 := {U ∈ !2;,−2 (Λ

1 (Ad%)) : X� (U) = 0}.

For the linear operator X� we have the following analytic result:

Proposition 2.50 (Proposition 5.10 in [Wal13a]). Let� ∈ � (�) be a finite energy ASD instanton

on �. �en the following holds:

1. If 0 ∈ KerX� decays to zero at infinity, i.e., limA→∞ supd (G)=A |0 | (G) = 0, then ∇:
�
0 =

O(|c |−3−:) for all : ≥ 0.

2. If (b,l) ∈ KerX∗� decays to zero at infinity, then (b, l) = 0.

�eHyperkähler triple of- acts on the 1-form part ofΩ1 (Ad %). It is checked in [Ito88, Section

4] together with [Ito85, Proposition 2.4] that this action restricts to � 1
�,−2 for all [�] ∈ " . We

thus have a triple of complex structures on " . �e following theorem states that this defines

a Hyperkähler structure with respect to the standard metric on" :

�eorem 2.51 (�eorem 2.6 and Proposition 5.1 in [Nak90]). �e metric 6" defined by

6" (U, V) =
∫
-

6(U, V) vol- for U, V ∈ � 1
�,−2

and the Hyperkähler triple defined by acting with the Hyperkähler triple of - on the 1-form part

of Ω1 (Ad%) is well-defined on" and defines a Hyperkähler structure on" .

�eorem 2.52 (�eorem 2.47 in [Wal13b]). Let d : Γ → � be a homomorphism, �0 a connection

on a bundle % that is flat at infinity as in Proposition 2.39 whose holonomy representation is equal

to d in the sense of Eq. (2.41). Let X ∈ (−3,−1) and � = �0 + U for some U ∈ !2
1,X

(Λ1(Ad %)).
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�en the !2 index of X�, defined as

dim{0 ∈ !2 (Λ1(Ad %)) ∩�∞ (Λ1(Ad %)) : X� (0) = 0}

− dim{0 ∈ !2 (Λ0 ⊕ Λ
2
+(Ad %)) ∩�∞ (Λ0 ⊕ Λ

2
+(Ad %)) : X∗� (0) = 0},

is given by

indX� = −2
∫
-

?1 (Ad%) +
2

|Γ |
∑

6∈Γ\{4 }

jg (6) − dimg

2 − tr6
. (2.53)

Here ?1 (Ad %) is the Chern-Weil representative of the first Pontrjagin class of % and jg is the

character of6 acting on g, the Lie algebra associated with� , via d , and tr6 is the trace of 6 acting

on g. Moreover, if � is an ASD instanton, then indX� = dimKerX� = dim" .

Here come two examples of anti-self-dual instantons on ALE spaces. First, recall the construc-

tion of -EH as a Hyperkähler quotient and the Hyperkähler moment map ` from Eq. (2.15).

Using this notation, we have the following result from [GN92].

Proposition 2.54 (Section 2 in [GN92]). �eU(1)-bundleR := `−1 (8/2) → -EH = `−1 (8/2)/U(1)

admits a non-flat finite energy ASD instanton � asymptotic to the representation d : ℤ2 → U(1)

determined by d (−1) = −1 in the sense of Eq. (2.41).

An additional property of R that we will need later is the following:

Proposition 2.55. �ere exists a li� of the action of the holomorphic isometry group U(2)/{±1}

of -EH to R.

Proof. We have seen in the construction of -EH as a Hyperkähler quotient before Proposi-

tion 2.16 that the holomorphic isometry group U(2)/{±1} is realised as an action ofU(2)/{±1}

on `−1 (8/2) that commutes with the action of U(1) on `−1 (8/2). �e action of U(2)/{±1} on

`−1 (8/2) is the desired li� of the action of U(2)/{±1} on -EH. �

Remark 2.56. We can apply �eorem 2.52 to the U(1)-bundle over -EH defined before to find

that it is rigid. As AdR has rank 1, we have that ?1 (AdR) = 22 (AdRℂ) = 0, and plugging this

into the index formula from �eorem 2.52 proves the claim.
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Remark 2.57. On simply connected compact manifolds it is the case that any U(1)-bundle

admits an ASD-instanton that is unique up to the action of the gauge group. �is is a con-

sequence of the Hodge theorem. On non-compact manifolds a variation of the Hodge theorem

for !2-forms holds, see [Loc87, Example 0.15], and can be used to give an alternative proof of

Remark 2.56 without the use of the index formula.

Here is a non-rigid example:

Example 2.58 (Chapter II in [Ati78]). Consider the BPST instantons from [BPST75] on ℝ
4. On

the trivial SU(2)-bundle % over ℝ4 define a connection via

� =
1

1 + |G |2 (\18 + \2 9 + \3:)

where 8, 9, : is the standard basis for the space of unit quaternions sp(1) ≃ su(2) and

\1 = G1 dG2 − G2 dG1 − G3 dG4 + G4 dG3,

\2 = G1 dG3 − G3 dG1 − G4 dG2 + G2 dG4,

\3 = G1 dG4 − G4 dG1 − G2 dG3 + G3 dG2.

�en � has curvature

�� =

(
1

1 + |G |2

)2
(d\18 + d\2 9 + d\3:)

and a computations shows that � is an ASD-instanton. �e Killing form on sp(1) is given by

〈D1, D2〉 = −8 Re(D1D2) for D1, D2 ∈ sp(1)

which gives

∫
ℝ4

?1 (Ad %) = − 1

8c 2

∫
ℝ4

〈��, ��〉 volℝ4

= − 24

c 2

∫
ℝ4

(
1

1 + |G |2

)4
volℝ4

= −48
∫ ∞

0

(
1

1 + A 2

)4
dA

= −4.
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�us, by �eorem 2.52, � lives in an 8-dimensional moduli space of framed ASD-instantons.

�is moduli space is given by the following connections: for any ~ ∈ ℝ
4 and _ ∈ ℝ

+ we

get another ASD instanton by translating by ~ and dilating with _. One checks that different

choices of ~ and _ give rise to connections which are not gauge equivalent. �e connection

� is irreducible, so its orbit under the action of�/�0 = �d = � is isomorphic to �d/� (�) =

SU(2)/{±1} = SO(3) by [Nak90, p. 275]. �e framed moduli space" is thus diffeomorphic to

ℝ
4 ×ℝ

+ × SO(3).

Before ending the section we will state two results about universal bundles that will be needed

later. �e proof of the following proposition is based on the proof of [DK90, Proposition 5.2.17].

Proposition 2.59. �ere exist

• a�-bundle ℙ̃ over" × -̂ with a natural action of�d ≃ �/�0 on ℙ̃ covering the action of

�d on" ,

• a connection Ã ∈ � (ℙ̃) that is invariant under the action of�d ≃ �/�0, and

• for each choice of q ∈ IsoΓ (�, %∞) a canonical isomorphism of�-bundles with Γ le� action

q : ℙ̃|"×{∞} → � ×"

satisfying:

• for any element [�] ∈ " there exists an isomorphism ℙ̃| { [�] }×-̂ ≃ %̂ such that under this

isomorphism Ã| { [�] }×- and � agree up to the action of�0.

• if we decompose the curvature of Ã over"×- according to the bi-grading onΛ∗) ∗("×- )

induced by ) ∗(" × - ) = c∗
1)

∗" ⊕ c∗
2)

∗- , then its components satisfy the following:

– � 1,1
Ã

∈ Γ(Hom(c∗
1)

∗", c∗
2)

∗- ⊗Ad %)) at ([�], G) is the evaluation of 0 ∈ )[�]" at

G ,

– � 0,2
Ã

∈ Γ(c∗
2Λ

−(- )∗ ⊗ Ad %), where Λ− is defined using the ALE metric on - ,

• q∗�product = Ã|"×{∞}, where �product ∈ � (� ×") denotes the product connection.
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�e proof makes use of the following lemma. Here, the data Γ, �̂, .̂ can be taken to be infinite-

dimensional, which is the version of the statement that we use later.

Lemma 2.60 (Equation 5.2.16 in [DK90]). Let . and .̂ be smooth manifolds, �̂ → .̂ vector

bundle, and suppose a group Γ acts smoothly on �̂, covering a free action on .̂ . Let � = �̂/Γ →

. = .̂/Γ be the quotient. �e data of

(i) a connection ∇̂ in �̂ which is invariant under Γ,

(ii) a connection in the Γ-bundle ? : .̂ → . , determined by a horizontal distribution �

define a connection ∇ on � via

(∇* B)∧ = ∇̂*̂ B̂, (2.61)

in which B is a section of � corresponding to a local invariant section B̂ : .̂ → �̂ and *̂ is a

horizontal li� of * with respect to � . �is definition is independent of the choice of li� and the

curvature of ∇ satisfies

� (∇)(*,+ )∧ = � (∇̂) (*̂ , +̂ ) − Φ ◦ (Θ(*,+ )), (2.62)

where*,+ ∈ )[~ ]. , *̂ , +̂ ∈ )[~ ].̂ are horizontal li�s with respect to� , Φ : .̂ ×Γ Lie(Γ) → End �̂

is a linear map, and Θ is the curvature of � .

Proof of Proposition 2.59. Let � be the vector bundle associated to %̂ by means of a faithful

representation of � . �en we will apply Lemma 2.60 in the case .̂ = �
orb
asd

× -̂ , Γ = �
orb
0 . Let

�̂ = c∗
2�, where c2 : �orb

asd
× -̂ → -̂ is the projection onto the second factor. �e orbifold

gauge group�orb
0 then acts through pullback on �̂.

�̂ carries a tautological connection ∇̂ characterised by the properties that ∇̂|
�

orb
asd

×{G } is trivial
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and ∇̂| {�}×-̂ = � under the canonical isomorphism �̂ | {�}×-̂ ≃ �. �e connection ∇̂ satisfies

� (∇̂) (D, E) = � (�) (D, E),

� (∇̂) (0, E) = 〈0, E〉,

� (∇̂) (0,1) = 0

(2.63)

for D, E ∈ )G-̂ and 0, 1 ∈ )��asd.

We will now define horizontal subspaces in the bundle �
orb
asd

→ " = �
orb
asd

/�orb
0 . As a first

step, we define the horizontal subspaces � for the principal bundle �asd → " = �asd/�0 as

�� = {0 ∈ )��asd = Ω
1 (-,Ad %) : d∗�0 = 0}. (2.64)

Here, the adjoint d∗� is taken with respect to the ALE metric on - .

�e �� are�0-invariant, i.e. for B ∈ �0 we have that d'B (��) = �B∗�. To see this, let 0 ∈ ��

and D ∈ Ω
0 (-,Ad %). Under the identification of :-forms taking values in the adjoint bundle

with horizontal equivariant forms on % , we can view 0 as an element in Ω
1 (%, g) and D as an

element in Ω
0 (%,g). Elements in� are in 1-to-1 correspondence with �-equivariant smooth

maps % → � , and we denote by fB : % → � the map corresponding to B. �en

〈d∗B∗� (d'B (0)),D〉 = 〈d'B (0), dB∗�D〉

= 〈Ad(f−1B )0, dD〉 + 〈Ad(f−1B )0, [Ad(f−1B )�,D]〉

= 〈0, d(Ad(fB)D)〉 + 〈0,Ad(fB) [Ad(f−1B )�,D]〉

= 〈0, d� (Ad(fB)D)〉

= 〈d∗�0,Ad(fB)D〉 = 0,

where we used that the Killing form isAd-invariant in the third step, and we used the assump-

tion 0 ∈ �� in the last step. As this holds for all D ∈ Ω
0(-,Ad %), we have that d'B (0) ∈ �B∗�.

�e fact that they are horizontal, i.e. a complement to the vertical space generated by the ac-

tion of�0 on�
asd, is�eorem 2.49. We are now ready to write down the horizontal subspaces
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� ′ for the principal bundle �orb
asd

→ " = �
orb
asd

/�orb
0 . Let

� ′
� = {0 ∈ )��asd = Ω

1 (-̂ ,Ad %̂) : d∗� |- (0 |- ) = 0}, (2.65)

where again the Hodge star is taken with respect to the ALE metric. �e subspaces � ′ are

right-invariant with the same proof as for � . To see that they are horizontal, note that they

are not vertical, and satisfy

rank� ′ = rank� = dim (") = dim
(
"orb

)
.

�e first step follows from the definitions of � and � ′, the second step is the fact that � is

horizontal, and the third step is Proposition 2.48. �is shows that� ′ defines a principal bundle

connection.

By pullback,� induces a connection on the principal bundle�orb
asd

×- → �
orb
asd

/�orb
0 ×- which

is trivial in the - -direction. �erefore, its curvature Θ satisfies

Θ(D, E) = 0,

Θ(0, E) = 0

(2.66)

for D, E ∈ )G- and 0 ∈ )��orb
asd

.

Lemma 2.60 then gives a connection ∇ on � := �̂/�orb
0 . And Eqs. (2.62), (2.63) and (2.66) give

for the curvature of ∇ at the point ([�], G) ∈ " × - :

� (∇̂) (D, E) = � (�) (D, E),

� (∇̂) (0, E) = 〈0, E〉
(2.67)

for D, E ∈ )G- and 0 ∈ )[�]"orb ≃ KerX� ⊂ Ω
1 (Ad %̂). Denote by ℙ̃ a �-reduction of the

bundle of frames of � and by Ã the connection on ℙ̃ induced by ∇. �e curvature of Ã still

satisfies the analogue of Eq. (2.67).

Last, any q ∈ IsoΓ (�, %∞) pulls back to an isomorphism of vector bundles with Γ-le� action
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q ′ : �̂ |
�

orb
asd

×{∞} ≃ � ×�
orb
asd

. By definition of ∇̂, we have that

(q ′)∗(∇product) = ∇̂|
�

orb
asd

×{∞} . (2.68)

Using that q ′ is �0-equivariant and changing to the bundle of frames, we get an isomorph-

ism q : ℙ|"orb×{∞} → � × "orb of the quotient. Lastly, because of Eq. (2.68), we have that

q∗�product = Ã|"×{∞}. �

By Proposition A.1, the group of holomorphic isometries acting on -EH is U(2)/{±1}. �is

induces a non-effective action of U(2) on -̂EH by demanding that each group element fixes

∞ ∈ -̂EH. �en U(2) acts from the le� on" (and equally"orb) as follows: U(2) is connected,

so (D−1)∗� and � are homotopic bundles and in particular isomorphic. Different choices of

isomorphism give rise to gauge equivalent connections, so [(D−1)∗�] ∈ " is well-defined.

Later on (cf. Definition 4.9) we will need the following assumption:

Assumption 2.69. �e action of U(2) on" × -̂EH can be li�ed to an action on ℙ̃ that preserves

Ã.

In the examples constructed in Section 4.6 this assumption will be satisfied because of the

following proposition:

Proposition 2.70. Let ℙ̃ → " × -̂EH be the tautological bundle with tautological connection Ã

from Proposition 2.59.

If the action of U(2) on -̂EH can be li�ed to an action on %̂ , then the action of U(2) on " × -̂EH

can be li�ed to an action on ℙ̃. If it exists, this li� can be chosen to preserve Ã.

Proof. First, assume that the action of U(2) on -̂EH can be li�ed to an action on %̂ . �is is

equivalent to saying that for all 6 ∈ � there exists a bundle isomorphism b6 : %̂ → %̂ covering

6 : -̂EH → -̂EH. Recall that ℙ̃ ≃ c∗
2 %̂/�orb

0 , where c2 : �orb
asd

× -̂EH → -̂EH is the projection

onto the second factor. Let ([�], G) ∈ " × -̂EH and [D] ∈ ℙ̃( [�],G) where D ∈
(
c∗
2 %̂

)
(�,G)

≃ %̂G .

We define ^6 : ℙ̃ → ℙ̃ covering 6 : " × -̂EH → " × -̂EH via ^6 [D] := [b6 (D)]. To check that

this is well-defined, let B ∈ �
orb
0 , and observe that ^6 [BD] = [(b6Bb−16 ) (b6D)] = [b6D].
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It remains to show that this li� preserves Ã. First observe that the map

ˆ̂6 : c
∗
2% → c∗

2%(
c∗
2%

)
(�,G) ∋ D ↦→ b6(D) ∈

(
c∗
2%

)
(b∗

6−1
�,6G)

preserves the tautological connection �̂, which is the principal bundle connection on c∗
2%

inducing ∇̂ on the associated vector bundle, because

( ˆ̂∗6�̂) | {�}×-EH
= ˆ̂∗6 (�̂| {b∗

6−1
�}×-EH

) = b∗6b∗6−1� = �.

�e action of U(2) on �
orb
asd

also preserves the horizontal subspaces � ′ from Eq. (2.65). By

definition of � ′ it suffices to check that the action of U(2) on �asd preserves the horizontal

subspaces � from Eq. (2.64). To this end, let 0 ∈ ��, i.e. 3∗�0 = 0. �en

d∗b6−1�

(
b∗
6−10

)
= ∗ db6−1� ∗

(
b∗
6−10

)
= ∗ db6−1�

(
b∗
6−1 (∗0)

)
= ∗b∗

6−1 (d� (∗0)) = b
∗
6−1 (3

∗
�0) = 0,

where in the second and fourth step we used that 6−1 : -EH → -EH is an isometry, and in

the third step we used that exterior differential and pullback commute. �e connection Ã was

defined using the data of �̂ and � by means of Lemma 2.60. �e action of U(2) preserves �̂

and � and therefore preserves Ã. �

2.5 Gauge �eory on Complex Vector Bundles

2.5.1 Hermite-Einstein Connections and Stable Bundles

�roughout the section, let � be a complex vector bundle over a complex manifold" .

Definition 2.71. A bundle atlas of � with holomorphic transition functions is called a holo-

morphic structure on �.

Wewill o�en use E to denote a complex vector bundle togetherwith its holomorphic structure,

and � to denote the underlying complex vector bundle.

Definition 2.72. A map m� : Ω0(", �) → Ω
0,1(", �) that is ℂ-linear, satisfies the Leibniz rule
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m� ( 5 B) = m( 5 ) ⊗ B + 5 m� (B) for 5 ∈ �∞ (ℂ) and B ∈ Γ(�), and satisfies m
2

� = 0 is called a

Dolbeault Operator.

Given a holomorphic structure, we get a Dolbeault operator by taking the canonical m in the

trivialisations of the bundle atlas. �e fact that transition functions are holomorphic guaran-

tees that the resulting operator is well-defined on all of " , not just on one trivialisation. We

have the following result that describes the relation between Dolbeault operators and connec-

tions:

Definition 2.73. For a Hermitian metric on �, denote by �
1,1 the set of unitary connections

with curvature of type (1, 1). Here, curvature of type (1, 1) means that in the decomposition

of the curvature �� according to type, i.e. �� = � 2,0
�

+ � 1,1
�

+ � 0,2
�
, we have that � 2,0

�
= � 0,2

�
= 0.

Denote by m� = proj
Ω0,1 ◦3� the Dolbeault operator induced by �.

Proposition 2.74 (Proposition 4.2.14 in [Huy05]). Let E be a holomorphic structure on �, fix

a Hermitian metric on � and let mE be a Dolbeault operator on E . �en there exists a unique

� ∈ �
1,1 such that m� = mE .

�e uniquely determined connection from Proposition 2.74 is called the Chern connection. One

can also go the converse way: every � ∈ �
1,1 is the Chern connection with respect to some

holomorphic structure:

Proposition 2.75 (�eorem 5.1 in [AHS78]). Fix a Hermitian metric on �. For � ∈ �
1,1, there

exists a natural holomorphic structure E� on � which induces a Dolbeault operator m� satisfying

that � is the unique unitary connection such that m� = m� .

Now, a complex bundle � will admit several holomorphic structures, some of them isomorphic.

�ese isomorphic holomorphic structures will give rise to different unitary connections. Iso-

morphism on holomorphic structures corresponds to the following equivalence on unitary

connections:

Definition 2.76. Denote by�2 the group of all smooth complex automorphisms of � covering

the identity, called the complex gauge group of �.

�e group�2 acts on m-operators by conjugation, which induces an action on�
1,1 as follows:
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let � ∈ �
1,1 and let m� be the associated m-operator (cf. Proposition 2.75). �en 6(�) ∈ �

1,1 is

defined to be the Chern connection with respect to the m-operator 6m�6
−1 = m� − (m�6)6−1.

Proposition 2.77 (Section 6.1.1 in [DK90]). For� ∈ �
1,1 denote by E� the holomorphic structure

given by Proposition 2.75. �en, the map

�
1,1 → {holomorphic structures on �}

� ↦→ E�

descends to a bijective map�1,1/�2 → {holomorphic structures on �}/≃, where E ≃ E ′ if there

exists a holomorphic map 5 : E → E ′ covering the identity such that 5 is an isomorphism of

complex vector spaces in every fibre.

In this sense, studying holomorphic structures on a vector bundle is essentially the same as

fixing a hermitian metric and then studying unitary connections on that bundle. Later on, we

will be interested in unitary connections with the following special curvature property:

Definition 2.78 (Hermite-Einstein connection). Let - be a Kähler manifold of complex dimen-

sion = with Kähler form l ∈ Ω
2 (- ). Let � be a Hermitian vector bundle and � be a unitary

connection on �. �en � is called a Hermite-Einstein connection (or Hermitian-Yang-Mills con-

nection) if it satisfies the system of equations

� 0,2
�

= 0 and �� · l = _ Id (2.79)

for some constant _ ∈ ℂ. Here, �� · l ∈ Γ(End(�)) is defined via �� ∧ l=−1 = (�� · l)l= . In

particular, if = = 2, 2 · �� · l = 〈��, l〉.

All Chern connections satisfy the first of these conditions, i.e. � 0,2
�

= 0, but theymay not satisfy

the condition �� · l = _ Id. �e following definition and theorem give a criterion for when

a holomorphic bundle over a Kähler manifold of complex dimension two admits a hermitian

metric so that its Chern connection is a Hermite-Einstein connection.

Definition 2.80 (Chern class of a coherent sheaf, [EH16]). Let ℱ be a coherent sheaf over an
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=-dimensional projective variety - and let

0 →ℰ: →ℰ:−1 → · · · →ℰ1 →ℰ0 → ℱ → 0

be a locally free resolution. �en the total Chern class ofℱ is defined as

2 (ℱ) =
:∏
8=0

2 (ℰ8) (−1)
8 ∈ Ω

∗(- ).

For this definition to make sense we need that all coherent sheaves ℱ admit a locally free

resolution, and that 2 (ℱ) does not depend of the choice of resolution. Both is proved in

[Ful98, Section B.8].

Definition 2.81. Let ℱ be a coherent sheaf over an =-dimensional projective variety - with

Kähler form l . �en, the slope of ℱ is defined to be

` (ℱ) :=
∫
-
21 (ℱ) ∧ l=−1

rank(ℱ) .

Definition 2.82 (Stable bundle). Let E be a holomorphic vector bundle over a projective variety

- . �en E is called stable, if for any coherent subsheaf ℱ ⊂ O(�) with 0 < rankℱ < rank E

the inequality

` (ℱ) < ` (E)

holds.

�eorem 2.83 (�eorem 1 in [Don85]). A stable holomorphic vector bundle over a compact two-

dimensional Kähler manifold admits a unique Hermitian metric so that its Chern connection is a

Hermite-Einstein connection.

As an example, consider the tangent bundle � = )ℂℙ2 of ℂℙ2. �e complex projective space

ℂℙ
2 is a Kähler manifold, so it has a complex structure � . As for any other complex manifold,
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we have an isomorphism of complex vector bundles

b : � → ) 1,0
ℂℙ

2

E ↦→ 1

2
(E − 8 � (E)).

) 1,0
ℂℙ

2 is a holomorphic vector bundle, and b endows � with a holomorphic structure via

pullback. We denote � together with this holomorphic structure by E . We then have:

Lemma 2.84 (Lemma 9.1.8 in [DK90]). E is stable.

�us, from�eorem 2.83 we know that E admits some Hermitianmetric so that its Chern con-

nection is a Hermitian-Yang-Mills connection. We can exactly identify this Hermitian metric,

too:

Proposition 2.85. �eChern connection of the hermitian form induced by the Fubini-Study metric

6FS on ℂℙ
= is a Hermite-Einstein connection.

Also, the Levi-Civita connection of the Fubini-Study metric is a Hermite-Einstein connection.

Proof. Denote the Chern connection by ∇. �en � 0,2
�

= 0, just because it is a Chern connection.

It remains to check the second part of Eq. (2.79). One checks through direct computation that

6FS is an Einstein metric satisfying

Ric = (2= + 2)6FS (2.86)

(see [Pet16, Section 4.5.3]). �e space ℂℙ= is Kähler, and on any Kähler manifold we have that

Ric = 8 · 〈�∇, l〉 (2.87)

viewed as endomorphisms of the tangent bundle (see [Huy05, Proposition 4.A.11]). �e metric

induces the identity endomorphism on the tangent bundle, so Eqs. (2.86) and (2.87) imply

�∇ · l = _ Id with _ = −8 (2= + 2).

On a Kähler manifold, Levi-Civita connection and Chern connection agree, which proves the

claim for the Levi-Civita connection. �
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2.5.2 Rank 2 Vector Bundles

To every Hermitian vector bundle of rank 2 we can associate an SO(3)-bundle, which is ex-

plained in Proposition 2.90. We then revisit the tangent bundle on ℂℙ
2 considered in the

previous section and study its associated SO(3)-bundle.

Definition 2.88. �e group PU(=) := U(=)/� (U(=)) is called projective unitary group.

Lemma 2.89. �ere is an isomorphism PU(2) ≃ SO(3) of Lie groups.

Proof. �e group U(2) acts through the adjoint action on the space of trace-free Hermitian

endomorphisms u0(2) ⊂ u(2). �is action is isometric with respect to the metric given by the

negative of the Killing form of u(2) restricted to u0 (2). �us, PU(2) is a three-dimensional

connected Lie group acting effectively and isometrically on a three-dimensional vector space,

and thereby isomorphic to SO(3). �

Proposition 2.90. Let � be a complex vector bundle of rank 2 with hermitian metric ℎ over - .

Denote its unitary frame bundle by U(�). Denote by _ : U(2) → PU(2) ≃ SO(3) the quotient

map and define

% = U(�) ×_ SO(3).

�en, the characteristic classes of u0(�) and � are related via

?1 (u0(�)) = 21 (�)2 − 422 (�), F2 (u0(�)) = 21 (�) mod 2. (2.91)

Every connection ∇ on � canonically induces a connection on % . Furthermore, the connection on

% is an ASD instanton if ∇ is a Hermite-Einstein connection.

Proof. �e bundle % is defined as a principal bundle extension, and any connection can be

canonically extended to any principal bundle extension. Assume that ∇ is a Hermite-Einstein

connection on � and denote the induced connection on % by ∇̃. We have that [8 · Id] = [0]

in the quotient space Lie(PU(2)) = u(2)/Lie(� (U(2)), therefore 〈� ∇̃, l〉 = 0 ∈ Ω
0 (-,Ad %).

�e (0, 2) and (2, 0) parts of the curvature satisfy � 0,2∇ = � 2,0∇ = 0, thus � 0,2
∇̃

= � 2,0
∇̃

= 0. �e
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complexified space of self-dual 2-forms splits as (Ω2
+)ℂ = Ω

2,0⊕〈l〉⊕Ω0,2, so ∇̃ is anti-self-dual.

Equation (2.91) is [DK90, Eqn. 2.1.39]. �

As in Section 2.5.1, let � = )ℂℙ2.

Proposition 2.92. Denote the SO(3)-bundle associated to � bymeans of Proposition 2.90 by � and

denote by f : ℂℙ2 → ℂℙ
2 the complex conjugation on ℂℙ2. �en � and f∗� are not isomorphic,

while � and f∗� are isomorphic.

�e proof uses:

�eorem 2.93 (�eorem 14.10 in [MS74]). �e total Chern class of )ℂℙ= is (1 + 0)=+1, where 0

is a suitably chosen generator of � 2 (ℂℙ=,ℤ).

Proof of Proposition 2.92. We get from �eorem 2.93 and Eq. (2.91):

21 (�) = 30, 22 (�) = 302, ?1 (� ) = −302, F2(� ) = 0 mod 2,

where 0 is a suitably chosen generator of � 2 (ℂℙ2,ℤ). Complex projective 2-space ℂℙ2 can

be given the structure of a CW-complex with a single 2-cell

ℂℙ
1 ≃ {[G0 : G1 : 0] ∈ ℂℙ

2} ⊂ ℂℙ
2

and no 1-cells and no 3-cells. �us,� 2 (ℂℙ2,ℝ) is generated by thisℂℙ1. �e complex conjug-

ation f restricts toℂℙ1 and reverses its orientation, so acts as −1 on� 2 (ℂℙ2,ℤ), in particular

f∗0 = −0. �erefore, 21 (f∗�) ≠ 21 (�), which implies that f∗� and � are not isomorphic. On

the other hand, ?1 (f∗� ) = ?1 (� ) and F2(f∗� ) = F2(� ). So, by �eorem 2.35, we have that �

and f∗� are isomorphic. �

Remark 2.94. We will construct an explicit bundle isomorphism of � and f∗� in Proposi-

tion 4.140. �us, we will obtain Proposition 2.92 without the use of �eorem 2.35.
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2.6 Gauge �eory on�2-manifolds

Definition 2.95. Let (., i) be a �2-manifold, k = ∗ii , and � be a principal bundle over . . A

connection � ∈ � (�) is called a�2-instanton, if �� ∈ Γ(Λ2
14 ⊗ Ad�), i.e. (by �eorem 2.20)

�� ∧k = 0, (2.96)

where the wedge product is taken in the 2-form part of Λ2 ⊗ Ad�.

Example 2.97. Flat connections are�2-instantons.

Example 2.98. Let � be an ASD instanton on a bundle � over a Hyperkähler 4-fold - . Denote

by ?- : ℝ3×- → - the projection onto the second factor. �enℝ3×- carries the torsion-free

�2-structure i from Eq. (2.27), and ?∗-� is a �2-instanton on the bundle ?∗-� with respect to

this�2-structure. To see this, let l1, l2, l3 ∈ Ω
2(- ) denote a Hyperkähler triple on - . �ese

2-forms are self-dual, thus � being ASD is equivalent to �� ∧ l8 = 0 for 8 ∈ {1, 2, 3}. Recall

that for the product�2-structure, we have that

∗i = k =
1

2
l2
1 − dG12 ∧ l3 − dG23 ∧ l1 − dG31 ∧l2

and therefore

�?∗
-
� ∧k = ?∗- (��) ∧k = 0.

A�2-instanton � satisfies ∗(�� ∧ i) = −�� by �eorem 2.20. �us, if i is closed,

d∗��� = − ∗ d� (�� ∧ i) = − ∗ (d���) ∧ i

which vanishes due to the Bianchi identity. �is means that � is a critical point of the Yang-

Mills energy functional

YM : � (�) → ℝ

� ↦→
∫
.

|�� |2 vol. .
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But even more is true:

Proposition 2.99 (Proposition 1.97 in [Wal13a]). Let i be a closed �2-structure on . . �en �2-

instantons with respect to i are absolute minima of the Yang-Mills functional.

Later on, we will study the linearisation of the instanton equation. �e linearisation at a point

� ∈ � (�) of Eq. (2.96) is

; : Ω1 (.,Ad�) → Ω
1 (.,Ad�)

0 ↦→ ∗(k ∧ d�0).
(2.100)

�is is not Fredholm (if the structure group � is at least one-dimensional), because elements

D ∈ �(�) of the gauge group satisfy �D∗� = D∗�� and therefore preserve the �2-instanton

equation. �erefore, the infinitesimal action of the gauge group is in the kernel of ; . As elliptic

operators are Fredholm, that also implies ; is not an elliptic operator.

Aswe have seen in Section 2.4 it is customary to add in theCoulomb gauge condition d∗�0 = 0 in

order tomake the linearised instanton operator elliptic. But in our case, (;, d∗�) : Ω1 (",Ad�) →

(Ω1⊕Ω
0) (.,Ad �) cannot be elliptic either, because it is a map between vector bundles of dif-

ferent rank. �is problem is overcome in the following proposition:

Lemma 2.101 (Proposition 1.98 in [Wal13b]). Let (., i) be a compact �2-manifold, k = ∗ii ,

and � be a principal bundle over . , and � ∈ � (�). �en � is a�2-instanton if and only if there

exists b ∈ Ω
0 (.,Ad�) such that

∗(�� ∧k ) + d�b = 0. (2.102)

So, for a fixed connection � ∈ � (�), b ∈ Ω
0 (.,Ad�), and 0 ∈ Ω

1 (.,Ad �) we consider the

system

∗(��+0 ∧k ) + d�+0b = 0

d∗�0 = 0.

(2.103)

Here, every solution (b, 0) defines the �2-instanton � + 0 which is in Coulomb gauge with
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respect to �. �e linearisation of Eq. (2.103) is an elliptic operator:

Proposition 2.104. �e linearisation of Eq. (2.103) is

!� : (Ω0 ⊕ Ω
1) (.,Ad�) → (Ω0 ⊕ Ω

1) (.,Ad�)

©«
b

0

ª®®¬
↦→

©«
0 d∗�

d� ∗(k ∧ d�)

ª®®¬
©«
b

0

ª®®¬
(2.105)

which is a self-adjoint elliptic operator if d∗i = 0.

