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Abstract

‘e resolution of the  »-orbifold) 7= , where is a suitably chosen €nite group, admitsla
parameter family of »-structures with small torsion € obtained by gluing in Eguchi-Hanson
spaces. It was shown in [Joy96b] thatcan be perturbed to a torsion-free,-structuree“for
small values o€ Using norms adapted to the geometry of the manifold we give Haraative
proof of the existence a&C. ‘is alternative proof produces the estimate ¢ i ¢ , 2&?2
‘is is an improvement over the previously known estimatee® i ¢ , 2&2. As part of
the proof, we show that Eguchi-Hanson space admits a uniqyetfuscaling) harmonic form
with decay, which is a result of independent interest.

More generally, there exists a construction of torsion-freg-structures on resolutions of a
more general class of,-orbifolds, given in [JK21]. We explain a construction gfinstantons
on these manifolds, which includes the case efinstantons on resolutions 9f’»  as a special
case. ‘e ingredients needed are a »-instanton on the orbifold and a Fueter section over the
singular set of the orbifold. In the general case, we make the vestrictive assumption that
the Fueter section is pointwise rigid. In the special case siiations of) = , the improved
estimate fore® i Callows to remove this assumption. As an application, we conetrone

new example of a ,-instanton on the resolution of) 3 K3°'Z§.
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1 Introduction

In [Ber55], Berger presented a list of groups which can possitagur as the holonomy groups
of Riemannian manifolds. However, constructing manifolds whiealise these holonomy
groups remained a wide-open problem for decades. A milestoneimdhection was the for-
mulation and proof of the Calabi conjecture in [Cal%4, Cal57] §vidu77), Yau78] respectively.
Among other things, the proof of this conjecture gives a pafid characterisation of man-
ifolds admi<ing a metric with holonomySU'=°, giving rise to a wealth of examples of such
manifolds. For the exceptional holonomy group, such a general characterisation remains

out of reach, and even the construction of examples persistise a challenging task.

‘e €rst compact examples of Riemannian manifolds with holonomyogial to » were con-
structed in [Joy96b] by resolving an orbifold of the forjn’s , where is a €nite group of
isometries of) ’. In [JK211], this construction was extended to resolutions ofifmids of the
form. « ,where. isa manifold with holonomy contained in », but not necessarily fat, and
is a €nite group of »-involutions. In [Joy96b] and [JK21] this was done by construgtir-
structures with small torsion, and subsequently perturbirgein to torsion-free ,-structures.
‘is perturbation made use of a general existence result for tsion-free ,-structures that
holds on all7-manifolds. An immediate question is: how far away is the tonsifree »-
structure from the ,-structure with small torsion? ‘is is important in applications, such as
the construction of associative submanifolds angrinstantons. In Section3 we give a par-
tial answer to this question by proving an improved estimdte the di,erence between the
torsion-free »-structure and the one with small torsion for the ,-manifolds from [Joy96b].

‘e main result of this section is ‘eorem 3[84]

eorem. Choosd) 2 10»1° andV 2 * 1s0° both close t@. Let#c be the resolution §f’e
from Eq.(3