Proof. Denote ; = ∗(k ∧ d�) : Ω1 (.,Ad�) → Ω
1 (.,Ad�) and denote its dual by ;∗. For

0, 1 ∈ Ω
1 (.,Ad�) we then have

〈0, ;∗1〉 vol = k ∧ d�0 ∧ 1 = 〈0, ∗3� (k ∧ 1)〉 vol = 〈0, ∗(k ∧ 3�1)〉 vol

where we used d∗i = 0 in the last step. �us, ; is self-adjoint which implies that !� is self-

adjoint.

�e operator !� is associated to the complex

Ω
0 (.,Ad�) d�→ Ω

1 (.,Ad�) ;→ Ω
1(.,Ad�)

d∗
�→ Ω

0 (.,Ad �). (2.106)

For G ∈ . and 0 ≠ b ∈ )G. ≃ ℝ
7 ≃ (ℝ7)∗, the symbol of Eq. (2.106) applied to b is then the

sequence

0 → Λ
0 ⊗ g

( ·)∧b
−→ Λ

1 ⊗ g
∗(k∧( ·)∧b)

−→ Λ
1 ⊗ g

by( ·)
−→ Λ

0 ⊗ g → 0. (2.107)

It remains to check that this sequence is exact. �e 4-formk and the Hodge star are preserved

by �2 and �2 acts transitively on (6 ⊂ ℝ
7, so it suffices to check that Eq. (2.107) is exact for

any (non-zero) choice of b , say b = (1, 0, 0, 0, 0, 0, 0). �is is then an explicit calculation that

can be carried out using Eq. (2.18). �

Remark 2.108. A coordinate-free proof for the ellipticity of the complex in Eq. (2.106) is given

in [RC98, Section 3, Lemma 4].
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3 Resolutions of �2-orbifolds

We now turn to the construction of resolutions of �2-orbifolds, where we glue together the

orbifold�2-structure and the product�2-structure onℝ
3×-EH, where-EH denotes the Eguchi-

Hanson space as before. In particular, we will revisit the construction of [Joy96b]. Starting

with the torus ) 7, we write down an finite group Γ that acts on ) 7 and preserves the flat �2-

structure thereon. Following this, we construct smooth 7-manifolds#C carrying a 1-parameter

family of�2-structures i
C , which are close to the flat�2-structure, in a suitable sense. We then

give a new proof for the fact that iC can be perturbed to a torsion-free�2-structure, and give

an estimate for the size of the perturbation. �is is stated in the main result of this section,

�eorem 3.84:

�eorem. Choose U ∈ (0, 1) and V ∈ (−1, 0) both close to 0. Let #C be the resolution of ) 7/Γ

from Eq. (3.31) and iC ∈ Ω
3 (#C ) the �2-structure with small torsion from Eq. (3.33). �ere exists

2 > 0 independent of C such that the following is true: for C small enough, there exists [C ∈ Ω
2(#C )

such that ĩ = iC + d[C is a torsion-free�2-structure, and [
C satisfies

����[C ����
�
2,U/2
V ;C

≤ 2C7/2−V .

In particular,

����ĩ − iC
����
!∞ ≤ 2C5/2 and

����ĩ − iC
����
�0,U/2 ≤ 2C5/2−U/2 as well as

����ĩ − iC
����
�1,U/2 ≤ 2C3/2−U/2.

As is common in gluing constructions in differential geometry, we obtain this result by fol-

lowing the three step procedure of

1. Constructing an approximate solution (cf. Section 3.2.1)

2. Estimating the linearisation of the equation to be solved (cf. Section 3.2.3)

3. Perturbing the approximate solution to a genuine solution (cf. Section 3.2.4)

�is method was first employed in [Tau82] for the construction of anti-self-dual connections

over 4-manifolds. A similar but slightly simpler proof of the same results is given in [DK90,
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Section 7.2]. An expository article about this principle, which is in spirit close to the ma�er of

this section, is [Don12].

3.1 Analysis on the Egu�i-Hanson Space

3.1.1 Harmonic forms on (ℂ2 \ {0})/{±1}

In this section, we will list homogeneous harmonic forms on (ℂ2 \ {0})/{±1} with decay.

Because (ℂ2 \ {0})/{±1} is the cone over SO(3), we will see that such forms correspond to

eigenforms on SO(3), andwewill therefore review the spectral decomposition of the Laplacian

on (3 and SO(3).

We begin by defining cones and homogeneous forms on them.

Definition 3.1. For a Riemannian manifold (Σ, 6Σ), the Riemannian manifold � (Σ) = Σ × ℝ>0

endowed with the metric 6� = dA 2 + A 26Σ is called the Cone over Σ.

Definition 3.2. Let _ ∈ ℝ. �en W ∈ Ω
: (� (Σ)) is called homogeneous of order _ if there exist

U ∈ Ω
:−1 (Σ), V ∈ Ω

: (Σ) such that

W = A_+:
(
3A

A
∧ U + V

)
.

Remark 3.3. For C ∈ ℝ>0 denote by (·C) : � (Σ) → � (Σ) the dilation map given by (·C) (A, f) =

(CA, f) for (A, f) ∈ � (Σ). �en, ifW ∈ Ω
: (� (Σ)) is homogeneous of order_, we have (·C)∗ |W |6� =

C_ |W |6� .

Homogeneous harmonic forms do not exist for all orders andwemake the following definition:

Definition 3.4. For a cone� = � (Σ), denote by Δ:,� the Laplacian acting on :-forms on�. �e

set

DΔ:,�
= {_ ∈ ℝ : ∃W ∈ Ω

: (�),W ≠ 0, homogeneous of order _ with Δ:,�W = 0}

is called the set of critical rates of Δ:,� .

It will turn out that critical rates are intimately related to harmonic forms on Eguchi-Hanson
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space. �is is the content of the next section and we will see the set DΔ:,�
appear again

there. �e purpose of this section is to describe DΔ1,� (SO(3) ) and DΔ2,� (SO(3) ) , which is achieved

in Proposition 3.10. We prepare the proposition by pu�ing some results for harmonic forms

on Riemannian cones in place:

Lemma 3.5 (Lemma A.1 in [FHN20]). Let W = A_+:
(
3A
A ∧ U + V

)
be a :-form on� (Σ) homogen-

eous of order _. For every function D = D (A ) we have Δ(DW) = A_+:−2
(
3A
A
∧� + �

)
, where

� = D
(
△U − (_ + : − 2) (_ + = − :)U − 23∗V

)
− A ¤D (2_ + = − 1) U − A 2 ¥D U,

� = D
(
△V − (_ + = − : − 2) (_ + :)V − 23U

)
− A ¤D (2_ + = − 1) V − A 2 ¥D V.

�eorem 3.6 (�eorem A.2 in [FHN20]). Let W = A_+:
(
3A
A ∧ U + V

)
be a harmonic :-form on

� (Σ) homogeneous of order _. �en W decomposes into the sum of homogeneous harmonic forms

W = W1 + W2 + W3 + W4 where W8 = A_+:
(
3A
A ∧ U8 + V8

)
satisfies the following conditions.

(i) V1 = 0 and U1 satisfies 3U1 = 0 and ΔU1 = (_ + : − 2) (_ + = − :)U1.

(ii) (U2, V2) ∈ Ω
:−1
2>4G02C × Ω

:
4G02C satisfies the first-order system

3U2 = (_ + :)V2, 3∗V2 = (_ + = − :)U2 .

In particular, if (U2, V2) ≠ 0 then _ + : ≠ 0 ≠ _ + = − : and the pair (U2, V2) is uniquely

determined by either of the two factors, which is a coexact/exact eigenform of the Laplacian

with eigenvalue (_ + :) (_ + = − :).

(iii) (U3, V3) ∈ Ω
:−1
2>4G02C × Ω

:
4G02C satisfies the first-order system

3U3 + (_ + = − : − 2)V3 = 0 = 3∗V3 + (_ + : − 2)U3.

In particular, if (U3, V3) ≠ 0 then _ + : − 2 ≠ 0 ≠ _ + = − : − 2 and the pair (U3, V3) is

uniquely determined by either of the two factors, which is a coexact/exact eigenform of the

Laplacian with eigenvalue (_ + : − 2) (_ + = − : − 2).

(iv) U4 = 0 and V4 satisfies 3
∗V4 = 0 and ΔV4 = (_ + = − : − 2) (_ + :)V4.
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�e decomposition W = W1 + W2 + W3 + W4 is unique, except when _ = −=−2
2
; in that case forms of

type (ii) and (iii) coincide, and there is a unique decomposition W = W1 + W2 + W4.

�e previous proposition relates harmonic forms on the cone � (SO(3)) to eigenforms of the

Laplacian on SO(3). �e group SO(4) acts via pullback on complex-valued differential forms

on (3, and it turns out that the decomposition of this action into irreducible components gives

the spectral decomposition for the Laplacian on (3. �is is made precise in the following two

theorems, and as (3 is a double cover of SO(3), we will get the spectral decomposition of the

Laplacian on SO(3) from them.

�eorem 3.7 (�eorem B in [Fol89]). �e complex-valued !2-functions and 1-forms on (3 de-

compose into the following irreducible SO(4)-invariant subspaces:

Ω
0 ((3,ℂ) =

∞⊕
<=1

Φ0,<,

Ω
1 ((3,ℂ) =

∞⊕
<=1

(
Φ1,< ⊕ Φ

−
1,< ⊕ Ψ1,<

)
.

Here, Φ0,< , Φ1,<,Φ
−
1,<,Ψ1,< are defined as follows: denote by 9 : (3 → ℝ

4 the inclusion map and

define I1 = G1 + 8G2, I2 = G3 + 8G4, and mA =
∑4
9=1 G 9 mG 9 . �en let

Φ0,< = 9∗�0,<+1, where�0,< is the smallest SO(4)-inv. space containing I<−1
1 ,

Φ1,< = 9∗ℱ1,<, where ℱ1,< is the smallest SO(4)-inv. space containing I<−1
1 mAy(dI1 ∧ dI2).

Φ
−
1,< = 9∗ℱ−

1,<, where ℱ
−
1,< is the smallest SO(4)-inv. space containing I<−1

1 mAy(dI1 ∧ dI2).

Ψ1,< = 9∗�1,<, where�1,< is the smallest SO(4)-inv. space containing I<−1
1 dI1.

�eorem3.8 (�eoremC in [Fol89]). LetΦ0,<,Φ1,<,Φ
−
1,<,Ψ1,< as in�eorem 3.8. �enΦ0,<,Φ1,<⊕

Φ
−
1,< , andΨ1,< are eigenspaces for the Laplacian with eigenvalues<(<+2), (<+1)2, and<(<+2)

respectively.

Corollary 3.9. Let (3 be endowed with the round metric and SO(3) = (3/{±1} be endowed with

the quotient metric.

1. �en, the spectrum of the Laplacian Δ0,SO(3) acting on real-valued !2-functions on SO(3)
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is:

Spec(Δ0,SO(3) ) = {: (: + 2) : : ∈ ℤ≥0, : even} = {0, 8, 24, . . . }.

2. �e smallest eigenvalue of the Laplacian Δ1,SO(3) acting on real-valued 1-forms with coef-

ficients in !2 on SO(3) is 4 and has multiplicity 6.

Proof of Corollary 3.9.

1. �is follows from �eorems 3.7 and 3.8 and the fact that functions in the space Φ0,<

defined in �eorem 3.7 are invariant under the antipodal map (−1) : (3 → (3 if and

only if< is even.

2. By �eorem 3.8, the smallest eigenvalue of the Laplacian acting on complex-valued 1-

forms on (3 is 3. We see from the explicit description of the eigenspace that the eigen-

forms are not invariant under the antipodal map. �us, the eigenvalue 3 does not occur

on SO(3).

�e next smallest eigenvalue is 4. It is realised, and it remains to check the dimension

of its eigenspace: for the complex vector spaces defined in �eorem 3.7 we have Φ1,1 ≃(
Λ
2
+
)ℂ

and Φ
−
1,1 ≃

(
Λ
2
−
)ℂ
, the complexification of (anti-)self-dual constant forms on ℝ

4.

Here is how to see that Φ1,1 ≃
(
Λ
2
+
)ℂ
, the other isomorphism is analogous. We have

dI1 ∧ dI2 = dG13 − dG24 + 8 dG23 + 8 dG14 =: l.

�e element 6 =

©«

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

ª®®®®®®®®¬
∈ SO(4) sends this to − dG13 + dG24 + 8 dG23 + 8 dG14, so

the smallest SO(4)-invariant space containing l must also contain the self-dual form

dG13 − dG24 = 1
2
(l − 6l). Because Λ

2
+ is irreducible, this SO(4)-invariant space must

contain all of (Λ2
+)ℂ. Contracting with the radial vector field mA and restricting to (3

are SO(4)-equivariant operations, one checks that the result is non-zero, and therefore
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Φ1,1 ≃
(
Λ
2
+
)ℂ
.

Altogether, Φ1,1 and Φ
−
1,1 are representations of SO(4) of complex dimension 3. �ey

consist of 1-forms on (3 that are invariant under the antipodal map, which proves the

claim.

�

We can now combine the results about harmonic forms on� (SO(3)) with the spectral decom-

position of the Laplacian on SO(3) to find the critical rates for the Laplacian on � (SO(3)):

Proposition 3.10.

1. �ere are no harmonic 1-forms on (ℂ2 \ {0})/{±1} which are homogeneous of order _ for

_ ∈ [−2, 0). In other words DΔ1,(ℂ2\{0})/{±1} ∩ [−2, 0) = ∅.

2. �ere is a six-dimensional space of harmonic 2-forms on (ℂ2 \ {0})/{±1} which are homo-

geneous of order −2.

�ere are no harmonic 2-forms on (ℂ2 \ {0})/{±1} which are homogeneous of order _ for

_ ∈ (−2, 0).

Proof. It follows from point two in Proposition 2.5 that � (SO(3)) and (ℂ2 \ {0})/{±1} are

isometric as Riemannian manifolds and we prove the statements on � (SO(3)).

1. Let _ ∈ [−2, 0) and assume there exists a harmonic homogeneous 1-form of order _ on

� (SO(3)). We show that the 1-form must vanish by showing that forms satisfying any

of the cases (i), (ii), (iii), and (iv) from�eorem 3.6 are zero. Using the notation from the

theorem, we get the following:

(i) In this case, ΔU1 = (_ − 1) (_ + 3)U1. For _ ∈ [−2, 0), the factor (_ − 1) (_ + 3) is

negative, so our assumption implies that U1 is a closed 0-form that is an eigenform

of ΔSO(3) for a negative eigenvalue, which implies U1 = 0 by Corollary 3.9.

(ii) In this case, V2 is an exact 1-form with ΔSO(3)V2 = (_ + 1) (_ + 3)V2. We have

(_ + 1) (_ + 3) < 8 for _ ∈ [−2, 0), and therefore V2 = 0 as in case (i).
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(iii) In this case, V3 is an exact 1-form with ΔSO(3)V3 = (_ + 1) (_ − 3)V3, and V3 = 0

follows as before.

(iv) In this case, V4 is a co-closed 1-form with ΔSO(3)V3 = (_ + 1)2V3. For _ ∈ [−2, 0),

we have (_ + 1)2 < 3, and because of Corollary 3.9 this implies V4 = 0.

2. Let _ ∈ [−2, 0). Going through the cases (i), (ii), (iii), and (iv) from�eorem 3.6, we will

find that there are six linearly independent harmonic homogeneous 2-forms of order −2

in case (iii), but no other harmonic homogeneous forms. Using the notation from the

theorem, we get the following:

(i) In this case, we get a 1-form that is an eigenform of the Laplacian on SO(3) for the

eigenvalue _(_ + 2) < 0, which must be 0 by Corollary 3.9.

(ii) In this case, we get a 1-form that is an eigenform of the Laplacian on SO(3) for the

eigenvalue (_ + 2)2 < 4, which must be 0 by Corollary 3.9.

(iii) In this case, we get a 1-form that is an eigenform of the Laplacian on SO(3) for

the eigenvalue _2. �ere are six of these by Corollary 3.9 for _ = −2 and none for

_ ∈ (−2, 0). In the case of _ = −2 all six eigenforms give rise to harmonic 2-forms

of order _ = −2 on � (SO(3)).

(iv) In this case, we get a 2-form V4 that is an eigenform of the Laplacian on SO(3)

for the eigenvalue (_ + 2)2 < 4. �e Hodge dual ∗V4 is then a 1-form that is an

eigenform for the same eigenvalue, which must be 0 by Corollary 3.9.

�

For an application later we will not only need to know how many harmonic homogeneous

forms there are, but also how many harmonic homogeneous forms with log(A ) coefficients

there are. O�en, these two notions coincide, and the following proposition asserts that this is

also the case in our se�ing.

Definition 3.11. Let Σ be a connected Riemannian manifold and � = � (Σ) its cone. For _ ∈ ℝ,
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define

K(_)Δ?,� (Σ) =



W =

∑<
9=0 (log A ) 9W 9 for< ≥ 0, W 9 ∈ Ω

? (� (Σ)), such that

Δ?,� (Σ)W = 0, where each W 9 is homogeneous of order _



.

Proposition 3.12. Let W =
∑<
9=0 (log A ) 9W 9 ∈ K(−2)Δ2,� (Σ) , then W 9 = 0 for 9 > 0.

Proof. Write W 9 = A
_+:

(
3A
A ∧ U 9 + V 9

)
. �en, by Lemma 3.5, for 9 ≥ 1,

Δ(log(A ) 9W 9 ) = A−2
(
dA

A
∧� + �

)
, where

� = log(A ) 9 (ΔU 9 − 2 d∗V 9 )︸                      ︷︷                      ︸
=0

+29 log(A ) 9−1U 9 − 9 ( 9 − 1) log(A ) 9−2U 9 , (3.13)

� = log(A ) 9 (ΔV 9 − 2 dU 9 )︸                     ︷︷                     ︸
=0

+29 log(A ) 9−1V 9 − 9 ( 9 − 1) log(A ) 9−2V 9 . (3.14)

Here, the terms ΔU 9 − 2 d∗V 9 and ΔV 9 − 2 dU 9 vanish, because U 9 is coexact and satisfies

2V 9 = dU 9 , and V 9 is exact and satisfies d∗V 9 = 2U 9 according to the discussion of point 2 of

Proposition 3.10. �e term ΔW is a polynomial in log(A ), and the condition ΔW = 0 prescribes

that all coefficients of that polynomial vanish. Assume that< > 0 and check the coefficient

of log(A )<−1: Eq. (3.13) implies that U< = 0 and Eq. (3.14) implies that V< = 0, i.e. W< = 0.

Repeating the argument, we find that W<−1 = 0, W<−2 = 0, . . . , W2 = 0, W1 = 0, which is what we

wanted to show. �

3.1.2 Harmonic forms on Egu�i-Hanson Space

In the previous section we looked at certain harmonic forms on (ℂ2 \ {0})/{±1}. �e Eguchi-

Hanson space-EH is asymptotic to the cone (ℂ2\{0})/{±1}, and we can say a great deal about

harmonic forms on -EH just from knowing the harmonic forms on (ℂ2 \ {0})/{±1}. �is is a

consequence of the work of Lockhart and McOwen (cf. [LM85, Loc87]) and will be the content

of this section.

We will want statements about harmonic forms in certain weighted Hölder spaces. �ese

spaces are defined in the following:
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Definition 3.15. Define the weight functions

F : -EH → ℝ≥0 F : -EH × -EH → ℝ≥0

G ↦→ 1 + |d (G) |, (G,~) ↦→ min{F (G),F (~)}.

Let* ⊂ -EH. For U ∈ (0, 1), V ∈ ℝ, : ∈ ℕ, and 5 ∈ Ω
: (-EH) define the weighted Hölder norm

of 5 via

[ 5 ]�0,U
V

(* ) := sup
G,~∈*

36(1) (G,~) ≤F (G,~)

F (G,~)U−V
|5 (G) − 5 (~) |6(1)
36(1) (G, ~)U

,

| |5 | |!∞
V
(* ) :=

������F−V
C 5

������
!∞ (* )

,

| |5 | |
�:,U
V

(* ) :=
:∑
9=0

����∇9 5 ����
!∞
V−9 (* ) +

[
∇9 5

]
�0,U
V−9 (* )

�e term 5 (G) − 5 (~) in the first line denotes the difference between 5 (G) and the parallel

transport of 5 (~) to the fibre Ω: (-EH) |G along one of the shortest geodesics connecting G and

~. When * is not specified, take* = -EH.

�roughout the article we will set V to be a negative number. Informally, an element in the

�:,U
V

Hölder space decays like 36(1) (·, d−1 (0))V , as 36(1) (·, d−1(0)) → ∞.

We will now make the meaning of -EH being asymptotic to a cone precise.

Definition 3.16. Let Σ be a connected Riemannian manifold and � = � (Σ) be its cone with

cone metric 6� . A Riemannian manifold (",6" ) is called asymptotically conical with cone �

and rate a < 0 if there exists a compact subset ! ⊂ " , a number ' > 0, and a diffeomorphism

q : (',∞) × Σ → " \ ! satisfying

|∇: (q∗(6" ) − 6� ) |6� = O(r a−: ) for all : ≥ 0 as r → ∞.

Here, ∇ denotes the Levi-Civita connection with respect to 6� and r : (0,∞) × Σ → (0,∞) is

the projection onto the first component.

Proposition 3.17. �e Eguchi-Hanson space -EH endowed with the metric 6(1) is asymptotically
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conical with cone � = � (SO(3)) and rate a = −4.

Proof. �is is the second point of Proposition 2.10. �

We then have the following results about harmonic forms in !2 on Eguchi-Hanson space:

Lemma 3.18.

1. We have � 2
sing (-EH) = � 2

deRham
(-EH) = ℝ. For : > 0 define a: ∈ Ω

2(-EH) to be

a: := 5: (A )−6A dA ∧ [1 − 5: (A )−2[2 ∧ [3 (3.19)

and endow -EH with the metric 6(:) . �en a: ∈ !2 (Λ2(-EH)), Δ6(: )a: = 0, [a: ] generates

� 2
deRham

(-EH), and a: is the unique element in !2 (Λ2 (-EH)) ∩ [a: ] satisfying Δ6(: )a: = 0.

Moreover, a1 ∈ �2,U
−4 (Λ2(-EH)). Away from the exceptional orbit d−1(0) ≃ (2, we have that

a: = d_: , where _: = −5: (A )−2[1.

2. �e !2-kernels of Δ6(: ) acting on forms of different degrees are as follows:

Ker(Δ6(: ) : !2 (Λ2(-EH)) → !2 (Λ2(-EH))) = 〈a:〉,

Ker(Δ6(: ) : !2 (Λ? (-EH)) → !2 (Λ? (-EH))) = 0 for ? ≠ 2.

For : = 1 and V ∈ [−4,−2) they coincide with the �2,U
V

-kernels.

Proof.

1. We have that -EH = ) ∗(2 as smooth manifolds, therefore � 2
sing (-EH) = ℝ. On smooth

manifolds � 2
sing(-EH) = � 2

deRham
(-EH) by de Rham’s �eorem.

One checks with a direct computation that a: from Eq. (3.19) is closed and anti-self-dual,

and therefore co-closed. �e equality a: = d_: follows from a direct computation as

well.
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For : = 0, Eq. (3.19) still defines an element a0 ∈ Ω
2 (ℂ2/{±1} \ {0}). One checks

through direct calculation that a0 ∈ �2,U
−4 (Λ2 (ℂ2/{±1})). Using the fact that -EH is

asymptotically locally Euclidean (cf. Proposition 2.10), one gets the Hölder estimate on

-EH. Furthermore,�2,U
−4 ⊂ !∞−4 ⊂ !2, so a: is an element in !2 (Λ2 (ℂ2/{±1})).

By Poincaré duality, we have � 2
cs (-EH) = � 2

sing (-EH) = ℝ, where � 2
cs (-EH) denotes

the de Rham cohomology with compact support. [Loc87, Example (0.15)] and [Loc87,

�eorem (7.9)] give that the map

H 2 (-EH) := {b ∈ !2 (Λ2) ∗-EH) : db = d∗b = 0} → Im
(
� 2
cs (-EH) ↩→ � 2

deRham(-EH)
)

b ↦→ [b]

is an isomorphism. �us [a: ] generates � 2
deRham

(-EH) and a: ∈ [a: ] is the unique

element in !2 (Λ2 (-EH)) ∩ [a: ] satisfying da: = 0, d∗a: = 0.

It remains to check that a: is also the unique element in !2 (Λ2 (-EH)) ∩ [a: ] satisfying

Δ6(: )a: = 0. �e equations Δ6(: )a: = 0 and (d+ d∗)a: = 0 are equivalent by the same

integration by parts argument as in the compact case, namely for" > 0:

∫
{A ≤" }

〈(dd∗ + d∗ d)a: , a: 〉 dvol6(: )

=

∫
{A ≤" }

〈(dd∗)a:, a:〉 dvol6(: ) +
∫
{A ≤" }

〈(d∗ d)a:, a:〉 dvol6(: )

=

∫
{A ≤" }

〈d∗a: , d∗a:〉 dvol6(: ) +
∫
{A ≤" }

d(d∗a: ∧ ∗a: )

+
∫
{A ≤" }

〈da: , da:〉 dvol6(: ) +
∫
{A ≤" }

d(a: ∧ ∗ da: )

=

∫
{A ≤" }

(〈d∗a: , d∗a:〉 + 〈da: , da:〉) dvol6(: )

+
∫
m {A ≤" }

(d∗a: ∧ ∗a: + a: ∧ ∗ da: ) ,

where we used d(d∗a: ∧∗a: ) = dd∗a: ∧∗a: −d∗a: ∧d∗a: in the second step, and Stokes’

�eorem in the last step. �e last term tends to 0 as " → ∞, because of the decay of

elements in �2,U
−4;C (Λ2(-EH)). So, Δ6(: )a: = 0 implies that d∗a: = 0, da: = 0, and the

converse implication is trivial.

2. �e first line is a restatement of the previous point. �e other lines are [Loc87, Example
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(0.15)] with proof in [Loc87, �eorem (7.9)].

�e !2-kernels coincidewith the�2,U
V

-kernels, as�2,U
V

(Λ? (-EH)) embeds into !2 (Λ? (-EH))

for V < −2 and the explicit description of the !2-kernels shows that all kernel elements

are actually in�2,U
V

(Λ? (-EH)) for V ≥ −4.

�

Remark 3.20. Note that a: from the lemma cannot have compact support by the unique con-

tinuation property for elliptic equations. We only have that [a: ] contains a form of compact

support.

�e previous lemma makes statements about the !2-kernels of the Laplacian on-EH acting on

?-forms. Using the results from the previous section about harmonic forms on ℂ
2/{±1}, we

can rule out additional harmonic forms even in some of the weighted Hölder spaces that do

not embed into !2. �e key proposition that will be proved throughout the rest of this section

is the following:

Proposition 3.21. For V ∈ (−4, 0), the kernels of the Δ6(1) acting on forms in �2,U
V

of different

degrees are as follows:

Ker(Δ6(1) : �
2,U
V

(Λ2(-EH)) → �0,U
V−2 (Λ

2(-EH))) = 〈a1〉,

Ker(Δ6(1) : �
2,U
V

(Λ? (-EH)) → �0,U
V−2 (Λ

? (-EH))) = 0 for ? ≠ 2.

�e connection between the Laplacian on Eguchi-Hanson space and its cone is described in

the following results taken from [KL20, Section 4] which were developed in [LM85, Loc87].

�e theory works for a much bigger class of operators, but we will only reproduce it for the

Laplacian here.

Definition 3.22. Let " be asymptotically conical and let the notation be as in Definition 3.16.

Denote by r : � (Σ) → ℝ≥0 the radius function, and use the same symbol to denote a map

from" toℝ>0 that agrees with q∗r on q (',∞) ⊂ " . Let � be a vector bundle with metric and

metric connection ∇ over " . �en, for 1 > ? > ∞, ; ≥ 0, _ ∈ ℝ denote by !
?

;,_
the completion
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of �∞
cs (�) with respect to the norm

| |W | |!?
;,_

=

(
;∑
9=0

∫
"

|r−_+9∇9W |?r−4 vol"

)1/?
.

�e space !
?

;,_
is called the !?-Sobolev space with ; derivatives and decay faster than _.

�eorem 3.23 (�eorem 4.10 in [KL20]). For _ ∈ ℝ, denote by Δ?,6(1) : !
@

2,_
(Λ? (-EH)) →

!
@

0,_−2 (Λ
? (-EH)) the Laplacian of the metric 6(1) acting on ?-forms. �en, KerΔ?,6(1) is invariant

under changes of _, as long as we do not hit any critical rates. �at is, if the interval [_, _′] is

contained in the complement of DΔ?,(ℂ2\{0})/{±1} , then

Ker
(
Δ?,6(1) : !

@

2,_
(Λ? (-EH)) → !

@

0,_−2 (Λ
? (-EH))

)
=Ker

(
Δ?,6(1) : !

@

2,_′ (Λ
? (-EH)) → !

@

0,_′−2 (Λ
? (-EH))

)
.

Proposition 3.24 (�eorem 4.20 in [KL20]). Let _1 < _2 such thatK(_8)Δ?,� (Σ) = 0 for 8 ∈ {1, 2}.

�en, the maps

Δ?,6(1),!2;+2,_1
: !2;+2,_1 (Λ

? (-EH)) → !2;,_1−2 (Λ
? (-EH))

and Δ?,6(1),!2;+2,_2
: !2;+2,_2 (Λ

? (-EH)) → !2;,_2−2 (Λ
? (-EH))

are Fredholm and the difference in their indices is given by

ind
(
Δ?,6(1),!2;+2,_2

)
− ind

(
Δ?,6(1),!2;+2,_1

)
=

∑
_∈DΔ(ℂ2\{0})/{±1}

∩(_1,_2)
dimK(_)Δ?,(ℂ2\{0})/{±1} (3.25)

Combining everything, we get the following characterisation of harmonic forms with decay:

�eorem 3.26. For _ ∈ (−4, 0), the !2
2,_
-kernels of Δ?,6(1) acting on ?-forms of different degrees

are the same as the !2-kernels, namely:

Ker(Δ6(1) : !22,_ (Λ
2 (-EH)) → !20,_−2 (Λ

2(-EH))) = 〈a1〉,

Ker(Δ6(1) : !22,_ (Λ
? (-EH)) → !20,_−2 (Λ

? (-EH))) = 0 for ? ≠ 2.
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Proof. 0-forms and 4-forms: it follows from the maximum principle that every harmonic func-

tion that decays at infinity must vanish. �e Hodge star is an isomorphism between 0-forms

and 4-forms that commutes with the Laplacian, so the statement for 0-forms implies that state-

ment for 4-forms.

1-forms and 3-forms: the kernel of the Laplacian is zero for rate −2 by the second point of

Lemma 3.18. By the first point of Proposition 3.10, there are no critical rates in the interval

[−2, 0). So, �eorem 3.23 implies the claim for 1-forms. As above, we get the statement for

3-forms by using the Hodge star.

2-forms: by Proposition 3.10 the only critical rate in [−2, 0) is−2. �e kernel of the Laplacian on

2-forms stays the same for rates _ ∈ (−4,−2) by Lemma 3.18. By �eorem 3.23, the dimension

of the kernel of the Laplacian acting on 2-forms with decay _ ∈ (−4, 0) may therefore only

change at _ = −2. We know from Propositions 3.12 and 3.24 that the index increases by six

when crossing the critical rate _ = −2. We will now check that the dimension of the cokernel

decreases by 6, which implies that the dimension of the kernel does not change.

�e dual space of!2
0,_

is!2
0,−4−_ . �erefore, the cokernel ofΔ6(1) : !

2
2,−2 (Λ2(-EH)) → !20,−4 (Λ2(-EH))

is isomorphic to the kernel of the adjoint operatorΔ∗
6(1) = Δ6(1) : !

2
2,0 (Λ2(-EH)) → !20,−2 (Λ2 (-EH)).

Here we used that elements in the cokernel of Δ6(: ) are smooth by elliptic regularity, so it does

not ma�er how many derivatives we demand for sections acted on by the adjoint operator.

We now explicitlywrite down six linearly independent harmonic forms in!22,0 (Λ2(-EH)): three

of them are the (self-dual) Kähler forms l
(1)
1 , l

(1)
2 , and l

(1)
3 defined in Proposition 2.5.

Analogously, we can define three harmonic anti-self-dual forms with respect to 6(:) for all : >

0. To this end, extend [1, [2, [3 ∈ so(3) from Proposition 2.5 to right-invariant forms on SO(3),

denoted by [̂1, [̂2, [̂3. �ese forms satisfy d[̂1 = −[̂2 ∧ [̂3 etc. In analogy to Proposition 2.5,

define

4̂1 (A ) = A 5 −1: (A )[̂1, 4̂2 (A ) = 5: (A )[̂2, 4̂3 (A ) = 5: (A )[̂3
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and

l̂
(:)
1 = dC ∧ 4̂1 − 4̂2 ∧ 4̂3, l̂

(:)
2 = dC ∧ 4̂2 − 4̂3 ∧ 4̂1, l̂

(:)
3 = dC ∧ 4̂3 − 4̂1 ∧ 4̂2 .

One checks through computation that l̂
(:)
8 are closed and anti-self-dual, and therefore har-

monic. A priori, they are defined on ℝ>0 × SO(3), and it remains to check that they extend

to all of -EH. We have l̂
(:)
2 = d(A[̂2) and l̂ (:)

3 = d(A[̂3), where A[̂2 and A[̂3 are well-defined

1-forms on all of-EH, because they vanish as A → 0. �erefore, l̂
(:)
2 and l̂

(:)
3 are well-defined

on -EH.

We have that l̂
(:)
1 = A 5 −2

:
(A ) dA ∧ [̂1 − 5 −2

:
(A )[̂2 ∧ [̂3, where the first summand vanishes as

A → 0, and the second summand is a multiple of the volume form on SO(3) ×SO(2) {0} ≃ (2

pulled back under the projection

SO(3) ×SO(2) + → SO(3) ×SO(2) +

(6, G) ↦→ (6, 0).

�us l̂
(:)
1 is also defined on all of -EH. �e forms [1, [2, [3, [̂1, [̂2, [̂3 are linearly independent

which implies that l
(:)
1 , l

(:)
2 , l

(:)
3 , l̂

(:)
1 , l̂

(:)
2 , l̂

(:)
3 are linearly independent.

Last, note that for each6 ∈ SO(3) we can express [̂8 (6) as a linear combination of[8 (6). Each[8

decays like A 1/2 as A → ∞, which shows that the l̂
(:)
8 have the same decay as the Hyperkähler

triple l
(:)
8 , which is covariant constant. �us, we have that l

(1)
8 , l̂

(1)
8 ∈ !22,0(Λ2 (-EH)), but

∉ !22,−n (Λ2(-EH)) for all n > 0 and 8 ∈ {1, 2, 3}.

�erefore, the dimension of the cokernel of Δ6(1) : !
2
2,_

(Λ2(-EH)) → !2
0,_−2 (Λ

2 (-EH)) changes

by six when crossing the critical rate _ = −2, and the dimension of the kernel stays the same.

�

Proposition 3.21 is now an immediate consequence of �eorem 3.26.

Proof of Proposition 3.21. For n > 0we have that�2,U
V−n is embedded in !2

2,V
, so the claim follows

from �eorem 3.26. �
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3.2 Torsion-Free�2-Structures on the Generalised Kummer Construction

In the two articles [Joy96b], Joyce constructed the first examples of manifolds with holonomy

equal to�2. One starts with the flat 7-torus, which admits a flat�2-structure. A quotient of the

torus by maps preserving the�2-structure still carries a flat�2-structure, but has singularities.

�e maps are carefully chosen, so that the singularities are modelled on) 3 ×ℂ
2/{±1}. By the

results of Section 3.1,) 3×ℂ2/{±1} has a family of resolutions) 3×-EH → ) 3×ℂ2/{±1} of one

real parameter, where -EH denotes the Eguchi-Hanson space, and the parameter defines the

size of a minimal sphere in -EH. We can define a smooth manifold by gluing these resolutions

over the singularities in the quotient of the torus.

�e product manifold ) 3 × -EH carries the product �2-structure from Eq. (2.27). �at means

we have two torsion-free �2-structures on our glued manifold: one coming from flat ) 7, and

the product�2-structure near the resolution of the singularities. We will interpolate between

the two to get one globally defined�2-structure. �is will no longer be torsion-free, but it will

have small enough torsion in the sense of �eorem 2.26. �is is the argument that was used

in [Joy96b] to prove the existence of a torsion-free �2-structure, and the construction of this

�2-structure with small torsion is the content of Section 3.2.1.

Sections 3.2.2 to 3.2.4 give an alternative proof of the existence of a torsion-free �2-structure

on this glued manifold.

3.2.1 Resolutions of ) 7/Γ

Webriefly review the generalisedKummer construction as explained in [Joy96b]. Let (G1, . . . , G7)

be coordinates on ) 7 = ℝ
7/ℤ7, where G8 ∈ ℝ/ℤ, endowed with the flat �2-structure i0 from

Definition 2.17. Let U, V, W : ) 7 → ) 7 defined by

U : (G1, . . . , G7) ↦→ (−G1,−G2,−G3,−G4, G5, G6, G7),

V : (G1, . . . , G7) ↦→
(
−G1,

1

2
− G2, G3, G4,−G5,−G6, G7

)
,

W : (G1, . . . , G7) ↦→
(
1

2
− G1, G2,

1

2
− G3, G4,−G5, G6,−G7

)
.

(3.27)
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Denote Γ := 〈U, V, W〉. �e next lemmata collect some information about the orbifold ) 7/Γ:

Lemma 3.28 (Section 2.1 in part I, [Joy96b]). U, V,W preserve i0, we have U
2 = V2 = W2 = 1, and

U, V, W commute. We have that Γ ≃ ℤ
3
2.

Lemma 3.29 (Lemma 2.1.1 in part I, [Joy96b]). �e elements VW , WU , UV , and UVW of Γ have no

fixed points on) 7. �e fixed points of U in ) 7 are 16 copies of) 3, and the group 〈V, W〉 acts freely

on the set of 16 3-tori fixed by U . Similarly, the fixed points of V , W in ) 7 are each 16 copies of) 3,

and the groups 〈U,W〉 and 〈U, V〉 act freely on the sets of 16 3-tori fixed by V, W respectively.

Lemma 3.30 (Lemma 2.1.2 in part I, [Joy96b]). �e singular set ! of ) 7/Γ is a disjoint union of

12 copies of) 3. �ere is an open subset* of) 7/Γ containing !, such that each of the 12 connected

components of * is isometric to ) 3 ×
(
�4
Z
/{±1}

)
, where �4

Z
is the open ball of radius Z in ℝ

4 for

some positive constant Z (Z = 1/9 will do).

We now define a compact 7-manifold " , which can be thought of as a resolution of the orbi-

fold ) 7/Γ, and a one-parameter family of closed �2-structures i
C thereon. We can choose an

identification* ≃ ! ×
(
�4
Z
/{±1}

)
such that we can write on *

i0 = X1 ∧ X2 ∧ X3 −
3∑
8=1

l8 ∧ X8, ∗i0 =
1

2
l1 ∧l1 −

∑
(8, 9,:)=(1,2,3)

and cyclic permutation

l8 ∧ X 9 ∧ X: ,

where X1, X2, X3 are covariant constant orthonormal 1-forms on !, and l1, l2, l3 are the Hy-

perkähler triple from Definition 2.4, cf. Section 2.3.2.

As before, denote by -EH the Eguchi-Hanson space and by d : -EH → ℂ
2/{±1} the blowup

map from Remark 2.13. Define Ǎ := |d | : -EH → ℝ≥0. For C ∈ (0, 1), let *̂ := *̂C := ! × {G ∈

-EH : Ǎ (G) < Z C−1}. Define

#C :=
(
() 7/Γ) \ ! ⊔ *̂

)
/∼, (3.31)

where for G = (Gℎ, GE) ∈ * ⊂ ! × ℂ
2/{±1} and ~ = (~ℎ, ~E) ∈ *̂ ⊂ ! × -EH we have G ∼ ~ if

Gℎ = ~ℎ and C · d (~E) = GE . �e smooth manifold #C also comes with a natural projection map
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c : #C → ) 7/Γ induced by d , and we extend Ǎ to a map on all of #C via

Ǎ : #C → ℝ≥0

G ↦→



|d (G) | if G ∈ *̂ ,

C−1Z otherwise.

Write AC := CǍ and choose a non-decreasing function j : [0, Z ] → [0, 1] such that j (B) = 0 for

B ≤ Z /4 and j (B) = 1 for B ≥ Z /2, and set

l̃8 := l
(1)
8 − d

(
j (AC )g (1)8

)
. (3.32)

�e g
(1)
8 were defined in Proposition 2.10, and are the difference between the flat Hyperkähler

triple on ℂ
2/{±1} and the Hyperkähler triple (l (1)

1 , l
(1)
2 , l

(1)
3 ) on -EH. On *̂ we have l̃8 = l8

where AC > Z /2, and l̃8 = l (1)
8 where AC < Z /4. Now define a 3-form iC ∈ Ω

3 (") and a 4-form

oC ∈ Ω
4 (#C ) as follows: on () 7/Γ) \* ⊂ #C , set i

C = i and o = ∗i . On *̂ ⊂ ! × -EH let

iC := X1 ∧ X2 ∧ X3 − C2
3∑
8=1

l̃8 ∧ X8, (3.33)

oC := C4
1

2
l̃1 ∧ l̃1 − C2

∑
(8, 9,:)=(1,2,3)

and cyclic permutation

l̃8 ∧ X 9 ∧ X: . (3.34)

�is definition mimics the product situation explained in Section 2.3.2. For small C , the 3-form

iC is a �2-structure and therefore induces a metric 6C . Both iC and oC are closed forms, so,

if ∗iC = oC , then iC would be a torsion-free �2-structure by �eorem 2.22. However, this

does not hold, and iC is not a torsion-free �2-structure. �e following 3-form k C is meant to

measure the torsion of iC :

∗k C = Θ(iC) − oC . (3.35)

Its crucial properties are:

Lemma 3.36. Letk C ∈ Ω
3 (") as in Eq. (3.35). �ere exists a positive constant 2 independent of C
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such that

d∗k C = d∗iC ,
����k C ����

�1,U ≤ 2C4,

where the Hölder norm is defined with respect to the metric 6C and its induced Levi-Civita con-

nection.

Proof. �e equality d∗k C = d∗iC follows from Eq. (3.35) and the fact that oC is closed.

�e operator ∗ is parallel, so the covariant derivative ∇- and ∗ commute for every vector

field - on #C , therefore it suffices to estimate ∗k C rather than k C . Write i
(C)
-EH×! := X1 ∧ X2 ∧

X3 − C2
∑3
8=1l

(1)
8 ∧ X8 for the product�2-structure on -EH × ! and denote the induced metric,

which is the product metric, by 6
(C)
-EH×! . Recall the linear map ) and the non-linear map �

from Proposition 2.24 satisfying Θ(i + b) = ∗i −) (b) − � (b) for a�2-structure i and a small

deformation b . Using this notation, we get:

Θ(iC) − oC = Θ

(
i
(C)
-EH×! − C

2X1 ∧ d
(
j (AC )g (1)1

))
− ∗

6
(C )
-EH×!

i
(C)
-EH×! + C

2X2 ∧ X3 ∧ d
(
j (AC )g (1)1

)

= )
(
C2X1 ∧ d

(
j (AC )g (1)1

))
− �

(
−C2X1 ∧ d

(
j (AC )g (1)1

))
+ C2X2 ∧ X3 ∧ d

(
j (AC )g (1)1

)
.

Here we used the equality l
(:)
1 − l1 = dg

(:)
1 from Proposition 2.10 in the first step and the

definition of) and � in the second step.

Note that Θ(iC) − oC is supported on {G ∈ " : (Z /4)C−1 < Ǎ < (Z /2)C−1}. �erefore, by

Eq. (2.11),

���C2 d(j (AC )g (1)1

)���
C26(1)

≤
���C2 (dj (AC )) g (1)1

���
C26(1)

+
���C2j (AC ) dg (1)1

���
C26(1)

≤ 2C
���Cg (1)1

���
C26(1)

+ 2
���C2j (AC ) dg (1)1

���
C26(1)

= CO(Ǎ−3) + O(Ǎ−4) ≤ 2C4 .
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Using the estimates for ) and � from Proposition 2.24 we get the claim. �

3.2.2 �e Laplacian on ℝ
3 × -EH

In the next section we will prove an estimate for the Laplacian on 2-forms on #C . We will

use a blowup argument to essentially reduce the analysis on #C to the analysis on ) 7/Γ and

ℝ
3×-EH. In this sectionwewill cite a general result for uniformly elliptic operators on product

manifolds ℝ= × . from [Wal13b], where . is a Riemannian manifold, and use this to find that

harmonic 2-forms onℝ3×-EH are wedge products of parallel forms onℝ3 and harmonic forms

on -EH.

Definition 3.37 (Definition 2.75 in [Wal13b]). A Riemannian manifold. is said to be of bounded

geometry if it is complete, its Riemann curvature tensor is bounded from above and its injectiv-

ity radius is bounded from below. A vector bundle over . is said to be of bounded geometry if

it has trivialisations over balls of fixed radius such that the transition functions and all of their

derivatives are uniformly bounded. We say that a complete oriented Riemannian manifold

- has subexponential volume growth if for each G ∈ - the function A ↦→ vol(�A (G)) grows

subexponentially, i.e., vol(�A (G)) = > (exp(2A )) as A → ∞ for every 2 > 0.

Lemma 3.38 (Lemma 2.76 in [Wal13b]). Let � be a vector bundle of bounded geometry over

a Riemannian manifold . of bounded geometry and with subexponential volume growth, and

suppose that � : �∞(., �) → �∞ (., �) is a uniformly elliptic operator of second order whose

coefficients and their first derivatives are uniformly bounded, that is non-negative, i.e., 〈�0, 0〉 ≥ 0

for all 0 ∈, 2,2(., �), and formally self-adjoint. Let ? : ℝ= × . → . be the projection onto the

second component and 0 ∈ �∞ (ℝ= × ., ?∗�) such that

(Δℝ= + ?∗�) 0 = 0

and | |0 | |!∞ is finite, then 0 is constant in theℝ=-direction, that is0(G, ~) = 0(~). Here, Δℝ= acts on

a section 0 ∈ �∞ (ℝ=×., ?∗�) by using the identification�∞(ℝ=×., ?∗�) = �∞ (ℝ=, �∞ (., �)).

Corollary 3.39. Let . be a manifold of bounded geometry and with subexponential volume
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growth. If 0 ∈ Ω
2 (ℝ3 × . ) satisfies | |0 | |!∞ < ∞ and

Δ6
ℝ3 ⊕6(1) 0 = 0,

then 0 is a sum of terms of the form 01 ∧ 02, where 01 ∈ Ω
: (ℝ3) is parallel, and 02 ∈ Ω

; (. )

satisfies Δ6(1)02 = 0.

Proof. We can view the vector bundle of 2-forms over ℝ3×. as a pullback bundle pulled back

from . via

Λ
2 (ℝ3 × . ) ≃ ?∗

(
Λ
2 (. ) ⊕ Λ

1 (. ) ⊗ Λ
1 (ℝ3) ⊕ Λ

2 (ℝ3)
)

where Λ: (ℝ3) denotes the trivial vector bundle over . whose fibre at each point is Λ: (ℝ3).

Under this identification, Δℝ3×. = Δℝ3 + ?∗ (Δ. + Δ), where Δ is the canonical Laplacian on

trivial vector bundles.

So, if 0 ∈ Ω
2 (ℝ3 × . ) with | |0 | |!∞ < ∞ and Δ6

ℝ3 ⊕6(1) 0 = 0, then 0 is the pullback of a section

of Λ2 (. ) ⊕ Λ
1(. ) ⊗ Λ

1 (ℝ3) ⊕ Λ
2 (ℝ3) over . which is in the kernel of Δ. + Δ by Lemma 3.38.

Elements in the kernel of Δ. +Δ over. are of the form 01∧02, where 01 ∈ Ω
: (ℝ3) is harmonic,

and 02 ∈ Ω
; (. ) satisfies Δ6(1)02 = 0. Bounded harmonic :-forms on ℝ

3 can be identified with

tuples of harmonic functions onℝ3 which are constant by the maximumprinciple. �is means

that the bounded harmonic :-forms are parallel which proves the claim. �

3.2.3 �e Laplacian on #C

We now move on to the heart of the argument: an operator bound for the inverse of the

Laplacian on #C . �e Laplacian on 2-forms has a kernel of dimension 12 (#C ), so we can only

expect such a bound for forms which are not in the kernel. Standard elliptic theory would

give an estimate for forms orthogonal to the kernel. �is estimate would depend on the gluing

parameter C , but we want a uniform estimate, i.e. an estimate independent of C . Proving such

an estimate is the content of this section.
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Stating the estimate We first define weighted Hölder norms analogous to the previous sec-

tions. �ese norms have the following two important properties: far away from !, they are

uniformly equivalent to ordinary Hölder norms, and near ! they are uniformly equivalent to

the weighted Hölder norms on ℝ
3 × -EH, a�er applying a rescaling map.

Definition 3.40. For C ∈ (0, 1) define the weight functions

FC : #C → ℝ>0

G ↦→ C + AC ,
(3.41)

Fℝ3×ℝ4 : ℝ3 ×ℝ
4 → ℝ>0

(G,~) ↦→ |~ | ,

Fℝ3×-EH
: ℝ3 × -EH → ℝ>0

G ↦→ 1 + Ǎ

and for : ∈ ℕ, U ∈ (0, 1), V ∈ ℝ the weighted Hölder norms | |·| |
�:,U
V ;C

on #C and | |·| |
�:,U
V

on

ℝ
3 ×ℝ

4 and ℝ
3 × -EH respectively as in Definition 3.15.

We now define a way to decompose elements 0 ∈ Ω
2 (#C ) into a component c C that looks

like a1 ∈ Ω
2 (-EH) from Eq. (3.19) on every fibre {~} × -EH ⊂ ) 3 × -EH, and a remainder,

denoted by dC . �e reason for this is the following: the Laplacian on Imc C is approximately

the Laplacian on !, and its inverse has operator norm of order O(1) uniformly in C as a map

�2,U
V ;C

(Λ2(#C )) → �0,U
V ;C

(Λ2(#C )). Notice that the weight does not change when applying the

Laplacian. On Im dC , it will turn out that the Laplacian has operator norm of order O(1)

uniformly in C as a map �2,U
V ;C

(Λ2(#C )) → �2,U
V−2;C (Λ

2 (#C )). Here the weight changed in the

same way as it did on the non-compact asymptotically conical space -EH, cf. Section 3.1.2. In

order to prove an estimate of the form | |0 | | ≤ 2 | |Δ0 | | we will define norms that incorporate

these two different scaling behaviours in this section. �e idea is taken from [Wal17].

Let a ∈ Ω
2 (-EH) be harmonic and with unit !2-norm with respect to the norm 6(1) on -EH.

As a shorthand, write jC := j (2AC ). Define cC : Ω2 (#C ) → Ω
0 (!) via

(cC0) (~) := 〈0 | {~ }×-EH
, jCa〉!2,C26-EH

for ~ ∈ !, (3.42)
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where a ∈ Ω
2 (-EH) is a multiple of a satisfying 〈jCa, jCa〉!2,C26-EH

= 1. �is is equivalent to

〈jCa, jCa〉!2,6-EH
= 1, i.e. in the metric6-EH rather than C26-EH , because the !

2-norm on 2-forms

is a conformal invariant. Define ]C : Ω
0(!) → Ω

2 (#C ) via

(]C6) := jC · ?∗!6 · ?∗-EH
a, (3.43)

where 6 ∈ Ω
0 (!), and ?! : ! × -EH → ) 3, ?-EH : ! × -EH → -EH are projection maps. As

wri�en, (]C6) is an element in Ω
2 (! × -EH), but because supp(]C6) ⊂ *̂ , we can view it as an

element in Ω
2 (#C ). �en

cC ]C6 = 6 for all 6 ∈ Ω
0 (!). (3.44)

Last, define cC := ]CcC , as well as dC := 1 − c C .

Proposition 3.45. For all : ∈ ℕ and V > −4 there exists 2 > 0 independent of C such that for all

6 ∈ Ω
0 (!) we have that

| |]C6 | |�:,U
V ;C

≤ 2C−2−V | |6 | |�:,U . (3.46)

Proof. For the !∞-norm we have that

����?∗!6 · ?∗-EH
a
����
!∞−4;C ,6#C

≤ 2
����?∗!6 · ?∗-EH

a · (C + CǍ )4
����
!∞,6

ℝ3 ⊕C26-EH

≤ 2
����?∗!6 · ?∗-EH

a · (1 + Ǎ )4C4C−2
����
!∞,6

ℝ3 ⊕6-EH

≤ 2C2
����?∗!6����!∞

where we used that a = O(Ǎ−4) and therefore

����a · Ǎ 4����
!∞,6-EH

≤ 2, (3.47)

in the last step. For V > −4 we have that | |jC | |!∞
4−V

≤ 2C−4−V , which proves the claim for the

weighted !∞-norm. �e proof for higher derivatives is analogous. �

Proposition 3.48. For all : ∈ ℕ, V < 0 there exists 2 > 0 independent of C such that for all
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0 ∈ Ω
2 (#C ) we have that

| |cC0 | |�:,U ≤ C2+V−U−: | |0 | |
�:,U
V ;C
. (3.49)

Proof. We first estimate the !∞-part, i.e. | |cC0 | |!∞ . To this end

|cC0(G) | ≤
∫
{G ∈-EH :Ǎ (G) ≤C−1Z }

|0 |C26-EH
· |a |C26-EH

volC26-EH

≤ C2 | |0 | |!∞
V ;C

∫
-EH

(C + Ǎ C)V · |a |6-EH
vol6-EH

≤ 2C2+V | |0 | |!∞
V ;C

∫
-EH

(1 + Ǎ )V · (1 + Ǎ )−4 vol6-EH

≤ 2C2+V
∫ ∞

0

(1 + Ǎ )−4+V · Ǎ 3 dǍ
︸                      ︷︷                      ︸

≤2

≤ 2C2+V | |0 | |!∞
V ;C
,

where in the second step we used the definition of | |·| |!∞
V ;C

and switched from measuring in

C26-EH tomeasuring in6-EH which introduces the factor of C
2; in the third stepwe used |a |6-EH

≤

2 (1+ Ǎ )−4; in the fourth step we used polar coordinates to switch from integrating over -EH to

integrating over [0,∞). �e estimates for the Hölder norm, derivatives, and for other weights

are proved analogously. �

We are now ready to define the composite norms which weigh the cC and dC components

differently.

Definition 3.50. For U ∈ (0, 1) and V ∈ (−1, 0) let

| |0 | |XC
:= | |dC0 | |�2,U

V ;C
+ C−3/2 | |cC0 | |�2,U ,

| |0 | |YC
:= | |dC0 | |�0,U

V−2;C
+ C−3/2 | |cC0 | |�0,U .

In the following, we will always assume that U and V are close to 0. �e most restrictive

estimate in which this fact is used is Eq. (3.81). For concreteness, one may choose U = 1/16

and V = −1/16.
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Definition 3.51 (Approximate kernel). Let �1, . . . ,�12 be the connected components of *̂ and

let j�8
be the characteristic function of the set �8 . �en define the approximate kernel of Δ on

#C to be

K := {(1 − jC )c∗0 : 0 ∈ KerΔ) 7/Γ} ⊕ span
(
jC · ?∗-EH

a · j�8

)
8=1,...,12

,

where c : #C → ) 7/Γ is the projection map from the previous section.

Proposition 3.52. �ere exists 2 independent of C such that for all 0 ∈ Ω
2 (#C ), 0 ⊥ K we have

| |0 | |XC
≤ 2 | |Δ0 | |YC

. (3.53)

�e proof of this proposition will extend over the rest of the section. �is linear estimate

perpendicular to the approximate kernel is one thing we need. �e following proposition

states that by restricting to the orthogonal complement of K we are not forge�ing about any

important 2-forms — the image of the Laplacian remains the same when restricted to this

orthogonal complement.

Proposition 3.54. �e operator

Δ : K⊥ → ImΔ

is surjective, where ImΔ denotes the image of the Laplacian on all of Ω2 (#C ).

Proof. Step 1: Show that the !2-orthogonal projection @ : KerΔ#C
→ K is an isomorphism.

Assume there exists 0 ≠ 0 ∈ Ω
2 (#C )withΔ0 = 0 such that@(0) = 0, i.e. 0 ⊥ K . �enΔ0 ≠ 0 by

Proposition 3.52, which is a contradiction. Now note dim(KerΔ#C
) = 10 (!)+12 () 7/Γ) = 12+: ,

which is proved using the Künneth formula (see [JK21, Proposition 6.1]). By construction,

dim(K) = 12+: , so @ is a surjective linear map between vector spaces of the same dimension,

and therefore injective.

Step 2: Check Im (Δ|K⊥) = ImΔ.

It suffices to check that ImΔ ⊂ Im (Δ|K⊥). Let~ ∈ ImΔ, andΔG = ~. Denote the !2-orthogonal
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projection onto K by projK . Let

I := @−1 (projK (−G)).

�en Δ(G + I) = ~, and projK (G + I) = 0 because of projK ◦@−1 = Id, i.e. G + I ⊥ K which

completes the proof. �

Comparison with the Laplacian on ! �e embedding ]C : Ω
0 (!) → Ω

2 (#C ) is defined using

a cut-off of a ∈ Ω
2 (-EH). If not for this cut-off, we would have that Δ]C = ]CΔ, where we

use the symbol Δ to denote the Laplacian on #C as well as the Laplacian on !. In our actual

situation, we still have that Δ and ]C nearly commute, and that is the content of the following

proposition.

Proposition 3.55. For any V ≤ 0 there exists 2 > 0 independent of C such that for all 6 ∈ Ω
0(!)

we have

| | (Δ]C − ]CΔ)6 | |�0,U
V−2;C

≤ 2C2 | |6 | |�2,U . (3.56)

Proof. Define the map ]̃C : Ω
0 (!) → Ω

2 () 3 ×-EH) via ]̃C (6) = ?∗!6 · ?∗-EH
a , where a ∈ Ω

2 (-EH)

is harmonic and has unit !2-norm with respect to 6-EH . �en

(Δ̃]C − ]̃CΔ)6 = 0. (3.57)

We aim to estimate

(Δ]C − ]CΔ)6 = (Δ]C − Δ̃]C )6︸         ︷︷         ︸
=:�

+ (Δ̃]C − ]̃CΔ)6︸         ︷︷         ︸
=:��

+ (̃]CΔ − ]CΔ)6︸         ︷︷         ︸
=:���

.

We begin by estimating I, where it will be convenient to estimate on two regions separately:

Ω1 := {G ∈ ! × -EH : Ǎ (G) ≤ C−1Z /8},

Ω2 := {G ∈ ! × -EH : C−1Z /8} ≤ Ǎ (G) ≤ C−1Z /4}.
(3.58)
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�en

| |� | |�0,U
V−2;C

≤ ||(]C − ]̃C )6 | |�2,U
V ;C

=
����?∗!6 · ?∗-EH

(a − a)
����
�2,U
V ;C

≤
����?∗!6 · ?∗-EH

(a − a)
����
�2,U
V ;C

(Ω1)
+

����?∗!6 · jC?∗-EH
(a − a)

����
�2,U
V ;C

(Ω2)

We will estimate the two summands separately. �e first summand is defined on the region

Ω1 = {G ∈ ! × -EH : Ǎ (G) ≤ C−1Z /8} where neither a nor a is cut off. We have that

|a (G) − a (G) |C26-EH
≤ 2C2 for G ∈ -EH with Ǎ (G) ≤ C−1Z /8 (3.59)

for the following reason: 〈a, a〉!2,C26-EH
= 1 by definition, thus

〈jCa, jCa〉!2,C26-EH
≥ 〈a, a〉!2,C26-EH

−
∫
{G ∈-EH :Ǎ (G) ≥Z C−1/8}

|a |2
C26-EH

volC26-EH

≥ 1 −
∫ ∞

Z C−1/8
(1 + A )−8A 3 dA ≥ 1 − 2C4 .

If Ǎ (G) ≤ C−1Z /8 we have that a (G) = a (G)/〈jCa, jCa〉!2,C26-EH
because the cut-off is applied

where Ǎ (G) > C−1Z /8. �is implies, at the point G ,

|a − a |C26-EH
≤

�����a
(
1 − 1

〈jCa, jCa〉!2,C26-EH

)�����
C26-EH

≤
����a · C4

1 − C4

����
C26-EH

≤ C−2
����a · C4

1 − C4

����
6-EH

≤ 2C2 .

Using this for our estimate of the first summand of I, we obtain:

����?∗!6 · ?∗-EH
(a − a)

����
�2,U
V ;C

(Ω1)
≤ C2

����?∗!6�����2,U
V ;C

≤ 2C2 | |6 | |�2,U .
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For the second summand we get:

����?∗!6 · jC?∗-EH
(a − a)

����
�2,U
V ;C

(Ω2)

≤
����?∗
) 36

����
�2,U
0;C

����jC?∗-EH
(a − a)

����
�2,U
V ;C

(Ω2)

≤
����?∗
) 36

����
�2,U
0;C

| |jC | |�2,U
0;C

· | |1| |�2,U
V+4;C (Ω2)

(
| |a | |�2,U

−4;C (Ω2) + ||a | |�2,U
−4;C (Ω2)

)

≤ 2C2 | |6 | |�2,U ,

where in the last step we used | |1| |�2,U
V+4,0;C (Ω2) ≤ 2, which holds because far away from !, the

weight functionFV+4,0;C is uniformly bounded. We also used

|a |C26-EH
= C−2 |a |6-EH

≤ 2C−2 (1 + Ǎ )−4 ≤ 2C2 (C + CǍ )−4 ≤ 2C2 on Ω2. (3.60)

Together with Eq. (3.59) this shows that |a |C26-EH
≤ 2C2 on Ω2.

Altogether | |� | |�0,U
V−2;C

≤ 2C2 | |6 | |�2,U . Furthermore, � � = 0 because of Eq. (3.57). Lastly, III is

estimated like I, which shows the claim. �

�e goal of this section is to prove an estimate for the operator norm of the inverse of the

Laplacian with respect to the norms | |·| |XC
and | |·| |YC

. �e purpose of these norms is to essen-

tially split the problem into an estimate on ImcC and remainder. �e following proposition

contains the estimate on ImcC .

Proposition 3.61. �ere exists 2 > 0 independent of C such that for C small enough and for all

6 ∈ Ω
0 (!) satisfying 6 ⊥ KerΔ! we have that

| |6 | |�2,U ≤ 2 | |cCΔ]C6 | |�0,U . (3.62)
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Proof. We have

| |6 | |�2,U ≤ 2 | |Δ6 | |�0,U

= 2 | |cC]CΔ6 | |�0,U

≤ 2 | |cCΔ]C6 | |�0,U + 2 | |cCΔ]C6 − cC]CΔ6 | |�0,U

≤ 2 | |cCΔ]C6 | |�0,U + 2C2−U | |6 | |�2,U ,

where we used elliptic regularity for the operatorΔ on ! in the first step, and Propositions 3.48

and 3.55 in the last step. At this point, the last summand 2C2−U | |6 | |�2,U can be absorbed into

the le� hand side for C small enough. �

�e model operator on ℝ
3 × -EH

Definition 3.63. For 9 ∈ {1, . . . , 12} let � ′
9 be a connected component of *̂ , but made slightly

smaller, explicitly

� ′
9 := � 9 ∩ {(Gℎ, GE) ∈ ! × -EH : Ǎ (GE) ≤ C−1Z /4}.

For V ∈ ℝ let

B 9,V,C : Ω
2 (#C ) → Ω

2 (ℝ3 × {G ∈ -EH : Ǎ (G) ≤ C−1Z /4})

0 ↦→ C−V−2 (? ◦ (·C), Id)∗
(
0 |�′

9

)
,

where ? : ℝ3 → ) 3 denotes the quotient map.

�en:

Lemma 3.64. For 9 ∈ {1, . . . , 12}, V ∈ ℝ we have that for all 0 ∈ Ω
2 (ℝ3 × -EH) we have

����B 9,V,C0�����:,U
V

= | |0 | |
�:,U
V ;C

(�′
9 )
, and

(
B 9,V−2,CΔ#C

0 − Δ6
ℝ3 ⊕6(1)B 9,V,C0

)
|�′

9
= 0.

Here Δ6
ℝ3 ⊕6(1) denotes the Laplacian on ℝ

3 × -EH with respect to the metric 6ℝ3 ⊕ 6(1) .
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Proof. �e map ((·C) ◦ ?, Id) : � ′
9 → ℝ

3 × {G ∈ -EH : Ǎ (G) ≤ C−1Z /4} pulls back the metric

C2 (6ℝ3 ⊕6(1) ) to the metric induced by iC . �e extra factor C−V−2 cancels out the factor C2 when

changing the metric from C2 (6ℝ3 ⊕ 6(1) ) to 6ℝ3 ⊕ 6(1) on 2-forms and cancels out the factor CV

coming from the definition of | |·| |
�:,U
V ;C

. �

Estimate of dC0 In Proposition 3.61 we essentially proved an estimate for the inverse of the

Laplacian on ImcC . In order to get an estimate with respect to | |·| |XC
and | |·| |YC

we need to

estimate the inverse of the Laplacian on Im dC . Recall the projection cC onto the fibrewise

harmonic part from Eq. (3.42) and its complement dC . �e two operators satisfy cCdC = 0, so

the following proposition implies an estimate for the inverse of the Laplacian for elements

0 ∈ Im dC ⊂ Ω
2 (#C ).

Proposition 3.65. Write K ′ := {(1 − jC )0 : 0 ∈ KerΔ) 7/Γ} ⊂ Ω
2 (#C ). �en there exists 2 > 0

independent of C such that for 0 ∈ Ω
2 (#C ) satisfying 0 ⊥ K ′ we have

| |0 | |�2,U
V ;C

≤ 2
(
| |Δ0 | |�0,U

V−2;C
+ ||c C0 | |!∞

V ;C

)
. (3.66)

Proof. �e Schauder estimate

| |0 | |�2,U
V ;C

≤ 2
(
| |Δ0 | |�0,U

V−2;C
+ ||0 | |!∞

V ;C

)
(3.67)

can be derived as in [Wal17, Proposition 8.15]. It then suffices to show that there exists 2 such

that

| |0 | |!∞
V ;C

≤ 2
(
| |Δ0 | |�0,U

V−2;C
+ ||c C0 | |!∞

V ;C

)
. (3.68)

Assume Eq. (3.68) is false, then there exist C8 → 0, 08 ∈ Ω
2 (#C8 ) satisfying 08 ⊥ K ′, and G8 ∈ #C8

such that

| |0 | |�2,U
V ;C8

≤ 2,
��FV ;C8 (G8 )08 (G8)�� = 1, and | |Δ08 | |�0,U

V−2;C8
→ 0,

����cC808 ����!∞
V ;C8

→ 0. (3.69)

Here, we got | |0 | |�2,U
V ;C8

≤ 2 from Eq. (3.67). Without loss of generality we can assume to be in
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one of three following cases, and we will arrive at a contradiction in each of them.

Case 1: the sequence G8 concentrates on one ALE space, i.e. C−18 AC8 (G8) → 2 < ∞ (see Fig. 2).

+

Nt

xxii

R
3
×X

zzii

Figure 2: Blowup analysis near the associative is reduced to the analysis of the Laplacian on

ℝ
3 × -EH.

By passing to a subsequence and translating in the ℝ3-direction if necessary, we can assume

that G8 concentrates near one fixed connected component of !. Let � 9 ⊂ ! × -EH be the

connected component *̂ containing an accumulation point of the sequence G8 . Define 0̃8 :=

B 9,V,C08 ∈ Ω
2 (ℝ3× {G ∈ -EH : Ǎ (G) ≤ C−18 Z /4}) and let G̃8 be a li� from� 9 toℝ

3 ×-EH. �e new

2-form 0̃8 then satisfies

| |0̃8 | |�2,U
V

≤ 2, (1 + Ǎ (G̃8))−V |0̃8 (G̃8 ) | ≥ 2, and | |Δ0̃8 | |�0,U
V−2

→ 0,

which follows from Lemma 3.64. Now the weight function no longer has C8 in it and distances

and tensors are measured using the metric 6ℝ3 ⊕ 6(1) .

By the assumption of case 1, we have Ǎ (G̃8) → 2 < ∞. By passing to a subsequence we can

assume that G̃8 converges, so write G∗ := lim8→∞ G̃8 ∈ ℝ
3 × -EH. Using the Arzelà-Ascoli

theorem and a diagonal argument, we can extract a limit 0∗ ∈ Ω
2 (ℝ3 × -EH) of the sequence

0̃8 satisfying:

| |0∗ | |!∞
V
≤ 2, and (3.70)

Δ6
ℝ3 ⊕6(1) 0

∗ = 0, and (3.71)

(1 + Ǎ (G∗))−V |0∗ (G∗) | > 2. (3.72)

By Corollary 3.39 (applied to the case ℝ3 × -EH), we have that 0
∗ is independent of the ℝ3-
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direction. By Proposition 3.21, the only harmonic forms on-EH that decay like Ǎ V are multiples

of a1. �us 0∗ is the pullback of a multiple of a1 under the projection ?-EH : ℝ3 ×-EH → -EH.

Because
����c C808 ����!∞

V ;C8

→ 0, we have that 0∗ is perpendicular to a on every {~}×-EH ⊂ ℝ
3×-EH.

Here is how to see this in detail: let ~ ∈ !, then we calculate on {~} × -EH:

〈0∗, a〉 = 〈0∗, a − jCa〉 + 〈0∗ − 0̃8 , jCa〉 + 〈0̃8 , jCa〉 = � + � � + � � � . (3.73)

Here,

|� | ≤
��〈0∗, a − jCa〉{G ∈-EH :Ǎ (G) ≤C−1Z /8}

�� + ��〈0∗, a − jCa〉{G ∈-EH :Ǎ (G) ≥C−1Z /8}
�� ,

where we have for the first summand

��〈0∗, a − jCa〉{G ∈-EH :Ǎ (G) ≤C−1Z /8}
�� ≤ ∫ C−1Z /8

0

|0∗ |6(1) · |a − jCa |6(1)A 3 dA

≤ 2
∫ C−1Z /8

0

A VC4A 3 dA ≤ 2C−V → 0.

Here we used Eq. (3.70) and Eq. (3.59) (a�er changing from | · |C26-EH
to | · |6-EH

) in the second

step. For the second summand we find

��〈0∗, a − jCa〉{G ∈-EH :Ǎ (G) ≥C−1Z /8}
�� ≤ 2 ∫ ∞

Z /8C−1
A VA−4A 3 dA ≤ 2C−V → 0,

where we used a = O(Ǎ−4) and a = O(Ǎ−4) in the first step.

In order to estimate � � , let ; > 0. �en

|� � | ≤
��〈0∗ − 0̃8 , jCa〉{G ∈-EH :Ǎ (G) ≥; }

�� + ��〈0∗ − 0̃8 , jCa〉{G ∈-EH :Ǎ (G) ≤; }
�� ,

and we find for the first summand

��〈0∗ − 0̃8 , jCa〉{G ∈-EH :Ǎ (G) ≥; }
�� ≤ 2 (

| |0∗ | |!∞
V
+ ||0̃8 | |!∞

V

) ∫ ∞

;

A V−4+3 dA ≤ 2;V
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for a constant 2 independent of ; . For the second summand we have

��〈0∗ − 0̃8 , jCa〉{G ∈-EH :Ǎ (G) ≤; }
�� ≤ ||0∗ − 0̃8 | |!∞

V
( {G ∈-EH :Ǎ (G) ≤; }) ·

∫ ;

0

A V−4+3 dA

≤ 2 | |0∗ − 0̃8 | |!∞
V
( {G ∈-EH :Ǎ (G) ≤; }) → 0

as 8 → ∞ by definition of 0∗. Last,

|� � � | = C−2−V | (cC08 ) (~) | = C−2−V | (cC]CcC08 ) (~) | ≤ 2 | |c C08 | |!∞
V ;C

→ 0,

where we used Proposition 3.48 for the estimate.

Altogether we see that, by taking lim8→∞ in Eq. (3.73), we have that 〈0∗, a〉 ≤ 2;V , where the

constant 2 was independent of ; . �is is true for any ; > 0, therefore 〈0∗, a〉 = 0. But this is a

contradiction to Eq. (3.72).

Case 2: the sequence G8 concentrates on the regular part, i.e. AC8 (G8) → 2 > 0 (see Fig. 3).

+ + +

++++
+++++
+
+++
+++++++++++
+++++++++
++++++++++++
+ →

+ + +

++++
+++++
+
+++
+++++++++++
+++++++++
++++++++++++++
+

Nt

xxii

L

Y

xxii

Figure 3: Blowup analysis away from the associative is reduced to the analysis of the Laplacian

on ) 7/Γ.

Using theArzelà-Ascoli theoremand a diagonal argument, we extract a limit0∗ ∈ Ω
2 () 7/Γ\!).

Denote, furthermore, lim8→∞ G8 = G∗. We have |0∗ | < 2 · 3 (·, !)V , so we have that 0∗ is a well-

defined distribution on"/〈]〉 acting on !2-sections because V > −2. We also have Δ0∗ = 0, so

0∗ is smooth by elliptic regularity, e.g. [Fol95, �eorem 6.33].

Furthermore,

〈0∗, (1 − j (23 (·, !))) · U8〉) 7/Γ = lim
8→∞

〈08 , (1 − jC (AC )) · c∗U8〉#C8
= 0. (3.74)
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By the unique continuation property for elliptic PDEs, the inner product

〈 · , (1 − j) ◦ (23 (·, !)) · 〉

is non-degenerate on harmonic forms. �e 2-form 0∗ is a harmonic form that is orthogonal to

all harmonic forms with respect to this inner product, therefore 0∗ = 0. But this contradicts

0∗ (G∗) > 2.

Case 3: the sequence G8 concentrates on the neck region, i.e. Ǎ (G8) → ∞, but AC (G8 ) → 0 (see

Fig. 4).

+

+

+++++++++++++
+++++++++
++++++
++++++++
+++++++++++++++++++++++++++++++
++++++++++++++++++++++++++++
++++++++++
++++++++++++++++++++

Nt

xxii

+

R
3
× R

4

zzii

Figure 4: Blowup analysis in the neck region is reduced to the analysis of the Laplacian on

ℝ
3 ×ℝ

4.

Define 0̃8 ∈ Ω
2 (ℝ3×-EH) and G̃8 ∈ ℝ

3×-EH as in case 1. In this case, we have that |d (G̃8) | → ∞.

In order to be able to obtain a limit of this sequence, let '8 → ∞ be a sequence such that

'8/|d (G̃8) | → 0. Cu�ing out the exceptional locus of the Eguchi-Hanson space, we can consider

{(Gℎ, GE) ∈ ℝ
3 × -EH : '8 ≤ |d | (GE) ≤ Z C−18 } as a subset of ℝ3 × ℂ

2/{±1}. On ℝ
3 × ℂ

2/{±1},

we have the rescaling map (· |d (G̃8) |).

We now define:

˜̃08 := (· |d (G̃8) |)∗
(
0̃8 | {'8 ≤ |d | ≤Z C−18 }

)
· |d (G̃8) |−2−V

∈ Ω
2 (ℝ3 × {G ∈ -EH : '8/|d (G̃8) | ≤ |d (G) | ≤ Z C−18 /|d (G̃8) |}),

˜̃G8 := G̃8/|d (G̃8) | .
(3.75)
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�is sequence satisfies

������̃0̃8 ������
�2,U
V

≤ 2 and
���̃0̃8 (˜̃G8)��� > 2. (3.76)

�e data ˜̃08 and ˜̃G8 are defined on (subsets of) ℝ3 × ℂ
2/{±1}. We use the same symbols to

denote their pullbacks under the quotient map ℂ
2 → ℂ

2/{±1}.

As before, we extract a �
2,U/2
;>2

-limit 0∗ ∈ Ω
2 (ℝ3 ×ℝ

4 \ {0}) satisfying

Δℝ70∗ = 0, and | |0∗ | |!∞
V
(ℝ3×ℝ4) ≤ 2.

We see as in case 2 that0∗ defines a distribution on all ofℝ7, and is smooth by elliptic regularity

on all of ℝ7.

We also get an !∞-bound for 0∗ as follows: away from ℝ
3 × {0}, this is given by Eq. (3.76). To

see that 0∗ does not blow up in theℝ3-direction nearℝ3 × {0}, consider any ~ ∈ ℝ
3 × {0}. Let

1 < ? < −4/V , then | |0∗ | |!? (�1 (~)) ≤ 2, independent of ~, by Eq. (3.76). So, by elliptic regularity

| |0∗ | |!?< (�1 (~)) ≤ 2 for any< ∈ ℕ, and by the Sobolev embedding we have | |0∗ | |!∞ ≤ 2, where

all of these estimates were independent of ~.

By Corollary 3.39 (applied to ℝ
3 × ℝ

4), 0∗ is constant in the ℝ
3 direction. �e limit 0∗ is

therefore the pullback of a harmonic, decaying form of ℝ4, and must thus vanish, which is a

contradiction to the second part of Eq. (3.76). �

Cross-term estimates We have now established uniform estimates for the inverse of Δ on

ImcC and Im dC . As it stands, it could happen that the operator norm of dCΔcC or cCΔdC is

very big. It will turn out in our proof of Proposition 3.52 that in such a case one would be

unable to deduce anything about the inverse of the operator norm of Δ with respect to | |·| |XC

and | |·| |YC
. Fortunately, it turns out that the operator norms of dCΔ]C (and therefore dCΔcC ,

because c C = ]CcC ) and cCΔdC are small, which is the content of the following proposition.

Proposition 3.77. �ere exists 2 > 0 independent of C such that for all 6 ∈ Ω
0 (!) and for all
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0 ∈ Ω
2 (#C ) we have

| |dCΔ]C6 | |�0,U
V ;C

≤ 2C2−U | |6 | |�2,U if V < 0, (3.78)

| |cCΔdC0 | |�0,U ≤ 2C2+2V−2U | |dC0 | |�2,U
V ;C

if − 2 < V < 0. (3.79)

Proof. We first prove Eq. (3.78). We have dC]C = 0 and therefore

| |dCΔ]C6 | |�0,U
V ;C

= | |dC (Δ]C6 − ]CΔ6) | |�0,U
V ;C

≤ ||Δ]C6 − ]CΔ6 | |�0,U
V ;C

+ ||]CcC (Δ]C6 − ]CΔ6) | |�0,U
V ;C

≤ ||Δ]C6 − ]CΔ6 | |�0,U
V ;C

+ 2C−2−V | |cC (Δ]C6 − ]CΔ6) | |�0,U

≤ ||Δ]C6 − ]CΔ6 | |�0,U
V ;C

+ 2C−U | |Δ]C6 − ]CΔ6 | |�0,U
V ;C

≤ 2C2−U | |6 | |�2,U ,

where we used Proposition 3.45 in the third step, Proposition 3.48 in the fourth step, and

Proposition 3.55 in the last step.

Now to prove Eq. (3.79): assume without loss of generality that 0 = dC0. Define

c̃C : Ω
2 () 3 × -EH) → Ω

0 (!)

(c̃C0) (G) := 〈0, a〉C26-EH
.

�e difference between c̃C and cC is that they use a and jCa in their definition, respectively: a

is not cut off, jCa is, and both are rescaled to have unit norm. It suffices to prove the claim for

0 ∈ Ω
2 (#C ) which is supported near !. We can view such 0 as an element in Ω

2 () 3 × -EH)

and apply c̃C to it. Also define ]̃C : Ω
0 (!) → Ω

2 () 3×-EH) as ]̃C (6) = ?∗) 3 ·?∗-EH
a . �en c̃C ]̃C = Id

and we also define d̃C := 1 − ]̃C c̃C .

We have c̃CΔ = Δc̃C , thus c̃C0 = 0 ⇒ c̃CΔ0 = 0, and therefore c̃CΔd̃C = 0. Hence

cCΔdC0 = (cC − c̃C )ΔdC0︸           ︷︷           ︸
=:�

+ c̃CΔ(dC − (1 − ]C c̃C ))0︸                      ︷︷                      ︸
=:��

+ c̃CΔ((1 − ]C c̃C ) − d̃C )0︸                      ︷︷                      ︸
=:���

.
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We first estimate I:

〈ΔdC0, a − jCa〉!2,C26-EH
≤ 2C4+V

∫ C−1Z /8

0

(
| |ΔdC0 | |�0,U

V−2;C
(1 + A )−2+V

)
A 3 dA

︸                                                       ︷︷                                                       ︸
≤2C2+V | |dC0 | |�2,U

V ;C

if −2≤V≤0

+ 2CV
∫ ∞

C−1Z /8
| |dC0 | |�2,U

V ;C
(1 + A )−2+V−4A 3 dA

︸                                             ︷︷                                             ︸
≤2C2 | |dC0 | |�2,U

V ;C

.

Here we applied Eq. (3.59) on the region {G ∈ -EH : Ǎ (G) ≤ Z C−1/8} and we used

|a − jCa |C26-EH
≤ |a |C26-EH

+ |jCa |C26-EH
≤ 2 (C + Ǎ C)−4C2

on the region {G ∈ -EH : Ǎ (G) ≥ Z C−1/8}. �us

| | (cC − c̃C )ΔdC0 | |!∞ ≤ 2C2+V | |dC0 | |�2,U
V ;C

and the �0,U -estimate follows analogously.

For estimating II we need the estimate

| |c̃C0 | |�:,U ≤ C2+V−U−: | |0 | |
�:,U
V ;C
. (3.80)

which is proved like Proposition 3.48. �en

| |c̃CΔ(dC − (1 − ]C c̃C ))0 | |�0,U = | |c̃CΔ(]CcC − ]C c̃C )0 | |�0,U

≤ 2C−U | |Δ]C (cC − c̃C )0 | |�0,U
−2;C

≤ 2C−U
(
| |]CΔ(cC − c̃C )0 | |�0,U

−2;C
+ C2 | | (cC − c̃C )0 | |�2,U

)
≤ 2C−U (1 + C2) | | (cC − c̃C )0 | |�2,U

≤ 2C−U (1 + C2)C2 | |0 | |�2,U
V ;C

≤ 2C2−U | |dC0 | |�2,U
V ;C

where in the first estimate we used Eq. (3.80), in the second estimate we used Proposition 3.55,
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in the third estimate we used the estimate for the operator norm of ]C from Proposition 3.45,

and in the fourth estimate we did the same calculation as when estimating I and we again used

−2 < V < 0. In the last step we used the assumption that 0 = dC0.

It remains to estimate III. We find

| |c̃CΔ((1 − ]C c̃C ) − d̃C )0 | |�0,U = | |c̃CΔ(]C − ]̃C )c̃C0 | |�0,U

≤ 2C−U+V | |Δ(]C − ]̃C )c̃C0 | |�0,U
V−2;C

≤ 2C−U+V | | (]C − ]̃C )Δc̃C0 | |�0,U
V−2;C

+ C2−U+V | |c̃C0 | |�2,U ,

where we used Eq. (3.80) in the second step, and ]̃CΔ = Δ̃]C together with Proposition 3.55 in

the third step. Here we find for the first summand

2C−U+V | | (]C − ]̃C )Δc̃C0 | |�0,U
V−2;C

≤ 2C−U+V | |jCa − a | |�0,U
0;C

·
����?∗!Δc̃C0�����0,U

0;C
· | |1| |�0,U

V−2;C

≤ 2C−U+V · C2 · | |Δc̃C0 | |�0,U

≤ 2C2−U+V · | |c̃C0 | |�2,U

≤ 2C2−2U+2V · | |0 | |�2,U
V ;C

where we used Eqs. (3.59) and (3.60) in the second step; we used
����?∗!Δc̃C0�����0,U

0;C
= | |Δc̃C0 | |�0,U

which holds because ?∗!Δc̃C0 is constant in the Eguchi-Hanson direction, so the derivative in

the�0,U
0;C -norm is just a derivative in the !-direction; in the last step we used Eq. (3.80). For the

second summand we have

C2−U+V | |c̃C0 | |�2,U ≤ C2−2U+2V | |0 | |�2,U
V ;C

by Eq. (3.80), which proves the claim. �

Proof of Proposition 3.52

Proof of Proposition 3.52. By definition, | |0 | |XC
= | |dC0 | |�2,U

V ;C
+ C−3/2 | |cC0 | |�2,U . We treat the first
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summand first:

| |dC0 | |�2,U
V ;C

≤ ||ΔdC0 | |�0,U
V−2;C

≤
(
| |cCΔdC0 | |�0,U

V−2;C
+ ||dCΔ0 | |�0,U

V−2;C
+ ||dCΔcC0 | |�0,U

V−2;C

)
,

where we used Proposition 3.65 in the first step and in the second step used 1 = c C + dC twice.

Here, the first summand satisfies

| |cCΔdC0 | |�0,U
V−2;C

≤ C−V | |cCΔdC0 | |�0,U

≤ CV+2−2U | |dC0 | |�2,U
V ;C
,

where we used Proposition 3.48 in the first step, and Eq. (3.79) in the second step. �e resulting

term can be absorbed into the le� hand side of Eq. (3.53).

For the third summand we get from Eq. (3.78) that

| |dCΔcC0 | |�0,U
V−2;C

≤ 2C2−U | |cC0 | |�2,U ,

which can be absorbed into the le� hand side of Eq. (3.53) if U is sufficiently small. Regarding

the cC -term, we find that

C−3/2 | |cC0 | |�2,U ≤ C−3/2 | |cCΔ]CcC0 | |�0,U

≤ C−3/2
(
| |cCΔ0 | |�0,U + ||cCΔdC0 | |�0,U

)
,

where we used Proposition 3.61 in the first step and 1 = cC + dC in the second step. Here we

have for the last summand

C−3/2 | |cCΔdC0 | |�0,U ≤ C−3/2C2+2V−2U | |dC0 | |�2,U
V ;C

(3.81)

which can be absorbed into the le� hand side of Eq. (3.53). �e remaining terms, i.e. the ones

that have not been absorbed into the le� hand side of Eq. (3.53), exactly sum up to | |Δ0 | |YC
,

which proves the claim. �
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3.2.4 �e Existence �eorem

We will now prove the theorem which guarantees the existence of a torsion-free�2-structure

when starting from a �2-structure with small torsion.

�eorem 3.82. Assume there exists 2 > 0 such that k C ∈ Ω
3 (#C ) satisfies d∗iC = d∗k C and

����d∗k C ����
YC

≤ 2C4,����k C ����
�0,U
0;C

≤ 2C4 .

�en, for small C , there exists [C ∈ Ω
2 (#C ) such that iC + d[ is a torsion-free �2-structure and����[C ����

XC
≤ 2C4.

To ease notation, we write i = iC , k = k C , and [ = [C throughout the proof.

Proof. We will construct [ ∈ Ω
2 (#C ) satisfying

Δ[ = d∗k + d∗ ( 5k ) + ∗ d(� (d[)) , where 5 =
7

3
〈i, d[〉. (3.83)

Set [0 = 0 and, if [ 9−1 ∈ Ω
2 (#C ) is given, let [ 9 ∈ Ω

2 (#C ) be such that

Δ[ 9 = d∗k + d∗( 59−1k ) + ∗ d
(
� (d[ 9−1)

)
, where 59−1 =

7

3
〈i, d[ 9−1〉,

and such that [ 9 ⊥ K . �is is well-defined, i.e. such [ 9 exists, because Im d∗ ⊂ ImΔ and

restrictingΔ toK⊥ does not change its image by Proposition 3.54. We aim to showby induction

that
����[ 9 ����XC

≤ 2C4. For 9 = 0 this is true by definition, and we will now derive the estimate for

9 > 0.

By definition of [ 9 together with Proposition 3.52 we have that

����[ 9 ����XC
≤ 2

����Δ[ 9 ����YC

≤ 2
(
| |d∗k | |YC

+
����d∗ ( 59−1k )����YC

+
����∗ d(� (d[ 9−1)) ����YC

)
= 2 (� + � � + � � � ) .
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By assumption we have � = | |d∗k | |YC
≤ 2C4.

Now to estimate II:

����d∗ ( 59−1k )����YC
≤

����d59−1yk ����
YC

+
����59−1 d∗k ����

YC
= � � .� + � � .�.

Here

� � .� =
����dC (d59−1yk )�����0,U

V−2;C
+ C−3/2

����cC (d59−1yk )�����0,U

≤ (C−U + C−3/2−U+V )
����d59−1yk ����

�0,U
V−2;C

≤ (C−U + C−3/2−U+V )
����d59−1�����0,U

V−2;C
| |k | |�0,U

0;C

≤ 2C4,

where for the first estimate we used Propositions 3.45 and 3.48, and for the last estimate we

used the induction hypothesis
����[ 9−1����XC

≤ 2C4 , which implies
����d59−1�����0,U

V−2;C
≤ 2C7/2, together

with the assumption | |k | |�0,U
0,0;C

≤ 2C4. �e estimate � � .� ≤ 2C4 is derived analogously.

It remains to estimate III:

� � � =
����dC (∗ d(� (d[ 9−1)) �����0,U

V−2;C
+ C−3/2

����cC (∗ d(� (d[ 9−1)) �����0,U = � � � .� + � � � .�.

�e summand III.A is estimated as

� � � .� ≤ 2C−U
����∗ d(� (d[ 9−1))�����0,U

V−2;C
,

where we first estimate the !∞-part of the �0,U -norm. Namely, by Proposition 2.24:

����∗ d(� (d[ 9−1)) ����!∞
V−2;C

≤ 2
����d[ 9−1����!∞

V−1;C

����∇ d[ 9−1
����
!∞
V−2;C

C−1+V

+ 2
����d[ 9−1����2!∞

V−1;C
| |d∗k | |!∞

V−2;C
C−2+2V

≤ 2C4 .

�e [·]�0,U -part is estimated analogously. To estimate � � � .� = C−3/2
����cC (

∗ d
(
� (d[ 9−1)

) ) ����
�0,U ,
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we again estimate the !∞-part first. Fix some ~ ∈ ! and compute cC
(
∗ d

(
� (d[ 9−1)

) )
(~) by

computing an integral over -EH ≃ {~} × -EH ⊂ ! × -EH. By Proposition 2.24 we have

��cC (
∗ d

(
� (d[ 9−1)

) ) �� ≤ ���〈∗ d(� (d[ 9−1)) , jCa〉C26-EH

���
≤ 2

∫
-EH

| d[ 9−1 | · |∇ d[ 9−1 | · |jCa | volC26-EH︸                                              ︷︷                                              ︸
��� .�.1

+ 2
∫
-EH

| d[ 9−1 | · | d[ 9−1 | · | d∗k | · |jCa | volC26-EH︸                                                     ︷︷                                                     ︸
��� .�.2

.

Here,

� � � .�.1 · C3/2 = 2
∫
-EH

| d(cC[ 9−1 + dC[ 9−1) | · |∇ d(cC[ 9−1 + dC[ 9−1) | · |jCa | volC26-EH

≤ 2
∫ Z

0

(
(C + A )−7

����dcC[ 9−1�����0,U
−3;C

����∇ dc C[ 9−1
����
�0,U
−4;C︸                                  ︷︷                                  ︸

≤2 | |cC[ 9−1 | |2�2,U ≤2C2· (4+3/2)

) (
(C + A )−4C2

)
A 3 dA

+ 2
∫ Z

0

(
(C + A )2V−3

����ddC[ 9−1�����0,U
V−1;C

����∇ ddC[ 9−1
����
�0,U
V−2;C︸                                    ︷︷                                    ︸

≤2 | |dC[ 9−1 | |2�2,U
V ;C

≤2C2·4

) (
(C + A )−4C2

)
A 3 dA

+ 2
∫ Z

0

(
(C + A )V−5

����dcC[ 9−1�����0,U
−3;C

����∇ ddC[ 9−1
����
�0,U
V−2;C︸                                   ︷︷                                   ︸

≤2 | |cC[ 9−1 | |�2,U | |dC[ 9−1 | |�2,U
V ;C

≤2C4+3/2+4

) (
(C + A )−4C2

)
A 3 dA

+ 2
∫ Z

0

(
(C + A )V−5

����ddC[ 9−1�����0,U
V−1;C

����∇ dcC[ 9−1
����
�0,U
−4;C︸                                   ︷︷                                   ︸

≤2 | |cC[ 9−1 | |�2,U | |dC[ 9−1 | |�2,U
V ;C

≤2C4+3/2+4

) (
(C + A )−4C2

)
A 3 dA

≤ 2
(
C2 · (4+3/2)C−7C2 + C2 ·4C2V−3C2 + 2C4+3/2+4CV−5C2

)
≤ 2C6,

thus � � � .�.1 ≤ 2C4. �e part � � � .�.2 and the �0,U-parts of � � � .�.1 and � � � .�.2 are estimated

analogously. Altogether, this gives � � � ≤ 2C4.
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�e sequence [ 9 satisfies

����[ 9 �����2,U
V ;C

≤
����dC[ 9 �����2,U

V ;C

+
����cC[ 9 �����2,U

V ;C

≤
����[ 9 ����XC

+ C−2−V+3/2
����[ 9 ����XC

≤ 2C7/2−V .

As usual, the constant 2 is independent of C , but in particular independent of 9 . �us, there

exists, up to a subsequence, a �2,U/2-limit lim9→∞ [ 9 =: [ by the Arzelà–Ascoli theorem. �is

limit solves Eq. (3.83) and satisfies

| |[ | |
�
2,U/2
V ;C

≤ 2C7/2−V .

By [Joy00][�eorem 10.3.7], i + d[ is a torsion-free�2-structure, which proves the claim. �

Taking everything together, this gives us:

�eorem 3.84. Let #C be the resolution of)
7/Γ from Eq. (3.31) and iC ∈ Ω

3 (#C ) the�2-structure

with small torsion from Eq. (3.33). �ere exists 2 > 0 independent of C such that the following

is true: for C small enough, there exists [C ∈ Ω
2 (#C ) such that ĩ = iC + d[C is a torsion-free

�2-structure, and [
C satisfies ����[C ����

�
2,U/2
V ;C

≤ 2C7/2−V .

In particular,

����ĩ − iC
����
!∞ ≤ 2C5/2 and

����ĩ − iC
����
�0,U/2 ≤ 2C5/2−U/2 as well as

����ĩ − iC
����
�1,U/2 ≤ 2C3/2−U/2.

Proof. By Lemma 3.36, we have that | |k | |�0,U
0;C

≤ 2C4. Combined with Propositions 3.45 and 3.48,

we also have | |k | |YC
≤ 2C4. �us, �eorem 3.82 can be applied, which gives the claim. �

Remark 3.85. �e power 7/2 − V in �eorem 3.84 can be improved to 4 − n for any n ∈ (0, 1)

by defining the norms | |·| |XC
and | |·| |YC

with a factor of C−^ instead of C−3/2 for ^ ∈ (0, 2) close

to 2.

Remark 3.86. In [Joy96a], compact manifolds with holonomy Spin(7) were constructed. In
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the simplest case, one constructs Spin(7)-structures with small torsion by gluing together

the product Spin(7)-structure on ) 4 × -EH and the flat Spin(7)-structure on ) 8. �is gluing

construction is analogue to the definition of the �2-structure in Eq. (3.33). In contrast to the

�2-situation, however, Joyce’s theorem about the existence of torsion-free Spin(7)-structures

cannot immediately be applied, because the torsion of the glued structure is too big. He over-

came this problem by constructing a correction of the glued structure by hand which has

smaller torsion, to which the existence theorem can be applied. �e same can be done in the

�2 case. In fact, one gets a correction in the�2-case from the Spin(7)-case by considering the

Spin(7)-orbifold ) 7/Γ × (1. Using this corrected structure, one would get even be�er control

over the difference between glued structure and torsion-free structure than what is known

from �eorem 3.84.

3.3 Torsion-Free�2-Structures on Joyce-Karigiannis Manifolds

In [JK21], the authors constructed new examples of compact manifolds with holonomy �2

by generalising the construction that was described in Section 3.2.1. As in Section 3.2, they

first use a gluing procedure to construct a �2-structure with small torsion. �ey then apply

�eorem 2.26 to perturb this�2-structure into a torsion-free�2-structure.

�e main difference to Joyce’s original construction is the following: if one uses the cutoff

procedure from the ) 7/Γ case in the new se�ing, one produces a �2-structure that does not

satisfy the necessary estimates to apply �eorem 2.26. �e authors of [JK21] overcome this

problem by constructing a�2-structure with even smaller torsion, to which �eorem 2.26 can

be applied.

3.3.1 Ingredients for the Construction

Let . be a compact manifold endowed with a torsion-free �2-structure i . Write 6 for the

metric induced by i . Let ] : . → . be a �2-involution, i.e. satisfying ]
2 = Id, ] ≠ Id, ]∗i = i .

We then have:

Proposition 3.87 (Proposition 2.13 in [JK21]). Let ! = fix(]) and assume ! ≠ ∅. �en ! is a
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smooth, orientable 3-dimensional compact submanifold of . which is totally geodesic, and, with

respect to a canonical orientation, is associative.

Assumption 3.88. We assume that ! is nonempty, and we assume we are given a closed,

coclosed, nowhere vanishing 1-form _ on !.

Such a 1-form need not exist, and cases in which its existence can be guaranteed are discussed

in [JK21, Section 7.1].

3.3.2 �2-structures on the Normal Bundle a of !

�e metric defined by i defines a spli�ing

). |! ≃ a ⊕ )!, (3.89)

which is orthogonal with respect to 6. Write 6! for the metric on ! induced by 6 and 6 |! =

ℎa ⊕ 6! . Write ∇̃a for some connection on a . For now, we may think of ∇̃a as being the

restriction of the Levi-Civita connection of 6 to a → !, but later we will need the freedom to

choose another connection. We write elements in a as (G, U), where G ∈ !, U ∈ aG . For ' > 0

let

*' = {(G, U) ∈ a : |U |ℎa < '}.

Write c : *' → ! for the projection (G, U) ↦→ G . We will make use of a map Υ : *' → .

satisfying the following:

1. Υ is a diffeomorphism onto its image,

2. Υ(G, 0) = G for G ∈ !,

3. Υ(G,−U) = ] ◦ Υ(G, U) for (G, U) ∈ *' ,

4. the induced pushforward Υ∗ : )*' → ). restricted to the zero section of )*' is the

identity map on)G! ⊕ aG .
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For example, Υ = exp would satisfy these four conditions for small '. But later on we require

Υ to satisfy an extra condition that exp need not satisfy.

Write (·C) : a → a for the dilation map (G, U) ↦→ (G, CU), and for C ≠ 0, define ΥC = Υ ◦ (·C) :

* |C |−1' → . .

�e connection ∇̃a defines a spli�ing

)a = + ⊕ �, where + ≃ c∗(a) and � ≃ c∗()!), (3.90)

where + and � are the vertical and horizontal subbundles of the connection. Combining

Eqs. (3.89) and (3.90), we have that)a ≃ c∗(). |!). Denote by

ia ∈ Ω
3 (a),k a ∈ Ω

4 (a), and 6a ∈ (2 (a) (3.91)

the structures obtained from i ,k , and6 via this isomorphism and for C > 0writeiaC = (·C)∗ia ,

as well as k aC = (·C)∗k a , and 6aC = (·C)∗6a . Note that this definition implicitly depends on the

choice of ∇̃a . �e main result of [JK21, Section 3] is then:

Proposition 3.92. �ere exist ' > 0, a connection ∇̃a on a and a map Υ : *' → " satisfying

1. Υ is a diffeomorphism onto its image,

2. Υ(G, 0) = G for G ∈ !,

3. Υ(G,−U) = ] ◦ Υ(G, U) for (G, U) ∈ *' ,

4. the induced pushforward Υ∗ : )*' → ). restricted to the zero section of)*' is the identity

map on )G! ⊕ aG ,

and for C > 0 a closed�2-structure ĩ
a
C on a/{±1} and closed 4-form k̃ aC ∈ Ω

4 (a/{±1}) satisfying

the following properties: first,

iaC − ĩaC = O(C2A 2) and k aC − k̃ aC = O(C2A 2). (3.93)
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Second, there exist [ ∈ Ω
2 (a), Z ∈ Ω

3 (a) such that

|[ |6a = O(A 3) and | d[ |6a =
��Υ∗i − ĩa |*'

��
6a

= O(A 2),

|Z |6a = O(A 3) and | dZ |6a =
���Υ∗k − k̃ a |*'

���
6a

= O(A 2).

3.3.3 �2-structures on the Resolution % of a/{±1}

�e �2-structure i ∈ Ω
3(. ) defines for all G ∈ . a cross product × : )G. × )G. → )G. as in

Definition 2.19. We then have a complex structure � ∈ End(a) given by

� (+ ) = _

|_ | ×+ for+ ∈ aG , G ∈ !. (3.94)

Recall the metric ℎa on a defined by 6 |! = ℎa ⊕ 6! , cf. Section 3.3.2. �en � and ℎa together

define a U(2)-reduction of the frame bundle of a . Denote by -EH the Eguchi-Hanson space

with Hyperkähler triple l
(1)
1 , l

(1)
2 , l

(1)
3 from Proposition 2.10. Denote by d : -EH → ℂ

2/{±1}

the blowup map of the blowup with respect to the complex structure induced by l
(1)
1 from

Remark 2.13 and let

% = Fr×U(2)-EH. (3.95)

Denote by f : % → ! the projection of this bundle. Analogously, we have

a/{±1} = Fr×U(2)ℂ
2/{±1}.

Let !′ ⊂ ! be a nonempty, open set on which we can extend 41 := _
|_ | ∈ ) ∗(!′) to an or-

thonormal basis (41, 42, 43). �en there exist l̂ � , l̂ � , l̂ ∈ Ω
2 ((a/{±1}) |!′) such that ia from

Eq. (3.91) has the form

ia = 41 ∧ 42 ∧ 43 − l̂ � ∧ 41 − l̂ � ∧ 42 − l̂ ∧ 43. (3.96)
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We define ľ � , ľ � , ľ ∈ Ω
2 (% |!′) as follows: For G ∈ !′, let 5 ∈ FrG such that 5 : (a/{±1})G →

ℂ
2/{±1} satisfies

5 ∗(l (0)
1 , l

(0)
2 , l

(0)
3 ) = (l̂ � |aG , l̂ � |aG , l̂ |aG ),

where (l (0)
1 , l

(0)
2 , l

(0)
3 ) denotes the Hyperkähler triple onℂ2/{±1} from Proposition 2.10. �is

choice of 5 defines isomorphisms of complex surfaces %G ≃ -EH and (a/{±1})G ≃ ℂ
2/{±1}.

Let ľ � , ľ � , ľ ∈ Ω
2 (%G ) be the pullback of l

(1)
1 , l

(1)
2 , l

(1)
3 ∈ Ω

2 (-EH) under this isomorph-

ism. �is is independent of the choice of 5 , and therefore defines ľ � , ľ � , ľ ∈ Ω
2 (%G ). �e

following diagram sums up the situation:

(%G , ľ � |%G , ľ � |%G , ľ |%G ) (-EH, l
(1)
1 , l

(1)
2 , l

(1)
3 )

(aG/{±1}, l̂ � |aG /{±1}, l̂ � |aG /{±1}, l̂ |aG/{±1}) (ℂ2/{±1}, l (0)
1 , l

(0)
2 , l

(0)
3 )

≃

d d

≃

(3.97)

Here, by abuse of notation we denoted the map %G → aG/{±1} which makes the diagram

commutative also by d . Horizontal arrows pull Hyperkähler triples back to one another, Hy-

perkähler triples connected by vertical arrows are asymptotic in the sense of Proposition 2.10.

A complicated point is the actual definition of ľ � , ľ � , ľ as 2-forms on % |!′ . Equation (3.97)

tells us what they look like fibrewise. To make sense of them as global objects on % , one needs

to choose a connection on % . In [JK21], the horizontal subspaces �̆ were defined to this end

which allows us to decompose forms on % into vertical and horizontal components, much like

for forms on a . �ere are then unique vertical 2-forms which restrict to ľ � |%G , ľ � |%G , ľ |%G on

every fibre.
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We are now ready to define i%C ∈ Ω
3 (% |!′),k%C ∈ Ω

4 (% |!′) via

i%C := ǐ0,3 + C2ǐ2,1

:= f∗ (41 ∧ 42 ∧ 43) − C2
(
f∗ (41) ∧ ľ � − f∗ (42) ∧ ľ � − f∗ (43) ∧ ľ 

)
,

(3.98)

k%C := C4ǩ4,0 + C2ǩ2,2

:=
1

2
ľ � ∧ ľ � − f∗ (42 ∧ 43) ∧ ľ � − f∗ (43 ∧ 41) ∧ ľ � − f∗ (41 ∧ 42) ∧ ľ .

�ese expressions are independent of the choice of (42, 43), and therefore define forms i%C ∈

Ω
3 (%),k%C ∈ Ω

4(%), not just forms over !′ ⊂ !. Let also 6%C denote the metric induced by i%C .

As in the previous section, we add terms to i%C and k%C to define closed forms on % , and we

have the following control over how they are asymptotic to forms on a/{±1}:

Proposition 3.99 (Section 4.5 in [JK21]). �ere exist b1,2, b0,3 ∈ Ω
3 (%), g1,1 ∈ Ω

2 ({G ∈ % : Ǎ (G) >

1), such that

ĩ%C := i%C + C2b1,2 + C2b0,3

is closed and satisfies

ĩ%C = d∗ĩaC + C2 dg1,1 (3.100)

where Ǎ > 1. �ese forms satisfy the following estimates:

���∇: (C2b1,2)���
6%C

=



O(C1−: ), Ǎ ≤ 1,

O(C1−: Ǎ−3−: ), Ǎ > 1,

���∇: (C2b0,3)���
6%C

=



O(C2−: ), Ǎ ≤ 1,

O(C2−: Ǎ 2−: ), Ǎ > 1,

(3.101)

���∇: (C2g1,1)���
6%C

= O(C1−: Ǎ−3−: ). (3.102)

Proposition 3.103 (Section 4.5 in [JK21]). �ere exist j1,3, \3,1, \2,2 ∈ Ω
4(%), E1,2 ∈ Ω

3 ({G ∈ % :
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Ǎ (G) > 1), such that

k̃%C := k%C + C2j1,3 + C4\3,1 + C4\2,2 (3.104)

is closed and satisfies

k̃%C = d∗k̃ aC + C2 dE1,2 (3.105)

where Ǎ > 1. �ese forms satisfy the following estimates:

���∇: (C2j1,3)���
6%C

:=



O(C1−: ), Ǎ ≤ 1,

O(C1−: Ǎ−3−: ), Ǎ > 1,

(3.106)

���∇: (C4\3,1)���
6%C

:=



O(C1−: ), Ǎ ≤ 1,

0, Ǎ > 1,

(3.107)

���∇: (C4\2,2)���
6%C

:=



O(C2−: ), Ǎ ≤ 1,

O(C2−: Ǎ 2−: ), Ǎ > 1,

(3.108)

���∇: (C2E1,2)���
6%C

:= O(C1−: Ǎ−3−: ). (3.109)

3.3.4 Correcting for the Leading-order Errors on %

Armed with the �2-structures i on . and ĩ%C on % , we could define a glued together �2-

structure just as we did in Section 3.2. However, in this case it would turn out that the torsion

of the glued together �2-structure is too big and �eorem 2.26 cannot be applied. We thus

make use of the following correction terms which will make the torsion of the glued together

�2-structure small enough.

�eorem 3.110 (�eorem 5.1 in [JK21]). �ere exist U0,2, U2,0 ∈ Ω
2 (%), V0,3, V2,1 ∈ Ω

3 (%), satis-

fying for all C > 0 the equation

(�i%
C
Θ)

(
C2 [dU0,2]1,2 + C4 [dU2,0]3,0 + C2b1,2

)
= C2 dV0,3 + C4 [dV2,1]3,1 + C2j1,3 + C4\3,1.
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Moreover, forW > 0 sufficiently small and for all : ≥ 0, these forms satisfy the following estimates

���∇: (C2U0,2)���
6%C

=



O(C2−: ), Ǎ ≤ 1,

O(C2−: Ǎ−2−:+W ), Ǎ ≥ 1,

���∇: (C4U2,0)���
6%C

=



O(C2−: ), Ǎ ≤ 1,

O(C2−: Ǎ−2−:+W ), Ǎ ≥ 1,

���∇: (C2V0, 3)���
6%C

=



O(C2−: ), Ǎ ≤ 1,

O(C2−: Ǎ−2−:+W ), Ǎ ≥ 1,

���∇: (C4V2, 1)���
6%C

=



O(C2−: ), Ǎ ≤ 1,

O(C2−: Ǎ−2−:+W ), Ǎ ≥ 1,

3.3.5 �2-structures on the Resolution #C of ./〈]〉

We are now ready to glue together % and ./〈]〉 to a manifold, and define a �2-structure with

small torsion on it.

Definition 3.111. Define

#C :=
[
d−1(*C−1'/{±1})

∐
(. \ !)/〈]〉

]
/∼, (3.112)

where G ∼ ΥC ◦ d (G) for G ∈ d−1 (*C−1'/{±1}).

Definition 3.113. Let 0 : [0,∞) → ℝ be a smooth function with 0(G) = 0 for G ∈ [0, 1], and
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0(G) = 1 ∈ [2,∞). Define then

i#C =




ĩ%C + d[C2U0,2 + C4U2,0], if Ǎ ≤ C−1/9,

ĩ%C + d[C2U0,2 + C4U2,0 + 0(C1/9Ǎ ) · Υ∗[], if C−1/9 ≤ Ǎ ≤ 2C−1/9,

ĩ%C + d[C2U0,2 + C4U2,0 + Υ∗[], if 2C−1/9 ≤ Ǎ ≤ C−4/5,

ĩaC + d[(1 − 0(C4/5Ǎ )) (C2g1,1 + C2U0,2 + C4U2,0) + Υ∗[], if C−4/5 ≤ Ǎ ≤ 2C−4/5,

i, elsewhere,

(3.114)

k#C =




k̃%C + d[C2V0,3 + C4V2,1], if Ǎ ≤ C−1/9,

k̃%C + d[C2V0,3 + C4V2,1 + 0(C1/9Ǎ ) · Υ∗Z ], if C−1/9 ≤ Ǎ ≤ 2C−1/9,

k̃%C + d[C2V0,3 + C4V2,1 + Υ∗Z ], if 2C−1/9 ≤ Ǎ ≤ C−4/5,

k̃ aC + d[(1 − 0(C4/5Ǎ )) (C2E1,2 + C2V0,3 + C4V2,1) + Υ∗Z ], if C−4/5 ≤ Ǎ ≤ 2C−4/5,

k, elsewhere,

(3.115)

�e important properties of these forms are that i#C and k#C are closed, and that k#C is close

to being the Hodge dual of i#C . �at is, the 3-form i#C − ∗i#
C
k#C satisfies the assumption of

�eorem 2.26 and i#C can be perturbed to a torsion-free�2-structure. �is yields the following

theorem:

�eorem 3.116 (�eorem 6.4 in [JK21]). For small C there exists [C ∈ Ω
2 (#C ) such that ĩ#C :=

i#C + d[C is a torsion-free�2-structure, and

����ĩ#C − i#C
����
!∞ ≤ 2C1/18 (3.117)

for some constant 2 > 0 independent of C .
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4 �e Gluing Construction for Instantons

We now turn to constructing �2-instantons on the resolutions of ./〈]〉 explained in the pre-

vious chapter. Much like explained in the introduction to Section 3, we will follow again the

three step process of (1) constructing an approximate solution, (2) estimating the linearisation

of the equation to be solved, and (3) perturbing the approximate solution to a genuine solution.

In Section 4.1 we explain how a section B of a moduli bundle gives rise to a connection B (�)

on the bundle of Eguchi-Hanson spaces % from Eq. (3.95), cf. �eorem 4.15. If the topological

compatibility condition Assumption 4.1 is satisfied, we can glue B (�) to a�2-instanton \ on the

orbifold ./〈]〉. �e resulting connection�C is close to being a�2-instanton and in Section 4.2

we will quantify this. We will see that this error is small in a suitable norm if B satisfies a first

order partial differential equation, the Fueter equation. Section 4.3 is the difficult part of the

analysis, where we give an estimate for the inverse of the linearised instanton operator. In

Sections 4.4 and 4.5 we complete the argument and construct the perturbation that turns the

approximate solution from before into a genuine solution to the�2-instanton equation.

�roughout we will use the notation from the previous chapter. �at is, . is a �2-manifold

with�2-involution ] : . → . , and #C is the resolution of ./〈]〉. �e resolution #C is obtained

by gluing in the Eguchi-Hanson bundle % over the singular locus ! = fix(]). On % we have

the �2-structures i
%
C and ĩ%C , and on #C we have the �2-structure i

#
C with small torsion and

the torsion-free �2-structure ĩ
#
C . In the case that #C is a resolution of ) 7/Γ, we also defined

the �2-structures i
C and ĩC . �ese two will also be denoted by i#C and ĩ#C respectively and

the special case of ) 7/Γ will need no special treatment most of the time. �e exception is the

pre-gluing estimate for resolutions of) 7/Γ, Corollary 4.57, which is be�er than in the general

case. In the case of resolutions of ) 7/Γ, our main result is �eorem 4.131:

�eorem. Let # → . ′ be the resolution of the orbifold . ′ = ) 7/Γ from before. Assume that the

connection \ used to define the approximate�2-instanton�C from Proposition 4.27 is infinitesim-

ally rigid and that B is an infinitesimally rigid Fueter section.

�ere exists 2 > 0 such that for small C there exists an 0C = (0C , bC ) ∈ �1,U (Ω0 ⊕ Ω
1 (Ad�C )) such

that �̃C := �C + 0C is a�2-instanton. Furthermore, 0C satisfies
����0C ����XC

≤ 2C2−2U .
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Here, | | · | |XC
is a complicated composite norm similar to the norm denoted with the same

symbol from Section 3, and U ∈ (0, 1) is a number close to 0. In the general case of resolutions

of ./〈]〉 we only have a weaker result. Namely, we require the Fueter section to be pointwise

rigid. �is is �eorem 4.130:

�eorem. Assume now that the section B is given by a rigid ASD-instanton in every point G ∈ !,

and assume that the connection \ used to define the approximate �2-instanton �C from Proposi-

tion 4.27 is infinitesimally rigid.

�ere exists 2 > 0 such that for small C there exists 0C = (0C , bC ) ∈ �1,U (Ω0 ⊕ Ω
1 (Ad�C )) such

that �̃C := �C + 0C is a�2-instanton. Furthermore, 0C satisfies
����0C �����1,U

−1,X ;C
≤ 2C1/18.

We will use this theorem in Section 4.6 to construct a new example of a �2-instanton on the

resolution of () 3 × K3)/ℤ2
2.

4.1 �e Pregluing Construction

4.1.1 Moduli Bundles of ASD-Instantons

Let c : �0 → ./〈]〉 be an orbifold�-bundle with connection\ , i.e. a�-bundle with connection

over . together with a li� ]̂ of ] such that ]̂2 = Id and such that ]̂∗\ = \ . As before, fix(]) = !

and we now set �∞ = �0 |! , which is a �-bundle with ℤ2-action, and �∞ = \ |�∞ . Denote by

" the framed moduli space of ASD instantons on a bundle � over Eguchi-Hanson space -EH

from Section 2.4.2. �e homomorphism d : ℤ2 → � used in the definition of " defines a ℤ2

le� action on� . We then ask for �0 and" to be compatible in the following sense:

Assumption 4.1. For all ; ∈ ! there exists an isomorphism of manifolds with� right action and

ℤ2 le� action q : �∞ |; → � .

Proposition 4.2. Let�d ⊂ � be the stabiliser of d as in Eq. (2.43). �en there exists a�d -reduction

�̌ of �∞ such that �∞ reduces to �̌.

Proof. As before, let d : ℤ2 → � be the representation that defines the asymptotic limit for
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connections in" . Define

�̌ := {D ∈ �∞ : D · d (−1) = ]̂ (D)}. (4.3)

To see that this is a �d -bundle, fix ; ∈ ! and let q : �∞ |; → � be the isomorphism from

Assumption 4.1. �en D ∈ �̌ |; if and only if q (D) ∈ �d .

It remains to check that �∞ reduces to �̌. To this end, let W : � → �̌ be a curve. �en

�∞ ( ¤W (0)) = ]̂∗�∞ ( ¤W (0))

= �∞

(
3

3C
(W (C) · d (−1)) |C=0

)

= Ad(d (−1)) (�∞ ( ¤W (0))) .

(4.4)

In the first step we used ]̂∗\ = \ . �e second step is the defining property of �̌ from Eq. (4.3).

Now, for any subgroup� ⊂ � we define the centraliser of� in� as/ (� ) = {6 ∈ � : ℎ6ℎ−1 = 6

for all ℎ ∈ � }. �en

Lie(/ (� )) = z� := {+ ∈ g : Ad(ℎ)+ = + for all ℎ ∈ � }. (4.5)

�is equality holds, because for- = ¤6(0) ∈ Lie(/ (� )), where6 : � → / (� ) is a curve, we have

that Ad(ℎ)- = 3
3C (ℎ6(C)ℎ−1) |C=0 = - by definition of / (� ). Conversely, for + ∈ z� , we have

that 6(C) := exp(C+ ) is a curve with ¤6(0) = + in / (� ), because ℎ6(C)ℎ−1 = exp(C · Ad(ℎ)+ ) =

exp(C+ ) = 6(C) for all ℎ ∈ � .

�erefore, by Eqs. (4.4) and (4.5), we have that �∞ |�̌ takes values in Lie(�d ), i.e. restricts to a

connection on �̌. �

Definition 4.6. Define the moduli bundle

M := (Fr×�̌) ×U(2)×�d
" (4.7)
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and its vertical tangent space

+M := (Fr×�̌) ×U(2)×�d
)". (4.8)

4.1.2 Fueter Sections and Connections on Bundles over %

In the following, we will study sections B : ! → M. It will turn out that such a section B

gives rise to a connection that is almost a �2-instanton, if it satisfies a first order differential

equation, the Fueter equation (cf. Definition 4.13).

Definition 4.9. Let B : ! → M be a section. We define its covariant derivative ∇B ∈ Ω
1 (!,+M)

as follows: for G ∈ !, - ∈ )G! let 5 ∈ �∞ (Fr) and 4 ∈ �∞ (�̌) be local sections around G such

that �LC d5 (G) = 0 and �∞ (d4 (- )) = 0, where �LC is the Levi-Civita connection of . . Let

� : ! → " be a local section around G such that B = [( 5 , 4), �]. �en

∇- (B) = [( 5 , 4), 3� (- )] ∈ (Fr×�̌) ×U(2)×�d
)".

Definition 4.10. Let B : ! → M be a section. Fix G ∈ ! and let 41, 42, 43 be an orthonormal basis

of )G!. �e�2-structure on . defines a map

Λ
1 ()G!) → Λ

+%G

48 ↦→ ľ8 |%G =: l8 .

(4.11)

�e l8 correspond to complex structures on %G and therefore, by �eorem 2.51, to elements

�8 ∈ End(+GM). We thus have a Clifford multiplication given by

48 · : +GM → +GM

0 ↦→ �8 (0).
(4.12)

Definition 4.13. A section B : ! → M is called a Fueter section if

FB :=

3∑
8=1

48 · ∇48B = 0 ∈ Γ(B∗+M), (4.14)
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where (41, 42, 43) is a local orthonormal frame.

�e following is an extension of [DS11, �eorem 1]:

�eorem 4.15. Denote by ℙ̃ → " × -̂EH the tautological bundle with tautological connection

Ã over " × -EH from Proposition 2.59 and assume that there exists a li� of the U(2)-action on

" × -̂EH to ℙ̃ preserving Ã. Let B ∈ �∞ (M), and denote %̂ = Fr×U(2)-̂EH. �en there exists a

natural �-bundle B (�) over %̂ with connection B (�) ∈ � (B (�) |% ) together with an isomorphism

of�-bundles with ℤ2 le� action Φ : B (�) |%̂\% → �∞ so that:

(i) �e pair (B (�), B (�)) |%G represents B (G). �at means: if B (G) = [( 5 , 4), [�]] for 5 ∈ FrG ,

4 ∈ (�0)G , [�] ∈ " , then under the diffeomorphism -EH ≃ %G , ~ ↦→ [5 , ~], the �-bundles

B (�) |%G and � are isomorphic, and � and B (�) are gauge equivalent.

(ii) �e map Φ identifies �∞ and B (�) over the fibre at infinity, i.e. Φ∗�∞ = B (�) |%̂\% .

(iii) �e connection B (�) |% is a (k%C )∗-instanton if and only if B is a Fueter section. Here, B (�)

being a (k%C )∗-instanton means that �B (�) ∧ (k%C )∗ = 0, where (k%C )∗ =
∑
f∗ (48) ∧f∗ (4 9 ) ∧

ľ: . Here f : % → ! is the projection of the bundle Eq. (3.95).

Proof. Construction of B (�), B (�), and Φ: together with the connections ∇LC on Fr and�∞ on

�̌, the connection Ã induces a connection U on the principal�-bundle (Fr×�̌) ×U(2)×�d
ℙ̃ →

(Fr×�̌) ×U(2)×�d
(" × -̂EH) via the formula

U ([(*,+ ),) ]) := Ã() ), (4.16)

where* ∈ ) Fr,+ ∈ ) �̌ are horizontal vectors and) ∈ ) ℙ̃. By assumption, Ã is le�-invariant,

which makes the definition of U independent of the chosen representative.

Consider the map

(B × Id) : %̂ = Fr×U(2)-̂EH → (Fr×�̌) ×U(2)×�d
(" × -̂EH)

[5 , ~] ↦→ [( 5 , 4), (�,~)],
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where B (f (4)) = [( 5 , 4), �] ∈ Mc (4) . �en

B (�) := (B × Id)∗ ((Fr×�̌) ×U(2)×�d
ℙ̃), B (�) := (B × Id)∗U

and the trivialisationq : ℙ̃|"orb×{∞} → �×"orb from Proposition 2.59 induces an isomorphism

Φ : B (�) |%̂\%

≃ (B × Id |-̂EH\-EH
)∗

(
(Fr×�̌) ×U(2)×�d

ℙ̃|"×{∞}
)
→ B∗

(
(Fr×�̌) ×U(2)×�d

� ×"
)

≃ �̌ ×�d
� ≃ �∞.

(4.17)

�e last point of Proposition 2.59 states that q∗�product = Ã|"×{∞} which implies that Φ∗�∞ =

B (�) |%̂\% .

B (�) is a (k%C )∗-instanton if and only if B is a Fueter section: for easier notation, assume that

the bundle Fr is trivial and ∇LC is the product connection. �e proof of the general case works

the same. In this case, !×-̂EH = %̂ and B (�) = (B× Id)∗(�̌×�d
ℙ̃). �en fix (;, G) ∈ !×-̂EH = %̂ ,

an orthonormal basis (41, 42, 43) of);! and denote by (41, 42, 43) its dual basis. Around ; , write

B (G) = [4, �] with the property that d4 (+ ) is parallel for all+ ∈ );!. �en, for / ∈ )G-̂EH:

�B (�) (48 , / ) = ((B × Id)∗�U ) (48, / )

= �U ([d4 (48 ), (d� (48), 0)] , [d4 (48 ), (0, / )])

= �
Ã
(d� (48 ), / )

= d� (48) (/ ).

(4.18)

In the first step we used that the curvature of a pullback connection is the pullback of its

curvature. �e third step is the definition of U from Eq. (4.16), and in the last step we used

the curvature properties of the tautological connection Ã from Proposition 2.59. As before,

denote by �1, �2, �3 the Hyperkähler triple of complex structures on -EH and l1, l2, l3 the cor-

responding symplectic forms. �e Fueter condition from Definition 4.13 for B is equivalent to
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the following equation of elements in Ω
1 (-EH,Ad %):

0 =

3∑
8=1

�8 (d� (48 )) =
3∑
8=1

l8 (d� (48), ·) =
3∑
8=1

l8 (�B (�) (48 , ·), ·)

= ∗
(

3∑
8=1

l8 ∧ �B (�) (48, ·)
)

where ∗ denotes the Hodge star on -EH. �e first equality is the Fueter equation, the third

equality is Eq. (4.18), and the second and fourth equality are linear algebra computations that

can be computed in standard coordinates.

Applying ∗ to both sides gives

0 =

(
3∑
8=1

l8 ∧ �B (�) (48, ·)
)

which in turn implies

0 =
∑

8, 9,: cyclic

l8 ∧ 4 9 ∧ 4: ∧ [�B (�) ] (1,1) ,

where [�B (�) ] (1,1) denotes the (1, 1)-component of �B (�) according to the bi-grading onΛ
∗) ∗(!×

-EH) induced by) ∗ (! ×-EH) = ) ∗! ⊕) ∗-EH. On the other hand, [�B (�) ] (0,2) ∈ Ω
2 (-EH,Ad %)

is anti-self-dual by Proposition 2.59, thus

0 =
∑

8, 9,: cyclic

l8 ∧ 4 9 ∧ 4: ∧ [�B (�) ] (0,2) .

Last, 0 =
∑
8, 9,: cyclic l8∧4 9 ∧4: ∧ [�B (�) ] (2,0) , because this is a sum of forms of type (2, 4) which

must vanish as ! has dimension 3. �

4.1.3 Gluing Connections over % and ./〈]〉

We will define here a further modification of the Hölder norm.
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Definition 4.19 (cf. Section 6 in [Wal17]). For X, ; ∈ ℝ, let

F;,X ;C : #C → ℝ

G ↦→



CX (C + AC (G))−;−X , if AC (G) ≤

√
C

A−;+XC if AC (G) >
√
C .

(4.20)

Note that F;,X ;C is not continuous, but that does not cause any problems. For a metric 6 on

#C , define the weighted Hölder norms | |·| |
�:,U
;,X ;C

,6
as in Definition 3.15, where we use parallel

transport with respect to the Levi-Civita connection induced by the metric 6, and measure

vectors in 6. If no metric 6 is specified, we take 6 = 6#C . For the instanton analysis, we need

X ∈ (−1, 0), U ∈ (0, 1), U ≪ |X |, for example X = −1/64, U = 1/256 will work.

Proposition 4.21 (Proposition 6.2 in [Wal17]). If ( 5 , 6) ↦→ 5 · 6 is a bilinear form satisfying

|5 · 6 | ≤ | 5 | |6 |, then

| |5 · 6 | |
�:,U
;1+;2,X1+X2;C

≤ || 5 | |
�:,U
;1,X1 ;C

· | |6 | |
�:,U
;2,X2 ;C

.

We have shown that B (�) is a (k%C )∗-instanton. It is, however, in general not a �2-instanton

with respect tok%C because of the (2, 0) part of its curvature. We will later estimate the failure

of B (�) of being a�2-instanton.

Definition 4.22. For ; ∈ ! choose a neighbourhood ; ∈ +; ⊂ ! over which �∞ is trivial. Use

the identification Φ : B (�) |%̂\% → �∞ and parallel transport with respect to B (�) to get a

trivialisation of B (�) around %̂ |+; \ % |+; , say on a neighbourhood *; ⊂ %̂ . Using this, we can

view the pullback of B (�) |%̂\% under the projection*; → +; as a connection�∞
; ∈ � (B (�) |*;

).

�is definition is independent of the choice of ; ∈ !, and therefore defines some connection

�∞ ∈ � (B (�) |* ), where * ⊂ %̂ is a neighbourhood of the points at infinity %̂ \ % .

Now is the first time we cite a non-trivial result from [Wal17]. �erein, Fueter sections into a

moduli bundle of ASD-instantons onℝ4were considered, while in this chapterASD-instantons

on-EH are considered. At some points this changes the analysis, and these results are reproved

in this new se�ing in the coming sections. At some points, results carry over without having

to change the proof. �e following proposition is the first such result:
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Proposition 4.23 (Proposition 7.4 in [Wal17]). �ere exists 2 > 0 such that for all C ∈ (0,) ):

������[�B (�) ]2,0 − ��∞

������
�0,U
−2,0;C (* ),6%C

≤ 2C2, (4.24)

����[�B (�) ]1,1�����0,U
−3,0;C (* ),6%C

≤ 2C2, and (4.25)

����[�B (�) ]0,2�����0,U
−4,0;C (* ),6%C

≤ 2C2 . (4.26)

Proposition 4.27. Let �0 → ./〈]〉 be an orbifold bundle with connection \ satisfying Assump-

tion 4.1, ! = fix(]), and B : ! → M be a Fueter section.

�en there exists a�-bundle �C over #C and a connection �C on �C such that

(�C , �C ) |#C \ΥC (*C−1') ≃ (�0, \ ) |#C \ΥC (*C−1') and

(�C , �C ) |ΥC (*1) ≃ (B (�), B (�)) |d−1 (*1) .

Proof. Construction of �C : By�eorem4.15we have a bundle isomorphismΦ : �∞ → B (�) |%̂\% .

Let * ⊂ %̂ be a neighbourhood of %̂ \ % . Now use radial parallel transport with respect to \

on �0 and parallel transport with respect to �∞ (the pullback of Φ∗�∞ to a neighbourhood of

%̂ \% defined in Proposition 4.23) to extend Φ to the neighbourhood Υ(*') ⊂ . of !, denote the

extension by Ψ. �e conditions ]̂∗\ = \ and Assumption 4.1 ensure that this is well-defined.

As in Section 3.3.3 we use the symbol d to denote the map d : % → a/{±1} induced by the

blowup map -EH → ℂ
2/{±1} on Eguchi-Hanson space. For small enough C we have that the

overlap $ := *C−1' ∩ d (* ) is non-empty. Use this to define �C by gluing together �0 and B (�)

via Ψ over $ , i.e.

�C := �0 |.\ΥC (*C−1'\$) ∪ B (�) |d−1 (*C−1')/∼, (4.28)

where E ∼ Ψ(E) for E ∈ �0 |ΥC ($) .

Construction of �C : Let j
−
C : #C → [0, 1] and j+C : #C → [0, 1] be rescalings of a smooth

112



j−C

j+C

b

C

b

2C

b

'/2

b

'

Figure 5: �e cut-off functions j−C and j+C from Eq. (4.29) for small C .

cut-off function such that

j−C | {AC ≤C } ≡ 0 and j−C | {AC ≥2C } ≡ 1,

j+C | {AC ≤'/2} ≡ 1 and j+C | {AC ≤' } ≡ 0.

(4.29)

Similar to the definition of �∞ ∈ � (B (�) |* ), define �∞ ∈ �

(
�0 |ΥC (*C−1')

)
by pulling back

�∞ ∈ � (�∞). By definition of �C , we have that �∞ and �∞ are both connections on �C . �e

map Φ identifies�∞ and B (�) by the second point of �eorem 4.15. Because Ψ is an extension

of Φ defined by radial parallel transport, and �∞ and �∞ are also defined via radial parallel

transport, we have that �∞ = �∞ as connections on �C |ΥC ($) .

We then have f ∈ Ω
1 (Ad B (�) |$ ) and 1 ∈ Ω

1 (Ad�0 |$ ) such that

B (�) = �∞ + f, \ = �∞ + 1 over $. (4.30)

Define then

�C :=




B (�) on AC < C

�∞ + j−C 1 + j+C f on C ≤ AC ≤ '

\ on AC > '.

(4.31)

�

�e following proposition follows immediately from Definition 4.19.
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Proposition 4.32. Let j−C and j+C as in Eq. (4.29). �en there exists 2 > 0 such that for all

C ∈ (0,) ):

����j−C �����0,U
0,0;C

+
����dj−C �����0,U

−1,0;C
≤ 2,

����j+C �����0,U
0,0;C

+
����dj+C �����0,U

0,0;C
≤ 2.

�e following proposition is proved like Proposition 4.23 with the proof from [Wal17] directly

carrying over to this se�ing. �e estimate for f holds because of the fast decay of the curvature

of ASD connections on ALE spaces, see Proposition 2.45. �e estimate for 1 holds because over

! we have that�∞ = \ , not just in the !-direction. �at is because�∞ is defined using parallel

transport with respect to \ as in Definition 4.22.

Proposition 4.33 (Proposition 7.6 in [Wal17]). Let f ∈ Ω
1 (Ad B (�) |$ ) and 1 ∈ Ω

1 (Ad�0 |$ ) as

defined in Eq. (4.30). �en there exists 2 > 0 such that for all C ∈ (0,) ):

| |f | |�0,U
−3,0;C (C≤AC ≤')

+
������d�∞

f
������
�0,U
−4,0;C (C≤AC ≤')

≤ 2C2 and

| |1 | |�0,U
1,0;C (AC ≤')

+
������d�∞1

������
�0,U
0,0;C (AC ≤')

≤ 2C2 .

4.2 Pregluing Estimate

�e goal of this section is to derive an estimate for ��C
∧k̃#C . �is is achieved in Corollary 4.54

in the general case, and in Corollary 4.57 in the special case of resolutions of) 7/Γ.

4.2.1 Estimates for the�2-structures Involved

We have constructed a connection �C that looks like B (�) near ! and looks like \ far away

from !. �e connection B (�) is close to being a�2-instanton with respect tok%C , so in order to

control the pregluing error, we will need to estimate the differencek#C −i%C . �is will be done

in Propositions 4.34 and 4.37.

On the other hand, \ is a �2-instanton with respect to k , so we will need to estimate the
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differencek#C −k . �is will be done in Proposition 4.39.

Proposition 4.34. �ere exists 2 > 0 independent of C such that

����k#C −k%C
����
�0,U
2,0;C (*' ) ≤ 2C

−1 . (4.35)

Proof. We have

|k#C −k%C |6#C

=




d[C2V0,3 + C4V2,1+]C2j1,3 + C4\3,1 + C4\2,2 if Ǎ ≤ C−1/9

d[C2V0,3 + C4V2,1 + 0(C1/9Ǎ ) · Υ∗Z ] + C2j1,3 + C4\3,1 + C4\2,2 if C−1/9 ≤ Ǎ ≤ 2C−1/9

d[C2V0,3 + C4V2,1 + Υ∗Z ] + C2j1,3 + C4\3,1 + C4\2,2 if 2C−1/9 ≤ Ǎ ≤ C−4/5

d[(1 − 0(C4/5Ǎ )) (C2V0,3 + C4V2,1) + Υ∗Z ]+

C2j1,3 + C4\3,1 + C4\2,2 − 0(C4/5Ǎ )C2E1,2
if C−4/5 ≤ Ǎ ≤ 2C−4/5

d(Υ∗Z ) + C2j1,3 + C4\3,1 + C4\2,2 − C2E1,2 if 2C−4/5 ≤ Ǎ

=




O(C) if Ǎ ≤ C

O(CǍ−3) if C ≤ Ǎ ≤ C−1/9

O(CǍ−3 + C2Ǎ 2) if C−1/9 ≤ Ǎ ≤ 2C−1/9

O(CǍ−3 + C2Ǎ 2) if 2C−1/9 ≤ Ǎ ≤ C−4/5

O(C2Ǎ 2 + Ǎ−4) if C−4/5 ≤ Ǎ ≤ 2C−4/5

O(C2Ǎ 2 + Ǎ−4) if 2C−4/5 ≤ Ǎ ,

(4.36)

where we used Propositions 3.92 and 3.103 and �eorem 3.110 in the second step. Multiplying

with the weight function (C + AC )−2 gives the estimate for the !∞2,0;C -norm, and the estimate for

the �0,U
2,0;C-norm is proved analogously. �

Proposition 4.37. Let#C be the resolution of)
7/Γ from Section 3.2. �ere exists 2 > 0 independent

of C such that

����k#C −k%C
����
�0,U
2,0;C (*' ) ≤ 2C

4 . (4.38)
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Proof. �is is a restatement of Lemma 3.36. In the case that #C is the resolution of ) 7/Γ we

have thatk%C is closed, so the forms C2j1,3, C
4\3,1, C

4\2,2 from Proposition 3.103 can be chosen to

be 0. Furthermore, in this case k̃ aC = Υ
∗
C (∗i), so Z = 0. Using this and that the cut-off happens

where Z C−1/2 ≤ Ǎ ≤ Z C−1, the same proof as for Eq. (4.35) shows the claim. �

�e following estimate holds in general, not just for resolutions of ) 7/Γ:

Proposition 4.39. �ere exists 2 > 0 independent of C such that

����k#C −k
����
�0,U
−2,0;C ( {G ∈#C :Ǎ (G) ≥1}) ≤ 2C

2 . (4.40)

Proof. Using Propositions 3.92 and 3.103 and�eorem 3.110, the proof is analogous to Propos-

ition 4.34. �

Last we need an estimate comparing k̃#C and k#C in a Hölder norm. In �eorem 3.110 we had

this estimate for the !∞-norm, but not for the �0,U
0,0;C -norm. Going through the proof of 2.26,

one can improve this to a�0,U
0,0;C -estimate as stated in the following proposition. For the case of

resolutions of) 7/Γ, this was done in [Wal13a, Proposition 4.20], and the proof carries over to

resolutions of ./〈]〉.

Proposition 4.41. �ere exists 2 > 0 independent of C such that

������k̃#C −k#C
������
�0,U
0,0;C

≤ 2C1/18 . (4.42)

4.2.2 Principal Bundle Curvature Estimates

For our pregluing estimatewewill want to estimate ∗(��C
∧k̃#C ). �is is done in Corollaries 4.54

and 4.57. Most of the heavy li�ing is done by the following Proposition 4.43: here we get an

estimate for ∗(��C
∧k#C ) which then is combined with the estimate for k̃#C −k#C .

Proposition 4.43. �ere exists 2 > 0 such that for all C ∈ (0,) ) we have

����∗(��C
∧k#C )

����
�0,U
−2,0;C

≤ 2C . (4.44)
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Proof. We will estimate ∗(��C
∧k#C ) separately on some regions:

1. On AC ≤ 2C we have

��C
= �B (�) + j−C d�∞1 + j−C [f, 1] +

1

2
(j−C )2 [1, 1] + dj−C ∧ 1.

�us by Proposition 4.21, Proposition 4.32, and Proposition 4.33:

������C
− �B (�)

����
�0,U
−2,0;C (AC ≤2C)

≤ ||1| |�0,U
−2,0;C (AC ≤2C)

����j−C �����0,U
0,0;C (AC ≤2C)

����d�∞1
����
�0,U
0,0;C (AC ≤2C)

+
����j−C �����0,U

0,0;C (AC ≤2C)
| |f | |�0,U

−3,0;C (AC ≤2C)
| |1 | |�0,U

1,0;C (AC ≤2C)

+ 1

2
| |1| |�0,U

−3,0;C (AC ≤2C)
����j−C ����2�0,U

0,0;C (AC ≤2C)
| |1 | |2

�0,U
1,0;C (AC ≤2C)

+ ||1| |�0,U
−2,0;C (AC ≤2C)

����dj−C �����0,U
−1,0;C (AC ≤2C)

| |1 | |�0,U
1,0;C (AC ≤2C)

≤ 2C2

(4.45)

where we also used the fact that | |1| |�0,U
−;,0;C (AC ≤2C)

≤ 2C; if ; > 0, which follows from

Definition 4.19 using AC ≤ 2C .

Remember that [�B (�) ]2,0 ∧k%C = 0 by the ASD condition and [�B (�) ]1,1 ∧k%C = 0 by the

Fueter condition (cf. �eorem 4.15). By Proposition 4.23, we therefore have:

�����B (�) ∧k%C �����0,U
−2,0;C (AC ≤2C)

≤
����[�B (�) ] (0,2) ∧k%C �����0,U

−2,0;C (AC ≤2C)

≤
����[�B (�) − �\ |! ] (0,2) �����0,U

−2,0;C (AC ≤2C)
·
����k%C ����

�0,U
0,0;C (AC ≤2C)

+
�����\ |! �����0,U

0,0;C (AC ≤2C)
·
����k%C ����

�0,U
0,0;C (AC ≤2C)

· | |1| |�0,U
−2,0;C (AC ≤2C)

≤ 2C2,

(4.46)

where we again used Proposition 4.21. Last, note that by Proposition 4.23 and Eq. (4.45)

we have
������C

����
�0,U
−4,0;C (AC ≤2C)

≤ C2 because the weight function in this region is uniformly
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bounded from above and below by 2C2. �us, by Proposition 4.21 and Eq. (4.35):

������C
∧ (k#C −k%C )

����
�0,U
−2,0;C (AC ≤2C)

≤
������C

����
�0,U
−4,0;C (AC ≤2C)

����k#C −k%C
����
�0,U
2,0;C (AC ≤2C)

≤ 2C .
(4.47)

Pu�ing the estimates from Eqs. (4.45) to (4.47) together, we get

����∗(��C
∧k#C )

����
�0,U
−2,0;C (AC ≤2C)

≤
�����B (�) ∧k%C )�����0,U

−2,0;C (AC ≤2C)
+

����(�B (�) − ��C
) ∧k%C

����
�0,U
−2,0;C (AC ≤2C)

+
������C

∧ (k#C −k%C )
����
�0,U
−2,0;C (AC ≤2C)

≤ 2 (C2 + C2 + C) ≤ 2C .

2. On 2C ≤ AC ≤ '/2 we have �C = �∞ + f + 1 and therefore

��C
= �\ + [f, 1] + �B (�) − ��∞ . (4.48)

First,

����(�B (�) − ��∞) ∧k%C
����
�0,U
−2,0;C (2C≤AC ≤'/2)

≤
������ [�B (�) − ��∞

]
2,0

∧k%C
������
�0,U
−2,0;C (2C≤AC ≤'/2)

≤
������ [�B (�) − ��∞

]
2,0

������
�0,U
−2,0;C (2C≤AC ≤'/2)

����k%C ����
�0,U
0,0;C (2C≤AC ≤'/2)

≤ 2C2,

(4.49)

where we used point (ii) of �eorem 4.15 in the first step and Proposition 4.23 in the last

step. We also have

����(�B (�) − ��∞) ∧ (k#C −k%C )
����
�0,U
−2,0;C (2C≤AC ≤'/2)

≤
����(�B (�) − ��∞)

����
�0,U
−4,0;C (2C≤AC ≤'/2)

����k#C −k%C
����
�0,U
2,0;C (2C≤AC ≤'/2)

≤ 2C

(4.50)
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where we used Proposition 4.23 and Eq. (4.35), therefore

����(�B (�) − ��∞) ∧k#C
����
�0,U
−2,0;C (2C≤AC ≤'/2)

≤
����(�B (�) − ��∞) ∧k%C

����
�0,U
−2,0;C (2C≤AC ≤'/2)

+
����(�B (�) − ��∞) ∧ (k#C −k%C )

����
�0,U
−2,0;C (2C≤AC ≤'/2)

≤ 2C .

(4.51)

Second,

����[f, 1] ∧k#C ����
�0,U
−2,0;C (2C≤AC ≤'/2)

≤ 2 | |f | |�0,U
−3,0;C (2C≤AC ≤'/2)

| |1 | |�0,U
1,0;C (2C≤AC ≤'/2)

����k#C ����
�0,U
0,0;C (2C≤AC ≤'/2)

≤ 2C4

(4.52)

by Proposition 4.33.

�ird,

�����\ ∧k#C ����
�0,U
−2,0;C (2C≤AC ≤'/2)

≤ ||�\ ∧k | |�0,U
−2,0;C (2C≤AC ≤'/2)

+ ||�\ | |�0,U
0,0;C (2C≤AC ≤'/2)

����k#C −k
����
�0,U
−2,0;C (2C≤AC ≤'/2)

≤ 2C2

(4.53)

where we used the fact that \ is a�2-instanton with respect tok as well as Eq. (4.40) in

the second step. So, altogether

����∗(��C
∧k#C )

����
�0,U
−2,0;C (2C≤AC ≤'/2)

≤
�����\ ∧k#C ����

�0,U
−2,0;C (2C≤AC ≤'/2)

+
����[f, 1] ∧k#C ����

�0,U
−2,0;C (2C≤AC ≤'/2)

+
����(�B (�) − ��∞) ∧k#C

����
�0,U
−2,0;C (2C≤AC ≤'/2)

≤ 2C

by combining Eqs. (4.48) and (4.51) to (4.53).

119



3. On '/2 ≤ AC ≤ ' we have �C = \ + j+C f and therefore

��C
= �\ + j+C d\f + 1

2
(j+C )2 [f, f] + dj+C ∧ f.

�erefore, we find that

������C
− �\

����
�0,U
−2,0;C ('/2≤AC )

≤
����j+C �����0,U

0,0;C ('/2≤AC )
| |d\f | |�0,U

−4,0;C ('/2≤AC )
| |1| |�0,U

2,0;C ('/2≤AC )

+ 1

2

����j+C ����2�0,U
0,0;C ('/2≤AC )

| |f | |2
�0,U
−3,0;C ('/2≤AC )

| |1| |�0,U
4,0;C ('/2≤AC )

+
����dj+C �����0,U

0,0;C ('/2≤AC )
| |f | |�0,U

−3,0;C ('/2≤AC )
| |1| |�0,U

1,0;C ('/2≤AC )

≤ 2C2

where we used Propositions 4.21, 4.32 and 4.33 in the second step. Using this, we see

������C
∧k#C

����
�0,U
−2,0;C ('/2≤AC )

≤
����(��C

− �\ ) ∧k#C
����
�0,U
−2,0;C ('/2≤AC )

+
�����\ ∧k#C ����

�0,U
−2,0;C ('/2≤AC )

≤ 2C2,

where we used the fact that k#C = k where AC ≥ '/2 and that \ is a �2-instanton with

respect tok .

We have that ��C
∧k#C = 0 outside the three considered regions, which proves the claim. �

Corollary 4.54. �ere exists 2 > 0 such that

������∗(��C
∧ k̃#C )

������
�0,U
−2,0;C

≤ 2C1/18. (4.55)

Proof. First, observe that

������C

����
�0,U
−2,0;C

≤ 2. (4.56)

�is follows from estimating ��C
separately on the three regions from the proof of Proposi-

120



tion 4.43. �en

������∗(��C
∧ k̃#C )

������
�0,U
−2,0;C

≤
����∗(��C

∧k#C )
����
�0,U
−2,0;C

+
������∗(��C

∧ (k̃#C −k#C ))
������
�0,U
−2,0;C

≤
����∗(��C

∧k#C )
����
�0,U
−2,0;C

+
������C

����
�0,U
−2,0;C

������k̃#C −k#C
������
�0,U
0,0;C

≤ 2 (C + C1/18) ≤ 2C1/18

where we used Proposition 4.43 to estimate the first summand in the last step, and Eqs. (4.42)

and (4.56) to estimate the second summand in the last step. �

As promised, we now turn to the special case of resolutions of ) 7/Γ, rather than general �2-

orbifolds. We get a be�er pregluing estimate here, which is due to the following two facts:

first, we get a be�er estimate for ∗(��C
∧ k#C ) on the resolution of ) 7/Γ, because near the

associative,�C is close to B (�), which is close to being a �2-instanton with respect tok%C , and

Proposition 4.37 says that k#C − k%C is small. Second, the difference k̃#C − k#C is smaller on

resolutions of ) 7/Γ than in the general case.

Corollary 4.57. Let #C be the resolution of ) 7/Γ from Section 3.2. �en there exists 2 > 0 such

that for all C ∈ (0,) ) we have

������∗(��C
∧ k̃#C )

������
�0,U
−2,0;C

≤ 2C2 . (4.58)

Proof. We first prove

����∗(��C
∧k#C )

����
�0,U
−2,0;C

≤ 2C2 . (4.59)

as in Proposition 4.43, the only difference being that Eq. (4.38) in Eqs. (4.47) and (4.50) gives a

factor of C2 rather than C , yielding Eq. (4.59). For small enough U ∈ (0, 1) we have that

������k̃#C −k#C
������
�0,U
0,0;C

≤ 2C5/2 (4.60)

by �eorem 3.84. Taking Eqs. (4.59) and (4.60) together gives Eq. (4.58) as in the proof of

Corollary 4.54. �
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4.3 Linear Estimates

We now arrived in the second step of the three step process of (1) constructing an approxim-

ate solution, (2) estimating the linearisation of the instanton equation, and (3) perturbing the

approximate solution to a genuine solution. �e estimate in question is Proposition 4.77. It

makes use of the norms | |·| |XC
and | |·| |YC

that are defined in Section 4.3.1, and the analysis is

analogous to Section 3.2.3.

�e idea of the proof is this: near the resolution locus of the associative !, the linearisation of

the instanton equation is approximately equal to the linearisation of the Fueter equation. De-

formations of the approximate solution and deformations of the Fueter section live in different

spaces, so some work will need to go into making this statement precise.

Over the course of Sections 4.3.3 to 4.3.5 we work out an estimate for the linearised operator

modulo deformations of the approximate instanton that come from deformations of the Fueter

section. �is estimate is given in Proposition 4.105. Its proof is very similar to the proof of

Proposition 3.65: we use a Schauder estimate for the linearised operator, which is given in

section Section 4.3.4, together with analysis on the local models ℝ3 ×-EH and ℝ3 ×ℂ
2/{±1},

which is explained in Section 4.3.3.

So we have estimates for the linearised operator on instanton deformations that come from

deformations of the Fueter section from Section 4.3.2 and on the other instanton deformations

from Section 4.3.5. In Sections 4.3.6 and 4.3.7 we combine both and complete the proof of

Proposition 4.105.
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4.3.1 Stating the Estimate

In the previous section, we constructed a connection �C ∈ � (�C ). �e linearisation of the

�2-instanton equation together with the Coulomb gauge condition is

!C := !�C
: (Ω0 ⊕ Ω

1) (",Ad�) → (Ω0 ⊕ Ω
1) (",Ad �)

©«
b

0

ª®®¬
↦→

©«
0 d∗�C

d�C
∗(k̃#C ∧ d�C

)

ª®®¬
©«
b

0

ª®®¬
,

cf. Eq. (2.103). We introduce the following notation for the constant part and the quadratic

part of the �2-instanton equation: for 0 = (b, 0) ∈ (Ω0 ⊕ Ω
1) (#C ,Ad�C ) define 4C as well as

&C (0) ∈ Ω
0 (#C ,Ad�C ) via

∗ (��C+0 ∧ k̃#C ) + d�C+0b

= ∗(��C
∧ k̃#C )︸         ︷︷         ︸

=:4C

+ ∗ (d�C
0 ∧ k̃#C ) + d�C

b + 1

2
∗ ([0 ∧ 0] ∧ k̃#C ) + [b, 0]︸                             ︷︷                             ︸

=:&C (0)

. (4.61)

In this section we will study the operator !C and derive an estimate for the operator norm of

the inverse of !C . �is operator norm will be taken with respect to the complicated norms

| |·| |X and | |·| |Y, taken from [Wal17, Section 8], which we will explain now.

We need a way to decompose elements in Ω
1 (#C ,Ad�C ) into a part coming from a section of

B∗ (+M), which is nonzero only near the gluing area, and a rest:

Definition 4.62. �e section B gives rise to a connection B (�) ∈ � (B (�)) by �eorem 4.15. A

section 5 ∈ Γ(B∗+M) analogously defines an element in )B (�)� (B (�)) = Ω
1 (%,Ad B (�)), say

8∗ 5 . Use this to define

]C : Γ(B∗+M) → Ω
1 (#C , g�C )

5 ↦→ j+C · 8∗ 5 .
(4.63)
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Further define cC : Ω
1 (#C ,Ad�C ) → Γ(B∗+M) for 0 ∈ Ω

1 (#C ,Ad�C ) and G ∈ ! by

(cC0) (G) :=
∑
^

∫
%G

〈0, ]C^〉6%C vol6%C |%G ·^, (4.64)

where ^ runs through an orthonormal basis of (+M)B (G) with respect to the inner product

〈]C ·, ]C ·〉6C
%
. Here the integral is taken with respect to the metric induced by i%C restricted to %G .

Let further cC := ]CcC and [C := Id−c C .

�e following proposition states that ]C and cC are bounded operators. �e proof of these

estimates is similar to the proofs of Propositions 3.45 and 3.48 and [Wal17, Proposition 6.4].

Proposition 4.65. For ; ≤ −1 and X ∈ ℝ such that ; − U + X > −3 and ; + X < −1 there is a

constant 2 > 0 such that for all C ∈ (0,) ) we have

| |]C 5 | |�0,U
;,X ;C

≤ 2C−1−; | | 5 | |�0,U and

| |cC0 | |�0,U ≤ 2C1+;−U | |0 | |�0,U
;,X ;C

(+[0,'),C ) .

Proof. �e first inequality is proved like Proposition 3.45.

To prove the second inequality, note that by Proposition 2.50 we have for G ∈ !, ^ ∈ (+M)B (G)

|8∗^ |6%1 ≤ 2^ (1 + Ǎ )−3

for a constant 2^ depending on G ∈ ! and on ^. Because (+M)B (G) is a finite-dimensional

vector space we can take 2 = max | |^ | |
!2,6%

1
=1 2^ to get the estimate

|8∗^ |6%1 ≤ 2 (1 + Ǎ )−3 | |^ | |6%1 ,!2 (4.66)

for a constant 2 independent of^. By compactness of !, we can assume 2 to also be independent

of G ∈ !. By measuring in 6%C instead of 6%1 we get from Eq. (4.66):

|8∗^ |6%C = C−1 |8∗^ |6%1 ≤ 2C2 (C + CǍ )−3 | |^ | |6%1 ,!2 . (4.67)

For some interval � ⊂ ℝ and G ∈ ! we denote %G,� := {D ∈ %G : Ǎ (D) ∈ � } and similarly for
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(a/{±1})G,� . By abuse of notation we write vol6%C for vol6%C |%G ∈ Ω
4(%G ) and similarly for vol6aC .

∫
%G

〈0, j+C · 8∗^〉6%C vol6%C ≤
∫
%G

|0 |6%C |j
+
C · 8∗^ |6%C vol6%C

≤ 2
∫
%G,[0,1]

C2

(C + CǍ )3F
−1
;,X ;C vol6%C

| |0 | |!∞
;,X ;C

,6%C
| |^ | |!2,6%1

+ 2
∫
%G,[1,'C−1 ]

C2

(C + CǍ )3F
−1
;,X ;C vol6%C

| |0 | |!∞
;,X ;C

,6%C
| |^ | |!2,6%1

≤ 2 vol6%C (%G , [0, 1]) · C
;−1 | |0 | |!∞

;,X ;C
,6%C

| |^ | |!2,6%1

+ 2
∫
(a/{±1})G,[0,'C−1 ]

C2

(C + CǍ )3F
−1
;,X ;C vol6aC | |0 | |!∞

;,X ;C
,6%C

| |^ | |!2,6%1

≤ 2C;+3 | |0 | |!∞
;,X ;C

,6%C
| |^ | |!2,6%1

+ 2
∫ √

C

0

C2−X (C + A );+X−3A 3 dA · | |0 | |!∞
;,X ;C

,6%C
| |^ | |!2,6%1

+ 2
∫ '

√
C

C2A ;−X (C + A )−3A 3 dA · | |0 | |!∞
;,X ;C

,6%C
| |^ | |!2,6%1 .

(4.68)

Here we used Eq. (4.67) in the second step. In the third step, we switched from integrating

over %G, [1,'C−1 ] to integrating over aG, [1,'C−1 ] . We could do this because CǍ on % corresponds to

the radius function A on a , and 6%C |%G,[1,'C−1 ] − d
∗6aC |%G,[1,'C−1 ] → 0 measured in 6aC as C → 0 by

Eqs. (3.93) and (3.100). �e la�er implies that we can change vol6%C
to vol6aC by Proposition A.4.

We used the definition of F;,X ;C and changing into sphere coordinates in the fourth step.

We now treat the two integrals separately.

∫ √
C

0

(C + A );+X−3A 3 dA =
[
(A + C)X+;

(
− 3C

X + ; −
C3

(−2 + X + ;) (A + C)2

+ 3C2

(−1 + X + ;) (A + C) +
A + C

1 + X + ;

)]√C
0

≤ 2 (CX+;+1 + CX/2+;/2+1/2)

≤ 2CX+;+1,

(4.69)
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where we used a computer algebra system to compute the integral in the first step and used

X + ; + 1 < 0 in the third step. For the second integral we find that

∫ '

√
C

A ;−X (C + A )−3A 3 dA ≤
∫ '

√
C

A ;+1−X dA

≤
[
A ;+1−X

]'
√
C

≤ C; · C−;/2−X/2−1/2 · C1 + 2

≤ 2C;+1

(4.70)

where we used the fact that −; − X − 1 > 0 to estimate the first summand in the last step, and

the fact that ; ≤ −1 to estimate the second summand in the last step.

Combining Eqs. (4.68) to (4.70) we get

∫
%G

〈0, jC · 8∗^〉6%C vol6%C ≤ 2C3+; | |0 | |!∞
;,X ;C

| |^ | |!2,6%1 . (4.71)

If ^1, ^2 ∈ (+MC )B (G) , then

〈j+C · 8∗^1, j+C · 8∗^2〉!2,6%C ∼ 〈8∗^1, 8∗^2〉!2,6%C
∼ C2〈8∗^1, 8∗^2〉!2,6%1 ,

(4.72)

where ∼ means comparable uniformly in C . Here, in the second step we used the fact that

vol6%C |%G = C4 vol6%1 |%G
and 〈^1 (~), ^2 (~)〉6%C = C−2〈^1 (~), ^2 (~)〉6%1 for ~ ∈ %G . Equation (4.72)

implies that if ^ has unit length with respect to the inner product 〈]C ·, ]C ·〉6%C , then

| |^ | |!2,6%1 ≤ 2C−1 . (4.73)

Because | |·| |!2,6%1 and | |·| |!∞,6%1 are norms on a finite-dimensional vector space, they are equi-

valent, and thus

| |^ | |!∞,6%1 ≤ 2C−1 . (4.74)

Combining Eqs. (4.71), (4.73) and (4.74) and recalling the definition of cC from Definition 4.62
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gives

| |cC0 | |!∞ ≤
�����
∑
^

∫
%G

〈0, ]C^〉6%C vol6%C |%G

����� · | |^ | |!∞,6%1
≤ 2C1+; | |0 | |!∞

;,X ;C
.

�e estimate for the | |·| |�0,U Hölder norm follows analogously. �

We are now ready to define the norms which we will use to prove estimates for the operator

!C :

Definition 4.75. Denote by XC and YC the Banach spaces �1,U (#C , (Λ0 ⊕ Λ
1) ⊗ Ad�C ) and

�0,U (#C , (Λ0 ⊕ Λ
1) ⊗ Ad�C ) equipped with the norms

����0����
XC

:= C−X/2
����[C0�����1,U

−1,X ;C
+ C

����cC0�����1,U and

����0����
YC

:= C−X/2
����[C0�����0,U

−2,X ;C
+ C

����cC0�����0,U

(4.76)

respectively.

Using these norms, we can now state the main result of this section:

Proposition 4.77. Let#C be the resolution of)
7/Γ from Section 3.2. Let B be the Fueter section and

\ be the �2-instanton used in the construction of �C (cf. Proposition 4.27). If B is infinitesimally

rigid and \ is infinitesimally rigid and irreducible, then there exists a constant 2 > 0 which is

independent of C such that for small enough C and all 0 ∈ (Ω0 ⊕ Ω
1) (#C ,Ad�C ):

����0����
XC

≤ 2
����!C0����YC

. (4.78)

Unfortunately, we are restricted to the case where #C is a resolution of ) 7/Γ. �e reason

for this is that in this case we have improved control over the �2-structure ĩ
#
C as proved in

Proposition 4.37 and �eorem 3.84. �e proof of the proposition extends over the rest of this

section.
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4.3.2 Comparison with the Fueter Operator

Given an element E ∈ Γ(B∗+M) one may do two different things to it: either embed it into

Ω
1 (#C ,Ad�C ) first, and then apply !C . Or apply the linearised Fueter operator first, and then

embed it into Ω
1 (#C ,Ad�C ).

Compare this situation with Section 3.2.3: there we considered an element in Ω
0 (!) and could

either embed it into Ω
2(#C ) first, and then apply Δ#C

. Or we could apply Δ! first, and then

embed it into Ω
2 (#C ). In that case it turned out that the two are the same up to a small error,

cf. Proposition 3.55.

In this new situation this still turns out the be true with a similar proof. In [Wal17], Fueter

sections into a moduli bundle of ASD-instantons on ℝ
4 were considered, and the following

proposition was proved in that se�ing. In this chapter ASD-instantons on-EH are considered,

but the proof works essentially the same way. �at said, we do need that k̃#C −k%C is small. �is

is true on resolutions of) 7/Γ by Proposition 4.37 and�eorem 3.84 but not proved for general

resolutions of �2-orbifolds. Consequently, we only know the following two propositions to

hold on resolutions of ) 7/Γ.

Proposition 4.79 (Proposition 8.26 in [Wal17]). Let #C be the resolution of)
7/Γ from Section 3.2.

�ere exists a constant 2 > 0 such that for all C ∈ (0,) ) and all E ∈ Γ(B∗+M) the following

estimate holds:

| |!C ]CE − ]C dBFE | |�0,U
−2,0;C

≤ 2C2 | |E | |�1,U . (4.80)

�e following proposition is a consequence of Proposition 4.79 that is proved like Propos-

ition 3.61. It essentially provides the estimate for the inverse of !C on the space ImcC ⊂

Ω
1 (#C ,Ad�C ).

Proposition 4.81. Let #C be the resolution of ) 7/Γ from Section 3.2. If B is infinitesimally rigid,

then there exists a constant 2 > 0 such that for all C ∈ (0,) ) and all E ∈ Γ(B∗+M) the following
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estimate holds:

| |E | |�1,U ≤ 2 | |cC!C ]CE | |�0,U . (4.82)

4.3.3 �e Model Operators on ℝ
3 × -EH and ℝ

3 × ℂ
2/{±1}

As before, let -EH be the Eguchi-Hanson space. To prove the estimate in Proposition 4.77, we

will compare the operator !C with the linearised instanton equation in the model case of a

pulled back ASD instanton on ℝ
3 × -EH.

Properties of the Model Operator

Let � be a finite energy ASD instanton on a�-bundle � over -EH. �e infinitesimal deforma-

tions of� are then governed by the operator X� from Eq. (2.31). Denote by ?-EH : ℝ3 ×-EH →

-EH the projection onto the second factor. By a slight abuse of notation we denote the pull-

backs of � and � to ℝ3 × -EH under ?-EH by � and � as well.

Denote by !� be the linearised�2-instanton operator from Eq. (2.105). We can define the map

( · )♯yi : ?∗
ℝ3)

∗
ℝ

3 ≃→ ?∗-EH
Λ
+) ∗-EH, which takes a 1-form, dualises it, and plugs it into the

product �2-structure i from Eq. (2.27). It maps dG8 to −l8 . Using it, we can relate X� and !�

as follows:

Proposition 4.83 (Proposition 2.70 in [Wal13b]). Under the identification

( · )♯yi : ?∗
ℝ3)

∗
ℝ

3 ≃→ ?∗-EH
Λ
+) ∗-EH

and accordingly

Ω
0 ⊕ Ω

1 (ℝ3 × -EH,Ad�) ≃ Ω
0 (ℝ3 × -EH, ?

∗
-EH

[(ℝ ⊕ Λ
+) ∗-EH ⊕ ) ∗-EH) ⊗ Ad �])

the operator !� can be wri�en as !� = � + �� where

� (b,l, 0) =
3∑
8=1

(−〈m8l,l8〉, m8b · l8 , �8 m80) and �� =
©«
0 X�

X∗� 0

ª®®¬
.
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Moreover,

!∗�!� = Δℝ3 +
©«
X�X

∗
�

X∗�X�

ª®®¬
. (4.84)

Recall the weighted Hölder norms | |·| |�0,U
V

on ℝ
3 × -EH from Definition 3.40. �e following

proposition is then a consequence of Lemma 3.38:

Proposition 4.85 (Proposition 2.74 in [Wal13b]). Let -̃ be an ALE space. Let V ∈ (−3, 0). �en

0 ∈ �1,U
V

is in the kernel of !� : �
1,U
V

→ �0,U
V−1 if and only if it is given by the pullback of an element

of the !2 kernel of X� to ℝ
3 × -̃ .

Comparison with !C

We now explain two maps B% and Ba : the first for ”zooming into” the resolution locus of the

associative !, the second for ”zooming into” the gluing region of#C . Fix a point~ ∈ !, a scaling

parameter 3 ∈ ℤ, a gluing parameter C ∈ (0,) ), and two positive real numbers n1, n2 defining

the scale of the region into which to zoom in.

Let

+ %n1,n2;C (~) := {G ∈ % : f (G) ∈ Im(exp~ | (−n1,n1)3 ), Ǎ (G)C < n2} ⊂ %,

* %
n1/C,n2/C ;C := {(G, I) ∈ ℝ

3 × -EH : G ∈ (−n1/C, n1/C)3, d (I) < n2/C}.

Here we implicitly used an identification)~! ≃ ℝ
3 to have exp~ acting on (−n1, n1)3. Choose

this identification so that it maps the orthonormal basis 41 (~), 42 (~), 43 (~) ∈ ) ∗
~! from Sec-

tion 3.3.3 to the standard basis dG1, dG2, dG3 ∈ Λ
1 ((ℝ3)∗). Fix an element 5 ∈ Fr~ of the

unitary frame bundle of a around ~ ∈ !. It induces an isometry -EH ≃ %~ , and assume that

5 is chosen so that l8 is sent to ľ8 |%~ under this map for 8 ∈ {1, 2, 3}. �en, for small n1, we

define

�% : * %
n1/C,n2/C ;C → + %n1,n2;C (~)

(G, I) ↦→ PB ↦→exp~ (CBG) ( 5 (I)) ∈ %.
(4.86)
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Here, B ↦→ exp~ (BG) denotes the unique shortest geodesic from~ to exp(CG) in!, andPB ↦→exp~ (CBG)

denotes parallel transport in % with respect to �̆ along this curve, cf. the paragraph before

Eq. (3.98). For n1 small enough, this is a diffeomorphism. �e reason for this definition is the

following: because of our choices of identifications )~! ≃ ℝ
3 and %~ ≃ -EH we have that

(�% )∗(i%C ) (0, I) is the standard�2-structure on ℝ
3 × -EH, for all I ∈ -EH, cf. Eq. (3.98). Let 0

be a tensor field of valence (?, @), i.e. in index notation ? lower indices and @ upper indices,

on + %n1,n2;C (~). We then define

B% (0) := B%,n1,n2
3,~;C

(0) := C3+?−@ (�% )∗0, (4.87)

which is a tensor on *n1/C,n2/C ;C . �e point of this is the following proposition:

Proposition 4.88. �ere are constants 2 > 0 and n > 0 such that for small C the following holds:

for all n1, n2 ∈ (0, n) and for all 0 ∈ (Ω0 ⊕ Ω
1) (#C , �C ):

������B%,n1,n23,C ;~
0
������
!∞
;+X (*

%
n1/C,n2/C ;C

)
∼ C3+;

����0����
!∞
;,X ;C

(+ %
n1,n2

(~)) , (4.89)

������B%,n1,n2
3,C ;~

0
������
�:,U
;+X (*

%
n1/C,n2/C ;C

)
∼ C3+;

����0����
�:,U
;,X ;C

(+ %√
C,
√
C
(~)) , (4.90)

where ∼means comparable independently of C . Furthermore, using the Hyperkähler isomorphism

%~ ≃ -EH induced by 5 , we can view the connection B (�) over %~ as a connection over -EH,

denoted by 5∗(B (~)). �en

����
����!C0 −

(
B
%,
√
C,
√
C

2,C ;~

)−1
!?∗

-EH
5∗ (B (~))B

%,
√
C,
√
C

1,C ;~ 0

����
����
�0,U
−2,X ;C (+

%√
C,
√
C
(~))

≤ 2
√
C
����0����

�1,U
−1,X ;C (+

%√
C,
√
C
(~)) . (4.91)

Proof. We first prove Eq. (4.89): for (0, I) ∈ *n1/C,n2/C ;C the map d(0,I)�
% (cf. Eq. (4.86)) is an

isometry for the metric C2 (6ℝ3 ⊕ 6(1) ) on)(0,I) (ℝ3 ×-EH) and the metric on)�% (0,I)% induced

by 6%C . Because of the scaling factor C
3+?−@ from Eq. (4.96) we have that

|B%,n1,n2
3,C ;~

0(0, I) |6
ℝ3 ⊕6(1) = C

3 |0(�% (0, I)) |6%C . (4.92)

�e map �% is not, in general, an isometry away from this one point, as exp~ need not be an

isometry. �us, Eq. (4.92) need not hold in points different from (0, I). However, using Taylor
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expansions in a neighbourhood of ~ in ! for 0 and 6%C we get

������B%,n1,n23,C ;~
0
������
!∞
;+X (*n1/C,n2/C ;C )

∼ C3+;
����0����

!∞
;,X ;C

(+n1,n2 (~)),6%C
.

Now Eq. (4.36) and Proposition 4.41 give the claim for the metric 6̃#C instead of 6%C , which is

Eq. (4.89). Equation (4.90) is proved analogously.

Now to prove Eq. (4.91): as in Eq. (4.92), we see that for G ∈ %~ , Ǎ (G) < 1/
√
C ,

!B (�)0(G) −
((
B
%,
√
C,
√
C

2,C ;~

)−1
!?∗

-EH
5∗ (B (~))B

%,
√
C,
√
C

1,C ;~ 0

)
(G) = 0. (4.93)

And �C − B (�) = O(1) on %~ , so

����
����!C0 −

((
B
%,
√
C,
√
C

2,C ;~

)−1
!?∗

-EH
5∗ (B (~))B

%,
√
C,
√
C

1,C ;~ 0

)����
����
�0,U
−2,X ;C ( {D∈%~ :Ǎ (D)<1/

√
C })

≤ 2 | | [�C − B (�), 0] | |�0,U
−2,X ;C ( {D∈%~ :Ǎ (D)<1/

√
C })

≤ 2 | |0 | |�0,U
−1,X ;C ( {D∈%~ :Ǎ (D)<1/

√
C }) | |�C − B (�) | |�0,U

−1,0;C ( {D∈%~ :Ǎ (D)<1/
√
C })

≤ 2
√
C | |0 | |�0,U

−1,X ;C ( {D∈%~ :Ǎ (D)<1/
√
C })

≤ 2
√
C
����0����

�1,U
−1,X ;C ( {D∈%~ :Ǎ (D)<1/

√
C })

(4.94)

where in the third step we used �C − B (�) = O(1) to estimate the second factor as
√
C . �is

was possible because the weight function is bounded by
√
C on {D ∈ %~ : Ǎ (D) < 1/

√
C}.

Equation (4.91) now follows from using Taylor expansions for 0, 6%C , and B around ~, and com-

paring 6%C and 6̃#C as in the proof of Eq. (4.89). �

We now define Ba : let n1 > 0, n2 > n3 > 0, and

+ an1,n2,n3;C (~) := {G ∈ a/{±1} : f (G) ∈ Im(exp~ | (−n1,n1)3), n3 < A (G) < n2},

* a
n1/C,n2/C,n3/C ;C := {(G, I) ∈ ℝ

3 × ℂ
2/{±1} : G ∈ (−n1/C, n1/C)3, n3/C < |d (I) | < n2/C}.

Just as in the definition of + %n1,n2;C , we implicitly used an identification )~! ≃ ℝ
3 so that 48 is

sent to dG8 for 8 ∈ {1, 2, 3}. Recall also the frame 5 that sends l8 to ľ8 |%~ for 8 ∈ {1, 2, 3} under
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the isometry -EH ≃ %~ induced by 5 . We see from Eq. (3.97) that l
(0)
8 is sent to l̂8 |a~ under

the isometry ℂ
2/{±1} ≃ (a/{±1})~ induced by 5 . For small n1, n2, n3, the map

�a : * a
n1/C,n2/C,n3/C ;C → + an1,n2,n3;C (~)

(G, I) ↦→ Pa
B ↦→exp~ (CBG)

( 5 (I)) ∈ a/{±1}
(4.95)

is a diffeomorphism, where Pa denotes parallel transport in a with respect to the connection

∇̃a from Proposition 3.92. Because of our choices of identifications)~! ≃ ℝ
3 and (a/{±1})~ ≃

ℂ
2/{±1} we have that (�% )∗(iaC ) (0, I) is the standard�2-structure onℝ

3×ℂ2/{±1}, for all I ∈

ℂ
2/{±1}, cf. Eq. (3.96). We now define Ba just as we defined B% in Eq. (4.96), only exchanging

�% for �a : for a tensor field 0 of valence (?, @) on + an1,n2,n3;C (~) set

Ba (0) := Ba,n1,n2,n3
3,~;C

(0) := C3+?−@ (�a)∗0. (4.96)

In the following we use the norms from Definition 3.40. So, the notation �0,U
0 does not mean

zero boundary condition, but means that the weight function appears with powers of 0 and

0 + U in the two summands of the definition | |·| |�0,U
0
. We have the following analogue of Pro-

position 4.88:

Proposition 4.97. �ere are constants 2 > 0 and n > 0 such that for small C the following holds:

for all n1, n2 ∈ (0, n), n3 ∈ (C, n) and for all 0 ∈ (Ω0 ⊕ Ω
1) (#C , �C ):

������F a
;,X ;CB

a,n1,n2,n3
3,C ;~

0
������
!∞0 (* a

n1/C,n2 /C,n3/C ;C
)
∼ C3+;

����0����
!∞
;,X ;C

(+ a
n1 ,n2,n3

(~)) , (4.98)

������F a
;,X ;CB

a,n1,n2,n3
3,C ;~

0
������
�:,U
0 (* a

n1/C,n2 /C,n3/C ;C
)
∼ C3+;

����0����
�:,U
;,X ;C

(+ a
n1,n2 ,n3

(~)) , (4.99)

where ∼ means uniformly comparable in C and

F a
;,X ;C =



A−;−X if A ≤ 1/

√
C

A−;+X CX if A > 1/
√
C .

Furthermore, using the Hyperkähler isomorphism %~ ≃ -EH induced by 5 , we can view the connec-

tion B (�) over %~ as a connection over-EH. By Eqs. (2.41) and (2.43), this connection is asymptotic
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to a flat connection, say �0, on the orbifold ℂ2/{±1} with monodromy representation d . �en

����
����!C0 −

(
B
a,n1,n2,n3
2,C ;~

)−1
!?∗

ℂ2
�0
B
a,n1,n2,n3
1,C ;~ 0

����
����
�0,U
−2,X ;C (+

a
n1,n2 ,n3

(~))

≤ 2 (n1 + n2 + (C/n3)2)
����0����

�1,U
−1,X ;C (+

a
n1,n2 ,n3

(~)) ,

(4.100)

where ?ℂ2 : ℝ3 × ℂ
2/{±1} → ℂ

2/{±1} denotes the projection onto the second factor.

Proof. Equations (4.98) and (4.99) are proved as in Proposition 4.88.

We now prove Eq. (4.100). Adapting Eq. (4.94) to the area {D ∈ %~ : n3/C < Ǎ (D) < n2/C} we

get

����
����!C0 −

((
B%,n1,n22,C ;~

)−1
!?∗

-EH
5∗ (B (~))B

%,n1,n2
1,C ;~ 0

)����
����
�0,U
−2,X ;C ( {D∈%~ :n3/C<Ǎ (D)<n2/C })

≤ 2n2
����0����

�1,U
−1,X ;C ( {D∈%~ :n3/C<Ǎ (D)<n2/C })

.

(4.101)

We have
������?∗-EH

5∗(B (~)) −�0

������
�0,U
0;0

= O((d◦?-EH)−2) by Eq. (2.43) and the fact thatwe use X = −2

in our definition of moduli space (cf. Proposition 2.45). �us, for G ∈ %~ with n3/C < Ǎ (G)C < ',

����
(
B
%,
√
C,
√
C

2,C ;~

)−1 [
!?∗

-EH
5∗ (B (~)) − !?∗-EH

�0

]
B
%,
√
C,
√
C

1,C ;~ 0

����
6̃#C

(G) ≤ 2 (C/n3)2. (4.102)

Combining Eqs. (4.101) and (4.102) we get the desired Eq. (4.100) on %~ ∩ + an1,n2,n3 (~). Equa-

tion (4.100) then follows like Eq. (4.91) by taking Taylor expansions of 0, 6%C , and B around ~,

and this time comparing 6aC and 6̃
#
C using Eq. (3.93) and Propositions 3.99, 4.34 and 4.41. �

4.3.4 S�auder Estimate

On ./〈]〉 we have the estimate

����0����
�1,U ≤ 2

(����!\0�����0,U +
����0����

!∞

)

from standard elliptic theory, e.g. [Bes87, Section H]. With some additional work, we get an

estimate for weighted norms on ℝ
3 × -EH (see [Wal17, Proposition 8.15]), and can then glue
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these two estimates together to obtain:

Proposition 4.103 (Proposition 8.15 in [Wal17]). �ere exists 2 > 0 such that for all C ∈ (0,) )

the following estimate holds:

����0����
�1,U
−1,X ;C

≤ 2
(����!C0�����0,U

−2,X ;C
+

����0����
!∞−1,X ;C

)
. (4.104)

4.3.5 Estimate of [C0

�e following proposition is the crucial ingredient in the construction of solutions to the in-

stanton equation:

Proposition 4.105. �ere exists a constant 2 > 0 independent of C such that for C small enough

and for all 0 ∈ (Ω0 ⊕ Ω
1) (#C ,Ad�C ) the following estimate holds:

| |0 | |!∞−1,X ;C ≤ 2
(����!C0�����0,U

−2,X ;C
+

����c C0����!∞−1,X ;C
)
. (4.106)

Proof. Assume not, then there exist C8 → 0 and 08 such that

����08 ����!∞−1,X ;C8 ≡ 1, (4.107)

lim
8→∞

����!C80�����0,U
−2,X ;C8

= 0, (4.108)

lim
8→∞

����c C80����!∞−1,X ;C8 = 0. (4.109)

It follows from Proposition 4.103 that

����08 �����1,U
−1,X ;C

≤ 2. (4.110)

Let G8 ∈ #C8 such that

F−1,X ;C (G8 )
��08 �� (G8) = 1. (4.111)

Without loss of generality we can assume to be in one of three following cases, and we will

arrive at a contradiction in each of them.
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Case 1. “08 goes to zero near ! and on the neck”, i.e. if I8 ∈ #C8 such that AC8 (I8) → 0, then

F−1,X ;C (I8)
��08 �� (I8) → 0.

Without loss of generality, the sequence (G8 ) accumulates away from !, i.e. lim8→∞ AC8 (G8) > 0

(see Fig. 6).

+ + +

++++
+++++
+
+++
+++++++++++
+++++++++
++++++++++++
+ →

+ + +

++++
+++++
+
+++
+++++++++++
+++++++++
++++++++++++++
+

Nt

xxii

L

Y

xxii

Figure 6: Blowup analysis away from the associative is reduced to the analysis of \ on . .

Without loss of generality assume that G8 → G∗ ∈ ./〈]〉, where we used that (. \!)/〈]〉 ⊂ #C8 ,

cf. Definition 3.111. Now, using a diagonal argument and the Arzelà–Ascoli theorem, we find

that a subsequence of 08 converges to a limit 0∗ ∈ Ω
1 ((. \ !)/〈]〉,Ad�0) in �1,U/2

loc
. Denote by

c] : . → ./〈]〉 the quotient map, and denote by G̃8 an arbitrary li� of G8 , i.e. c] (G̃8) = G8 . By

passing to a subsequence we still have G̃8 → G̃∗ for some G̃∗ ∈ . . Denote also 0̃∗ := c∗
] 0

∗ ∈

(Ω0 ⊕ Ω
1) (Ad�0 |.\!).

Equation (4.108) implies that this limit satisfies !\ 0̃
∗
= 0 on . \ !. We can extend 0̃∗ to all of .

as a distribution, and we find that then !\ 0̃
∗
= 0 on . in the sense of distributions. By elliptic

regularity, e.g. [Fol95, �eorem 6.33], we have that 0̃∗ is smooth.

Lastly, we note that Eq. (4.111) implies 0̃∗(G̃∗) ≠ 0. By assumption, \ is infinitesimally rigid and

irreducible, which is a contradiction.

Case 2. “�e sequence does not go to zero near !”, i.e. there exists ~8 ∈ #C8 such that

C−18 AC8 (~8) 9 ∞, but F−1,X ;C (~8)
��08 �� (~8 ) 9 0.

Without loss of generality assume that this is the sequence (G8), i.e. lim8→∞ C−18 AC8 (G8 ) < ∞

(see Fig. 7).

136



+

Nt

xxii

R
3
×X

zzii

Figure 7: Blowup analysis near the associative is, by means of the map B% , reduced to the

analysis of the pull-back of the ASD instanton defined by B (f (~∗)) to ℝ
3 × -EH.

For 08 = (b8, 08 ) ∈ (Ω0 ⊕ Ω
1) (#C ,Ad �C ), let

18 :=
(
B
%,
√
C8 ,
√
C8

1,f (G8 ) ;C8 (b8), B
%,
√
C8 ,
√
C8

1,f (G8 ) ;C8 (08)
)
.

Proposition 4.88 then gives

����18 �����1,U
−1+X (*

%
1/√C8 ,1/

√
C8
) ≤ 2 and lim

8→∞

������!?∗
-EH

5∗B (f (G8 ))18

������
�0,U
−2+X

= 0.

Without loss of generality we can assume f (G8 ) → ~∗ ∈ !. By a diagonal argument and

the Arzelà–Ascoli theorem, we have 18 → 1∗ ∈ (Ω0 ⊕ Ω
1) (ℝ3 × -EH,Ad?

∗
-EH

5∗B (f (~∗))) in

�
1,U/2
loc

, satisfying !?∗
-EH

5∗B (f (~∗ ))1
∗ = 0. Proposition 4.85 implies that 1∗ = ?∗-EH

2, for some

2 ∈ Ker!5∗B (f (~∗ ) ⊂ Ω
1 (-EH, 5∗B (f (~∗))). Equation (4.109) implies that 2 = 0 like in Case 1 in

the proof of Proposition 3.65.

�is contradicts Eq. (4.111) as follows: denote by (I8) ⊂ ℝ
3 ×-EH the sequence corresponding

to (G8) under the map B
√
C,1/

√
C

1,C8 ;f (G8 ) . �en (I8) is a bounded sequence, as the ℝ3-coordinate of all

I8 is 0, and the -EH-coordinates are bounded by the assumption that lim8→∞ C−18 AC8 (G8) < ∞.

�us we can assume without loss of generality that I8 → I∗ ∈ ℝ
3 × -EH, and find that

F (I∗)1−X
��1∗(I∗)�� = lim

8→∞
F a
;,X ;C (I8)

1−X ��18 (I8)�� ≥ 1

2

by Proposition 4.88, which is a contradiction to 1∗ = 0.

Case 3. “�e sequence does not go to zero on the neck”, i.e. there exists ~8 ∈ #C8 such that

AC8 (~8) → 0, C−18 AC8 (~8) → ∞, butF−1,X ;C (~8 )
��08 �� (~8) 9 0.
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Assume without loss of generality that this is the sequence (G8 ), i.e. lim8→∞ C−18 AC8 (G8) = ∞ and

lim8→∞ AC8 (G8 ) = 0 (see Fig. 8).

+

+

+++++++++++++
+++++++++
++++++
++++++++
++++++++++++++++++++++++++++++++
++++++++++++++++++++++++++++++
++++++++++
++++++++++++++++++++++

Nt

xxii

+

R
3
× R

4

zzii

Figure 8: Blowup analysis in the neck region is reduced to the analysis of the flat�2-instanton

defined on the pull-back of the framing at infinity defined by B (f (~∗)) to ℝ3 ×ℝ
4.

Let

• n
(8)
2 such that n

(8)
2 → 0 and n

(8)
2 /AC8 (G8 ) → ∞,

• n
(8)
3 such that n

(8)
3 /AC8 (G8) → 0 and n

(8)
3 /C8 → ∞.

To ease notation, we write n2 instead of n
(8)
2 and n3 instead of n

(8)
3 in what follows. As before,

write 08 = (b8, 08 ) ∈ (Ω0 ⊕ Ω
1) (#C ,Ad �C ), and set

18 := (Z8 , 18 ) :=
(
B
a,
√
C8 ,n2,n3

1,f (G8 ) ;C8 (b8), B
a,
√
C8 ,n2,n3

1,f (G8 ) ;C8 (08)
)

and denote by (I8) the sequence inℝ3×ℂ2/{±1} corresponding to (G8) under themap B
a,
√
C8 ,n2,n3

1,f (G8 ) ;C8 .

Equation (4.111) implies

|18 (I8) | ·F (I8) > 2, (4.112)

Proposition 4.97 and Eq. (4.110) imply that

������F a
;,X ;CB

a,n1,n2,n3
3,C ;~

0
������
�1,U
0 (* a

1/
√
C,n2/C,n3/C ;C

)
≤ 2, (4.113)

Proposition 4.97 and Eq. (4.108) imply that

������F a
;,X ;C!?∗-EH

�0
Ba,n1,n2,n31,C ;~ 0

������
�1,U
0 (* a

1/
√
C,n2/C,n3/C ;C

)
→ 0 as 8 → ∞. (4.114)
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We will now conclude the argument as in case 2. �e only difference is that, as it stands, the

points I8 tend to infinity. Because of this, we cannot directly conclude that a limit of 18 would

be non-zero. �at is why we rescale by |I8 | first. By passing to a subsequence we can assume

without loss of generality to be in case 3.1 or 3.2 as below:

Case 3.1.: |I8 | ≤ 1/√C8 . In this case let

1̃8 := (Z̃8, 1̃8 ) :=
(
|I8 |1−X (·|I8 |)∗Z8 , |I8 |−X (·|I8 |)∗18

)
. (4.115)

Equation (4.112) implies |̃18 (I8/|I8 |) | ·A 1−X (I8/|I8 |) = |̃18 (I8/|I8 |) | > 2, and Eq. (4.113) implies that

on the sets �3(0, 1/
√
C ) × [�4 (0, n2/|G8 |) \ �4 (0, n3/|G8 |)], which exhaust ℝ3 × (ℂ2/{±1} \ {0}),

we have:

��������

��������



1̃8A

1−X if A ≤ 1/(
√
C · |I8 |)

1̃8A
1+XCX |I8 |2X if A > 1/(

√
C · |I8 |).

��������

��������
�1,U
0 (�3 (0,1/

√
C )×[�4 (0,n2/ |G8 |)\�4 (0,n3/ |G8 |) ])

≤ 2. (4.116)

Here is how to arrive at the exponents of the weight function for Z̃8 in the area {(D, E) ∈

ℝ
3 × ℂ

2/{±1} : A (E) > 1/(
√
C · |I8 |)}:

Z̃8A
1+XCX |I8 |2X = (·|I8 |)∗Z8 |I8 |1+XA 1+XCX

= (·|I8 |)∗
[
Z8A

1+XCX
]
,

and Z8A
1+XCX was bounded by Eq. (4.113). �e exponents of the weight function on the area

{(D, E) ∈ ℝ
3 × ℂ

2/{±1} : A (E) > 1/(
√
C · |I8 |)} and also for the 1-form part 1̃8 are computed

analogously and precisely give Eq. (4.116). Now, because of Eq. (4.116), we can use the Arzelà-

Ascoli theorem and a diagonal sequence argument to extract a limit1∗ onℝ3×(ℂ2/{±1}\{0}).

We denote the pullback under the quotient map ℝ
3 × (ℂ2 \ {0}) → ℝ

3 × (ℂ2/{±1} \ {0}) by

the same symbol and end up with a tensor 1∗ on ℝ
3 × (ℂ2 \ {0}). Again, by passing to a

subsequence we can assume without loss of generality that we are in one of the following two

cases:

Case 3.1.1:
√
C8 |I8 | → 0 as 8 → ∞.
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In this case, the area {D ∈ ℝ
3 ×ℂ

2/{±1} : A (D) > 1/(
√
C · |I8 |)} disappears as 8 → ∞, and from

Eq. (4.116) we get the estimate

������1∗A 1−X ������
�
1,U/2
0 (ℝ3×(ℝ4\{0}))

≤ 2. (4.117)

�e element 1∗ defines a distribution on all ofℝ3×ℂ
2 and is smooth by elliptic regularity, e.g.

[Fol95, �eorem 6.33]. As in the proof of Proposition 3.65, we get an !∞-bound for 1∗. �us,

by Corollary 3.39, we get that 1∗ is independent of the ℝ3-direction. Because of Eq. (4.84) we

have that 1∗ is the pullback of a harmonic form of mixed degree (in degrees 0 and 1) on ℂ
2. So,

1∗ is harmonic and bounded on ℂ
2 by Eq. (4.117), therefore vanishes by Liouville’s theorem.

�at contradicts Eq. (4.112).

Case 3.1.2:
√
C8 |I8 | → ^ ∈ (0,∞) as 8 → ∞.

In this case, a�er passing to a subsequence, Eq. (4.116) gives the estimate

��������

��������



1∗A 1−X if A ≤ 1/^

1∗A 1+X if A > 1/^.

��������

��������
�1,U
0 (ℝ3×(ℂ2\{0})

≤ 2. (4.118)

Here is how to obtain this estimate: the assumption
√
C8 |I8 | → ^ implies that

√
C8 |I8 | > 2, at

least up to a subsequence. �us, we have CX · |I8 |2X < 2, and Eq. (4.116) becomes

��������

��������



1̃8A

1−X if A ≤ 1/(
√
C · |I8 |)

1̃8A
1+X if A > 1/(

√
C · |I8 |).

��������

��������
�1,U
0 (�3 (0,1/

√
C )×[�4 (0,n2/ |G8 |)\�4 (0,n3/ |G8 |) ])

≤ 2.

Here, taking the limit 8 → ∞ gives Eq. (4.118). In this case, we arrive at a contradiction as in

case 3.1.1.

Case 3.2.: |I8 | > 1/√C8 . In this case let

1̃8 := (Z̃8 , 1̃8 ) :=
(
CX |I8 |1+X (·|I8 |)∗Z8 , CX |I8 |X (·|I8 |)∗18

)
. (4.119)
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�is gives us the following analogue of Eq. (4.116):

��������

��������



1̃8A

1−XC−X |I8 |−2X if A ≤ 1/(
√
C · |I8 |)

1̃8A
1+X if A > 1/(

√
C · |I8 |).

��������

��������
�1,U
0 (�3 (0,1/

√
C )×[�4 (0,n2/ |G8 |)\�4 (0,n3/ |G8 |) ])

≤ 2. (4.120)

We can extract a limit1∗ as in case 3.1 and are, without loss of generality, in one of the following

two cases:

Case 3.2.1:
√
C8 · |I8 | → ∞ as 8 → ∞. In this case we have the estimate

������1∗A 1+X ������
�
1,U/2
0 (ℝ3×(ℝ4\{0}))

≤ 2 (4.121)

and arrive at a contradiction as in case 3.1.1.

Case 3.2.2:
√
C8 · |I8 | → ^ ∈ (0,∞) as 8 → ∞. In this case we have exactly Eq. (4.118) and can

conclude the proof as in case 3.1.2. �

4.3.6 Cross-term Estimates

In the beginning of Section 4.3 we explained the idea for the proof of the linear estimate.

Namely, we want to separately consider two parts of the linearisation of the instanton equa-

tion: the first part near the resolution locus of the associative !, which is approximately equal

to the linearisation of the Fueter equation. �e second part is the linearised operator modulo

deformations of the Fueter section. �ese parts were estimated in Sections 4.3.2 and 4.3.5.

However, it is not true that the linearised instanton operator neatly decomposes as a sum of

these two operators. We can take a deformation of the Fueter section, apply !C to it, and then

project it onto the part that does not come from a deformation of the Fueter section. In an

ideal world, !C near the resolution locus of the associative is exactly equal to the linearisation

of the Fueter equation and the result is 0. In reality, we do not have that the result is 0, but we

have that it is small. �at is Eq. (4.123). �ere is also, roughly speaking, the converse of this,

which is Eq. (4.124).
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�is proposition is the analogue of Proposition 3.77 from the estimate of the Laplacian on

the Generalised Kummer Construction. A crucial difference between the present case, i.e.

Proposition 4.122, and Proposition 3.77 is that we now get a worse cross-term estimate for

cC!C[C . For the Laplacian, we had a factor of roughly C
2, while now we have a factor of roughly

1. �e reason for this is that cC and Δ are very close to commuting. �e reason they do not

exactly commute is because of a cut-off that happens far away from !. For the linearised

instanton operator !C the situation is different: the connection �C was defined to look like \

already very close to !. �us, cC!C and dBFcC are far from being equal, which manifests itself

in this worse estimate.

Like the results from Section 4.3.2, this proposition has been proved in a slightly different

se�ing in [Wal17]. Again, the proof given therein carries over to our situation if we only have

thatk̃#C −k%C is small, which is true on resolutions of) 7/Γ by Proposition 4.37 and�eorem3.84.

Proposition 4.122 (Proposition 8.29 in [Wal17]). Let#C be the resolution of)
7/Γ from Section 3.2.

�ere exists a constant 2 > 0 such that for all C ∈ (0,) ) we have

| |[C!C ]CE | |�0,U
−2,0;C

≤ 2C2−U | |E | |�1,U (4.123)

as well as

����cC!C[C0�����0,U ≤ 2C−U
����[C0�����1,U

−1,0;C
. (4.124)

4.3.7 Proof of Proposition 4.77

Proof. Assume that the claim does not hold, and let C8 → 0, 08 ∈ (Ω0 ⊕ Ω
1) (#C ,Ad�C ) such

that
����08 ����XC

= 1, but
����!C08 ����YC

→ 0.

We first prove that

C
−X/2
8

����[C808 �����1,U
−1,X ;C8

→ 0. (4.125)
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We have that

����[C808 �����1,U
−1,X ;C8

≤
����!C8[C808 �����0,U

−2,X ;C8

≤
����[C8!C8[C808 �����0,U

−2,X ;C8
+

����c C8!C8[C808 �����0,U
−2,X ;C8

≤
����[C8!C0�����0,U

−2,X ;C8
+

����[C8!C8cC808 �����0,U
−2,X ;C8

+
����c C8!C8[C808 �����0,U

−2,X ;C8

≤
����[C8!C0�����0,U

−2,X ;C8
+ ||1| |�0,U

0,X ;C8

����[C8!C8cC808 �����0,U
−2,0;C8

+ C1−U
����cC8!C8[C808 �����0,U

≤ 2
(����[C8!C0�����0,U

−2,X ;C8
+ 2CX/2C2−U

����cC08 �����1,U + C1−2U
����[C808 �����1,U

−1,0;C

)

≤ 2
(����[C8!C0�����0,U

−2,X ;C8
+ O(CX/2+1−U ) + O(C1−2U+X/2)

)

where we used Proposition 4.105 in the first step; we used cC8 + [C8 = 1 in the second and

third steps; Propositions 4.21 and 4.65 in the fourth step; and Proposition 4.122 together with

| |1| |�0,U
0,X ;C8

≤ 2CX/2 in the fi�h step. Multiplying the last line with C
−X/2
8 , the last two summands

tend to zero as they are bounded by positive powers of C . �e first summand tends to zero by

the assumption
����!C08 ����YC

→ 0.

It remains to prove that

C8
����cC808 �����1,U → 0. (4.126)

We have that

lim
8→∞

C8
����cC808 �����1,U ≤ lim

8→∞
C8

����cC8!C8 ]C8cC808 �����0,U

≤ lim
8→∞

C8

(����cC!C0�����0,U +
����cC!C[C0�����0,U

)
≤ lim
8→∞

C8

(����cC!C0�����0,U + 2C−U
����[C0�����1,U

−1,0;C

)
.

where we used Proposition 4.81 in the first step, cC8 + [C8 = 1 in the second step, Proposi-

tion 4.122 in the third step. Here, the second summand tends to zero by Eq. (4.125), and the

first summand tends to zero by the assumption
����!C08 ����YC

→ 0. Altogether,
����08 ����XC

→ 0, which

is a contradiction. �
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4.4 �adratic Estimate

We state an estimate for the quadratic form&C from Eq. (4.61), where we denote its associated

bilinear form by the same symbol. �is statement is taken from [Wal17] and the proof can be

directly adapted to our slightly different se�ing.

Proposition 4.127 (Proposition 9.1 in [Wal17]). �ere exists a constant 2 > 0 such that for C ∈

(0, 1) we have

����[C&C (01, 02)�����0,U
−2,X ;C

≤ 2C−U
(����[C01�����0,U

−1,X ;C
·
����[C02�����0,U

−1,X ;C
+

����[C01�����0,U
−1,X ;C

·
����cC02�����0,U

+
����cC01�����0,U ·

����[C02�����0,U
−1,X ;C

+
����cC01�����0,U ·

����cC02�����0,U

)
(4.128)

and

C
����cC&C (01, 02)�����0,U

≤ 2C−U
(����[C01�����0,U

−1,X ;C
·
����[C02�����0,U

−1,X ;C
+

����[C01�����0,U
−1,X ;C

·
����cC02�����0,U

+
����cC01�����0,U ·

����[C02�����0,U
−1,X ;C

+ C
����cC01�����0,U ·

����cC02�����0,U

)
.

(4.129)

4.5 Deforming to Genuine Solutions

In this subsection we will complete the construction of �2-instantons and show that in two

favourable situations the �2-instanton \ and the Fueter section B can be glued together to a

�2-instanton on #C . �e favourable situations are:

1. �e Fueter section is a section of rigid ASD-instantons (cf. �eorem 4.130). �is implies,

in particular, that the Fueter section is infinitesimally rigid. In this case the map cC from

Definition 4.62 is just the zero map, which leads to be�er estimates of the quadratic part

&C of the instanton equation.

2. We are in the special situation of Eq. (4.58), where we resolved the orbifold ) 7/Γ.

�e main reason we are confined to these two favourable scenarios is the following: in Corol-
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laries 4.54 and 4.57 we proved a pregluing estimate with a good power of C1/18 in the general

case and a good power of C2 in the case of ) 7/Γ, roughly speaking. In Proposition 4.127 we

stated an estimate for the quadratic part of the instanton operator which in particular implies

����&C (01, 02)����Y ≤ C−2−U−X/2
����01����X ����02����X .

To apply the inverse function theorem, we would need the bad power C−2−U−X/2 from this

estimate to be absorbed by the good power from the pregluing estimate, but the pregluing

estimate is only good enough to do this in the case of the orbifold ) 7/Γ. If the Fueter section

is actually the constant section of a rigid ASD-instanton, then we have a be�er estimate for

the quadratic part of the instanton equation.

�eorem 4.130. Assume now that the section B is given by a rigid ASD-instanton in every point

G ∈ !, and assume that the connection \ used to define the approximate �2-instanton �C from

Proposition 4.27 is infinitesimally rigid.

�ere exists 2 > 0 such that for small C there exists 0C = (0C , bC ) ∈ �1,U (Ω0 ⊕ Ω
1 (Ad�C )) such

that �̃C := �C + 0C is a�2-instanton. Furthermore, 0C satisfies
����0C �����1,U

−1,X ;C
≤ 2C1/18.

�eorem 4.131. Let # → . ′ be the resolution of the orbifold . ′ = ) 7/Γ from before. Assume

that the connection \ used to define the approximate �2-instanton �C from Proposition 4.27 is

infinitesimally rigid and that B is an infinitesimally rigid Fueter section.

�ere exists 2 > 0 such that for small C there exists an 0C = (0C , bC ) ∈ �1,U (Ω0 ⊕ Ω
1 (Ad�C )) such

that �̃C := �C + 0C is a�2-instanton. Furthermore, 0C satisfies
����0C ����XC

≤ 2C2−2U .

�e proof of the theorems will use the following lemma:

Lemma 4.132 (Lemma 7.2.23 in [DK90]). Let - be a Banach space and let ) : - → - be a

smooth map with ) (0) = 0. Suppose there is a constant 2 > 0 such that

| |)G −)~ | | ≤ 2 ( | |G | | + | |~ | |) | |G − ~ | | .
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�en if ~ ∈ - satisfies | |~ | | ≤ 1
102

, there exists a unique G ∈ - with | |G | | ≤ 1
52

solving

G +)G = ~.

�e unique solution satisfies | |G | | ≤ 2 | |~ | |.

Proof of �eorem 4.130. In the case that B is a section of rigid ASD instantons, we have that the

projection map cC is zero. �erefore, Propositions 4.103 and 4.105 give

����0����
�1,U
−1,X ;C

≤ 2
����!C0�����0,U

−2,X ;C
. (4.133)

�is means that

!C : �
1,U ((Ω0 ⊕ Ω

1) (#C ,Ad�C )) → �1,U ((Ω0 ⊕ Ω
1) (#C ,Ad�C ))

is injective. Because !C is formally self-adjoint, it is also bijective. Denote its inverse by !−1C .

Furthermore, using cC = 0, and therefore [C = Id, Proposition 4.127 gives

����&C (01, 02)�����0,U
−2,X ;C

≤ 2C−U
����01�����0,U

−1,X ;C
·
����02�����0,U

−1,X ;C
. (4.134)

Set )C := &C ◦ !−1C . We then have

����)C (11) −)C (12)�����0,U
−2,X ;C

=
����& (!−111 − !

−112, !
−111 + !

−112)
����
�0,U
−2,X ;C

≤ 2C−U
����!−111 − !−112�����0,U

−1,X ;C

����!−111 + !−112�����0,U
−1,X ;C

≤ 2C−U
����!−111 − !−112�����1,U

−1,X ;C

����!−111 + !−112�����1,U
−1,X ;C

≤ 2C−U
����11 − 12�����0,U

−2,X ;C

(����11�����0,U
−2,X ;C

+
����11�����0,U

−2,X ;C

)
,

where we used Eq. (4.134) in the first inequality and Eq. (4.133) in the last inequality.

For 4C we have

| |4C | |�0,U
−2,0;C

≤ 2C1/18

by Corollary 4.54. For small C , we have that C1/18 <

(
C−U+X/2

)−1
due to our choices of U and X
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in Definition 4.19. �us, by applying Lemma 4.132 to the map )C , we get a solution 1C to the

equation 1C +)C (1C ) = −4C for small C , satisfying the estimate
����1C �����0,U

−2,0;C
≤ 2C1/18.

Le�ing 0C := !−1C (1C ), this means precisely !C (0C ) + &C (0C ) = −4C , so �̃C = �C + 0C is a �2-

instanton, and 0C satisfies
����0C �����1,U

−1,X ;C
≤ 2C1/18 by Eq. (4.133), which proves the claim. �

Proof of �eorem 4.131. As in the proof of �eorem 4.130, set )C := &C ◦ !−1C . �en

����)C (11) −)C (12)����YC

=
����& (!−111 − !

−112, !
−111 + !

−112)
����
YC

= C−X/2
����[C& (!−111 − !

−112, !
−111 + !

−112)
����
�0,U
−2,X ;C

+ C
����cC& (!−111 − !

−112, !
−111 + !

−112)
����
�0,U

≤ 2C−U−X/2
(����[C!−1 (11 − 12)�����0,U

−1,X ;C
·
����[C!−1 (11 + 12)�����0,U

−1,X ;C

+
����[C!−1 (11 − 12)�����0,U

−1,X ;C
·
����cC!−1 (11 + 12)�����0,U

+
����cC!−1 (11 − 12)�����0,U ·

����[C!−1 (11 + 12)�����0,U
−1,X ;C

+
����cC!−1 (11 − 12)�����0,U ·

����cC!−1 (11 + 12)�����0,U

)
+ 2C−U

(����[C!−1 (11 − 12)�����0,U
−1,X ;C

·
����[C!−1 (11 + 12)�����0,U

−1,X ;C

+
����[C!−1 (11 − 12)�����0,U

−1,X ;C
·
����cC!−1 (11 + 12)�����0,U

+
����cC!−1 (11 − 12)�����0,U ·

����[C!−1 (11 + 12)�����0,U
−1,X ;C

+C
����cC!−1 (11 − 12)�����0,U ·

����cC!−1 (11 + 12)�����0,U

)
≤ 2C−U−2−X/2

(
C−X

����[C!−1 (11 − 12)�����0,U
−1,X ;C

·
����[C!−1 (11 + 12)�����0,U

−1,X ;C

+C1−X/2
����[C!−1 (11 − 12)�����0,U

−1,X ;C
·
����cC!−1 (11 + 12)�����0,U

+C1−X/2
����cC!−1 (11 − 12)�����0,U ·

����[C!−1 (11 + 12)�����0,U
−1,X ;C

+C2
����cC!−1 (11 − 12)�����0,U ·

����cC!−1 (11 + 12)�����0,U

)
≤ 2C−U−2−X/2

����!−1 (11 − 12)����XC

����!−1 (11 + 12)����XC

≤ 2C−U−2−X/2 | |11 − 12 | |YC
| |11 + 12 | |YC

≤ 2C−U−2−X/2 | |11 − 12 | |YC

(
| |11 | |YC

+ ||12 | |YC

)
.
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Here we used Proposition 4.127 in the third step, and Proposition 4.77 in the second to last

step.

We have

| |4C | |YC
≤ 2C2−U ,

by Corollary 4.57. Applying Lemma 4.132 as in the proof of�eorem 4.130 shows the claim. �

4.6 An example Coming from a Stable Bundle

4.6.1 Review of the Resolution of () 3 × K3)/Γ

Recall the�2-manifold constructed in [JK21, Section 7.3]: consider the sextic

� = {[I0, I1, I2] ∈ ℂℙ
2 : I60 + I61 + I62 = 0} ⊂ ℂℙ

2

and let c : - → ℂℙ
2 be the double cover of ℂℙ2 branched over �. �en - is a complex K3

surface with a Hyperkähler triple of Kähler forms l � , l � , l , cf. [Huy16, Example 1.3]. On -

we can define the following two maps: first, the map U : - → - which swaps the two sheets

of the branched cover. Second, there are two li�s - → - of the complex conjugation map

f : ℂℙ2 → ℂℙ
2. One of these two li�s acts freely on - , the other one does not. Denote the

li� that does not act freely on - by V : - → - , which has fix(V) = c−1(ℝℙ
2) ≃ (2. �e

Hyperkähler triple l � , l � , l can be chosen to satisfy

U∗l � = l � , U∗l � = −l � , U∗l = −l ,

V∗l � = −l � , V∗l � = l � , V∗l = −l .

Let U, V act on ) 3 via

U (G1, G2, G3) = (G1,−G2,−G3), V (G1, G2, G3) =
(
−G1, G2,

1

2
− G3

)
.
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Denote Γ = 〈U, V〉. �en U, V : ) 3×- → ) 3×- preserve the product�2-structure i on) 3×-

defined by equation Eq. (2.27). Furthermore, fix(U) = 4 · ((1 ×�), fix(V) = 4 · ((1 × (2), where

the (2-factors are the double cover of fix(f) = ℝℙ
2 ⊂ ℂℙ

2. �erefore, ! = fix(U) ∪ fix(V)

admits a nowhere vanishing harmonic 1-form, namely the parallel 1-form in the (1-direction

of each component. �us, this orbifold is of the type considered in Section 3 and its resolution

#C → () 3 × - )/Γ admits a 1-parameter family of �2-structures with small torsion, inducing

metrics 6C , which can be perturbed to torsion-free�2-structures inducing metrics 6̃C .

4.6.2 A Connection on the Orbifold () 3 × K3)/Γ coming from a Stable Bundle

We will now make use of the SO(3)-bundle � over ℂℙ2 from Section 2.5.2. To this end, we

first recall its definition. �e tangent bundle � of ℂℙ2 is a complex vector bundle of rank

2, which induces an SO(3)-bundle � by Proposition 2.90. �e Levi-Civita connection on �

is a Hermite-Einstein connection by Proposition 2.85 and induces an ASD instanton on � by

Proposition 2.90, denoted by �. We denote the standard Kähler structure on ℂℙ
2 by ( � ,6 =

6FS, l), where 6FS is the Fubini-Study metric. �e pullback c∗� is then an ASD instanton on

the bundle c∗� over (-, c∗6), but it need not be ASD with respect to the Calabi-Yau metric

on - . We will show in Corollary 4.136 that c∗� also carries an instanton with respect to the

Calabi-Yau metric.

Proposition 4.135 (Lemma 9.1.9 in [DK90]). �e bundle c∗� is stable with respect to l .

Corollary 4.136. �e bundle c∗� is stable with respect to the Calabi-Yau Kähler form l � .

Proof of Corollary 4.136. Denote by l̂ = c∗l the pullback of the Kähler form for the Fubini-

Study metric on ℂℙ
2 to - . By Yau’s proof of the Calabi conjecture we have thatl � = l̂ + 8mmq

for some q : - → ℝ. In particular,l � and l̂ are in the same de Rham cohomology class.

By Proposition 4.135, c∗� is stable with respect tol . �e Kähler form enters into the definition

of stability only through the definition of slope. But slopes do not change when switching

between l � and l̂ as they are in the same cohomology class. �us c∗� is also stable with

respect to l � . �
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We also have the following:

Corollary 4.137 (p. 348 in [DK90]). Denote by c� : � → ℂℙ
2 the SO(3)-bundle over ℂℙ2 from

Section 2.5.2. Let c : - → ℂℙ
2 be the branched double cover from Section 4.6.1 with Calabi-Yau

metric 6̂. �en the bundle

�̂ = c∗� = {(G, D) ∈ - × � : c� (D) = c (G)} (4.138)

admits an infinitesimally rigid and unobstructed ASD instanton �̂ with respect to 6̂.

Proof. �e bundle c∗� is stable with respect to l � , and therefore admits a unique Hermite-

Einstein connection by �eorem 2.83. �us, we get an SO(3)-bundle �̂ with ASD instanton �̂

by Proposition 2.90. Unobstructedness and infinitesimal rigidity of �̂ are proved in [DK90, p.

348]. �

Pulling back (�̂ , �̂) under the projection onto the second factor, ? : ) 3 × - → - , gives a

bundle with �2-instanton by Example 2.98. Denote the bundle by �0 and the connection by

\ . �e connection �̂ was infinitesimally rigid, and the following proposition implies that \ is

infinitesimally rigid:

Proposition 4.139. Let � be an ASD instanton on a bundle % over a compact 4-fold . with de-

formation operator X� . Let ? : ) 3 × . → . be the projection onto the second factor. �en the

�2-instanton ?
∗� is infinitesimally rigid if and only if � is infinitesimally rigid and unobstructed.

Proof. �e pulled back connection ?∗� is a�2-instanton by Example 2.98.

We first prove that ?∗� is infinitesimally rigid if � is infinitesimally rigid and unobstructed. We

will use Lemma 3.38 to derive an analog of Proposition 4.85 in this compact se�ing:

Suppose 0 ∈ (Ω0 ⊕ Ω
1) () 3 × .,Ad?∗%) satisfies !?∗�0 = 0. �en 0 = !∗?∗�!?∗�0 = (Δℝ3 +

�∗
��� )0 by Eq. (4.84), where�∗

��� is an elliptic operator of second order. Because. is compact,

it has bounded geometry, and �∗
��� is uniformly elliptic and its coefficients and their first

derivatives are uniformly bounded. So, by Lemma 3.38, 0 is independent of the ) 3-direction.

By Proposition 4.83, 0 is the pullback of an element in KerX� or the pullback of an element
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in KerX∗� . By assumption, � is infinitesimally rigid (i.e. KerX� = 0) and unobstructed (i.e.

KerX∗� = 0), which proves the claim.

�e converse direction follows directly from Proposition 4.83. �

�e gluing theorems�eorems 4.130 and 4.131 require a connection on the orbifold, () 3×- )/Γ.

�e following proposition states that \ can be viewed as such a connection:

Proposition 4.140. �ere exist li�s U0 : �0 → �0 of U and V0 : �0 → �0 of V such that U20 = V
2
0 =

Id, U∗0\ = V∗0\ = \ , U0 being the identity over fix(U), and V0 not being the identity over fix(V).

�is relies on the following construction on - :

Proposition 4.141. �ere exists a li� V̂ : �̂ → �̂ of V such that V̂2 = Id, V̂∗�̂ = �̂, and V̂ not being

the identity over fix(V).

Proof. Denote by f : ℂℙ2 → ℂℙ
2 the conjugation map and � = )ℂℙ2 as before. We can then

view df as a complex linear map � → � covering f . Define

f̂ : � ⊗ � → � ⊗ �

E ⊗ F ↦→ − dfF ⊗ dfE,

(4.142)

which is a complex linear map covering f : ℂℙ2 → ℂℙ
2.

�e manifold ℂℙ
2 is Kähler, so the Levi-Civita connection ∇LC on � is a Hermite-Einstein

connection. �e connection ∇LC on � induces the product connection ∇⊗ on � ⊗ �, which is

again a Hermite-Einstein connection. We have that f is an isometry, so ∇⊗ is preserved by f̂

in the sense of f̂ ◦ f∗∇⊗ ◦ f̂ = ∇⊗ .

Let V̂ be the li� of f̂ to c∗� ⊗ c∗�, i.e. V̂ : c∗� ⊗ c∗� → c∗� ⊗ c∗� covering V : - → -

and satisfying ?V̂ = f̂?, where ? : c∗� ⊗ c∗� → � ⊗ � is the obvious projection map. �en

f̂∗∇⊗ = ∇⊗ implies V̂∗ (c∗∇⊗) = c∗∇⊗.

If ? ∈ ℂℙ
2 and (D1, D2) is a unitary basis of �? , then (df (D1), df (D2)) is a unitary basis of �f (?) ,

and writing elements of the trace-free unitary endomorphism bundle u0 (c∗�) in these bases,
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we see that V̂ acts as

©«
0 1

−1 0

ª®®¬
↦→

©«
0 1

−1 0

ª®®¬
,

©«
0 8

8 0

ª®®¬
↦→ −

©«
0 8

8 0

ª®®¬
,

©«
8 0

0 −8

ª®®¬
↦→ −

©«
8 0

0 −8

ª®®¬
.

�us, V̂ induces a map on �̂ = SO(u0(c∗�)) that is not the identity over fix(V) and preserves

the ASD connection �̂ on �̂ induced by c∗∇⊗ according to Proposition 2.90. �

Remark 4.143. �is only works because we have a li� of complex conjugation f : ℂℙ2 → ℂℙ
2

to � in Proposition 4.141. It follows from Proposition 2.92 that no li� of f to � exists, so it is

important to change from U(2)-bundles to SO(3)-bundles in this example.

Remark 4.144. Without theminus sign in Eq. (4.142), V̂ would not descend to amap on SO(u0(c∗�)).

�at is because the map − Id : u0 (c∗�) → u0(c∗�) is orientation reversing, because u0 (c∗�)

has odd rank.

Proof of Proposition 4.140. �e bundle �̂ from Eq. (4.138) is the pullback of a bundle � fromℂℙ
2

to - , thus we have the natural map

Û : �̂ → �̂

(G,D) ↦→ (U (G), D)

covering U : - → - . �e bundle �0 is the pullback of �̂ to ) 3 × - , and we can canonically

extend the map Û and the map V̂ from Proposition 4.141 to �0 and find that they have the

required properties. �

Because of Proposition 4.140, the connection\ defines a connection on the orbifold () 3×K3)/Γ.

�e holonomy of \ around the four (1×� ⊂ () 3×- )/Γ fixed by U is trivial, and the holonomy

around the four (1 × (2 fixed by V has order 2.
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4.6.3 �e Resulting Connection on the Resolution of () 3 × K3)/Γ

Corollary 4.145. For small C , there exists an irreducible �2-instanton with structure group SO(3)

on the resolution #C of () 3 × - )/Γ.

Proof. We make use of the U-invariant and V-invariant connection \ from Proposition 4.140

over () 3 × - )/Γ.

Next consider the product connection �0 on the trivial SO(3)-bundle over Eguchi-Hanson

space -EH. �e holonomy representation at infinity of the product connection is trivial, i.e.

d0 : Γ → SO(3), d0(±1) = Id, thus �d0 = � , where �d0 was defined in Eq. (2.43). �0 is infin-

itesimally rigid, which can for example be seen from the dimension formula in �eorem 2.52,

so for each copy of (1 ×� ⊂ () 3 × - )/Γ fixed by U we have that

(1 ×� → Fr×�0 |(1×� ×U(2)×� "

G ↦→ [( 5 , D), [�0]] for 5 ∈ FrG , D ∈ (�0)G arbitrary

is a well-defined map, parallel, and therefore a Fueter section.

Likewise, let �0,1 be the ASD instanton over -EH from Proposition 2.54. �is is defined on a

U(1)-bundle and we view it as a reducible SO(3)-connection. �is has non-trivial holonomy

d0,1 : Γ → SO(3) at infinity, thus�d0,1 ( � . For each copy of (1 × (2 fixed by V we find that

(1 × (2 → Fr×�0 |(1×(2 ×U(2)×�d0,1
"

G ↦→ [( 5 , D), [�0,1]] for 5 ∈ FrG , D ∈ (�0)G arbitrary

is a Fueter section. By Proposition 4.140, the connection \ and the eight Fueter sections satisfy

the necessary compatibility condition from Proposition 4.27. �us, �eorem 4.130 applies and

gives a�2-instanton �̃C on #C . �e connections �̃C converge to \ on compact subsets of () 3 ×

- )/Γ \ fix(Γ) as C → 0. �e connection \ has full holonomy SO(3), as otherwise the Fubini-

Study metric on ℂℙ
2 would need to have reduced holonomy. �us, �̃C has full holonomy for

small C and is therefore irreducible. �
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A Appendix

A.1 �e Isometry Group of Egu�i-Hanson Space

In Proposition 2.5 we defined the Eguchi-Hanson space -EH and proved that it admits a Hy-

perkähler metric 6(:) . �e following statement about the isometry group of -EH is a standard

fact, but we could not locate a proof of it in the literature, so we provide it here:

Proposition A.1. For any : > 0,

1. the isometry group of the metric 6(:) on -EH is isomorphic to SO(3) × O(2),

2. the group of isometries preserving the complex structure induced by l
(:)
1 is isomorphic to

U(2)/{±1},

3. the group of isometries preserving the three complex structures induced by l
(:)
1 , l

(:)
2 , and

l
(:)
3 respectively is isomorphic to SO(3).

Proof. �e space -EH contains SO(3) ×($ (2) {0} as a unique minimal surface which must be

mapped to itself by an isometry. �us, an isometry must preserve the distance to this minimal

surface, i.e. preserve the ℝ≥0-factor of ℝ≥0 ×SO(2) SO(3). It thus suffices to find the iso-

metry group of SO(3) endowed with the metric (41 (A ))2 + (42 (A ))2 + (43 (A ))2 for some A > 0,

where 41, 42, 43 were defined in Proposition 2.5. As A → ∞, this metric converges towards

the metric induced by the round metric on (3. �rough this, an isometry of -EH induces an

isometry of ℝ4/{±1}, which has isometry group SO(4)/{±1} ≃ SO(3) × SO(3). �is shows

that Isom(-EH, 6(:) ) ⊂ SO(3) × SO(3), where the first SO(3) acts by le� multiplication, and

the second acts by right multiplication on the SO(3)-factor of -EH.

A calculation in coordinates shows Isom(-EH, 6(:) ) = SO(3) ×O(2) ↩→ SO(3) × SO(3), where

O(2) ↩→ SO(3)

� ↦→
©«
det� 0

0 �

ª®®¬
.
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Regarding the second point, a computation shows that the subgroup of isometries preserving

the complex structure induced by l
(:)
1 and is exactly SO(3) × SO(2). �is is isomorphic to

U(2)/{±1}, which is seen from the split short exact sequence

1 → SU(2)/{±1} ≃ SO(3) → U(2)/{±1} det→ U(1) ≃ SO(2) → 1. (A.2)

�e last point is again a computation in coordinates. �

A.2 Measuring Vectors in Nearby Metrics

In Section 3 we define several different metrics on a manifold, for example 6%C , 6
#
C , and 6̃

#
C .

�ese metrics are all near to each other, in a suitable sense. In Section 4 we sometimes switch

between these metrics: an estimate with respect to 6%C gives rise to an estimate with respect

to 6#C , provided the two metrics are near enough to each other. To be precise, we use the

following result:

Proposition A.3. Let + be a vector space and let 6 and 6̃ be inner products on + .

1. Let E ∈ + such that |E |6 ≤ X and |6̃ − 6 |6 ≤ n, then |E |6̃ ≤ X + Xn.

2. Let l ∈ + ∗ such that |l |6 ≤ X and |6̃ − 6 |6̃ ≤ n, then |l |6̃ ≤ X + Xn.

When integrating, we have the following estimate for switching from one volume form to

another:

Proposition A.4. Let " be an oriented manifold, and 6, 6̃, ℎ Riemannian metrics on" . �en

����
∫
"

5 · vol6 −
∫
"

5 · vol6̃
���� ≤

∫
"

| 5 | · | vol6 − vol6̃ |ℎ · volℎ (A.5)

for all 5 : " → ℝ with the property that all the integrals in Eq. (A.5) are defined.

A.3 Rigidity of Finite Subgroups

Let� be a compact connected Lie group and Γ be a finite group. In Section 2.4.2 we took Γ to

be a finite subgroup of SU(2), thereby acting on �4. An orbifold �-bundle over �4/Γ is a �-
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bundle % over �4 together with a li� of the action of Γ to % . In Eq. (2.43) we extended elements

of � to elements of the orbifold gauge group �(%). We could do this, because we assumed

the li� of Γ to act in a standard way on % , see Eq. (2.40) for the precise statement. In other

words: we used that up to gauge equivalence, orbifold bundles over �4/Γ are determined by

the homomorphism Γ → %0 ≃ � induced by the li� of Γ to % . �e proof of this fact was given

in Proposition 2.39, but used that the homomorphism Γ → � is rigid, in some sense. We make

this rigidity precise here and prove that every finite group in a compact Lie group is rigid. �e

proof is taken from [Bad21], where also the generalisation to non-compact� is explained.

DefinitionA.6. �e setHom(Γ,�) ⊂ � |Γ | endowedwith the restriction of the product topology

on� |Γ | is called the representation variety.

Definition A.7. Let � be a Γ-module. A map 1 ∈ Γ → � is called cocycle if

1 (WX) = 1 (W) + W · 1 (X) for all W, X ∈ Γ.

We denote the set of cocycles by / 1 (Γ, �). A map 1 ∈ Γ → � is called coboundary if there

exists E ∈ � such that

1 (W) = E − W · E for all W ∈ Γ.

We denote the set of coboundaries by �1 (Γ, �) ⊂ / 1 (Γ, �). �e first cohomology of Γ with

coefficients in � is

� 1 (Γ, �) = / 1 (Γ, �)/�1 (Γ, �).

�eorem A.8 (Point 3 in [Wei64]). Fix a group homomorphism A : Γ → � . �e group � is

acting on g through the adjoint representation, and together with A this gives Γ the structure of a

Γ-module. If � 1 (Γ,g) = 0, then there exists a neighbourhood * ⊂ Hom(Γ,�) of A in which each

element is conjugate to A , i.e. for all B ∈ * there exists 6 ∈ � such that

B = ;6 ◦ A6−1 ◦ A .

Here, ;6, A6−1 : � → � denote le� translation and right translation on� , respectively.

Definition A.9. Fix c : Γ → Aut(�). An affine action of Γ on � is a group homomorphism

q : Γ → Aff (�). We say that c is the linear part of the affine action q if for all W ∈ Γ there
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exists E0 ∈ � such that

q (W) (E) = c (W) (E) + E0 for all E ∈ �.

Lemma A.10 (Lemma 2.1 in [DX16]). �e map c : Γ → Aut(�) endows Γ with an �-module

structure. We have� 1 (Γ, �) = 0 with respect to this �-module structure if and only if every affine

action with linear part c has a fixed point.

Corollary A.11. �e finite group Γ with any �-module structure satisfies � 1 (Γ, �) = 0.

Proof. Let q : Γ → Aff (�) be an affine action. �en the element

- :=
∑
X ∈Γ

q (X) (0) ∈ �

satisfies q (W) (- ) = - for all W ∈ Γ. By Lemma A.10 this implies that � 1 (Γ, �) = 0. �

Corollary A.12. �e representation variety Hom(Γ,�) has finitely many connected components.

For each connected component � there exists A ∈ Hom(Γ,�) such that

� = *A := {;6 ◦ A6−1 ◦ A : 6 ∈ �}.

Proof. Because Γ is finite and� is compact we have that Hom(Γ,�) is compact and therefore

has finitely many connected components. Fix some A ∈ Hom(Γ,�). �en *A is compact

because it is the image of� under the conjugation map. �us,*A is closed. On the other hand,

*A is open by �eorem A.8 together with Corollary A.11. �us, each connected component of

Hom(Γ,�) is of the form*A for some A ∈ Hom(Γ,�). �

A.4 Removable Singularities

In Definition 2.47 we defined a map from the moduli space of ASD connections over the

Eguchi-Hanson space -EH into the moduli space of ASD connections over the one point com-

pactification of -EH. �ere, we used that every finite energy ASD connection that is defined

over the complement of a point can be extended over this point. �is statement was proved

for Yang-Mills connections, not just ASD connections, in [Uhl82]. �is is called the Remov-
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able Singularities �eorem. Because our map between moduli spaces should be a map between

framed moduli spaces, we need a version of the Removable Singularities�eorem that respects

framings. �is is Proposition A.14 and we then apply it to our special case of connections over

-EH in Corollary A.17.

�eorem A.13 (�eorem 4.1 in [Uhl82], �eorem D.1 in [FU91]). Let � be a compact Lie group

and � be a connection on the trivial�-bundle over �4 \ {0}, � ∈ � ((�4 \ {0}) ×�), which is in

!2
1,loc

and anti-self-dual with respect to a smooth metric on �4. If

∫
�4\{0}

|� (�) |2 < ∞,

then there exists an injective bundle homomorphism b : (�4 \ {0}) ×� → �4 ×� and a smooth

connection �′ ∈ � (�4 ×�) such that b∗�′ = � over �4 \ {0}.

Theorem A.13 asserts existence of an extension over 0, and the following proposition asserts

that this extension is essentially unique up to gauge:

Proposition A.14. �e data b and �′ from �eorem A.13 are unique in the following sense: if

b ′, b ′′ : (�4 \ {0}) ×� → �4 ×� and �′, �′′ ∈ � (�4 ×�) are such that (b ′)∗�′ = (b ′′)∗�′′ = �,

then the map b ′′ ◦ (b ′)−1 : (�4 \ {0}) ×� → (�4 \ {0}) ×� can be extended to a continuous map

�4 ×� → �4 ×� .

Proof. We view the connections �′, �′′ on the trivial bundle �4 ×� as elements in Ω
1 (�4, g),

and view the gauge transformation b ′′ ◦ (b ′)−1 as a map �4 \ {0} → � , denoted by B. Without

loss of generality assume that �′(0) = �′′(0) = 0, which can be arranged by composing b ′, b ′′

with a suitable gauge transformation of �4 ×� . �en �′′ = B∗�′ on �4 \ {0}, thus

0 = �′′(0) = lim
G→0

B−1 (G) dB (G)

and by taking norms we see that limG→0 dB (G) = 0. �is implies that limG→0 B (G) exists: if

the limit does not exist, then we have two sequences G8 , G
′
8 → 0 such that lim8→∞ B (G8 ) ≠

lim8→∞ B (G ′8 ). Without loss of generality assume that G8 , G
′
8 can be joined by a line. �e mean
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value theorem then gives a sequence \8 ∈ �4 \ {0} such that | dB (\8 ) | → ∞, which is a contra-

diction.

�erefore limG→0 B (G) exists and defines a continuous map B : �4 → � , which in turn extends

b ′′ ◦ (b ′)−1. �

Viewing the map b from �eorem A.13 as a map b : �4 \ {0} → � , the limit limG→0 b (G) does

not exist in general. But in important cases it does, according to the following proposition:

Proposition A.15. Under the conditions of �eorem A.13, assume that� is bounded, viewed as an

element in Ω
1 (�4 \ {0}, g). Viewing b as a map b : �4 \ {0} → � , we have that the limit

lim
G→0

b (G) ∈ �

exists.

Proof. Without loss of generality assume that �′(0) = 0. �en,

b∗�′(G) = �(G) for all G ∈ �4 \ {0}. (A.16)

Taking norms in Eq. (A.16) and using b∗�′(G) = b−1 (G) db (G) +�′(G) we see that db is bounded

on �4 \ {0}, and we can conclude the proof as in the proof of Proposition A.14. �

�is can be applied to the case of ASD instantons on ALE manifolds:

Corollary A.17. Let % be a�-bundle over -EH and denote by�asd,−2 the set of ASD-connections

on % as in Eq. (2.43). Let �0 + 0 ∈ �
asd,−2, then there exists an orbifold �-bundle % ′ over -̂EH

together with a connection �′ ∈ � (% ′) and an injective bundle homomorphism b : % → % ′ such

that b∗�′ = �0 + 0. Denote by 5 : �4/Γ → + the chart of -̂EH around ∞ from Proposition 2.37.

Fixing a trivialisation of % over + \ {∞} induces a trivialisation of % ′ over + and we can view b

as a map + \ {∞} → � . �en the limit limG→∞ b (G), where ∞ ∈ -̂EH, exists.

Proof. �e assumption �0 + 0 ∈ �
asd,−2 means that 0 = O(A−2), measured in the ALE metric.

By inspecting how the inversion 5 acts on 1-forms, we find that 0 = O(1), measured in the
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orbifold metric, and Proposition A.15 gives the claim. �
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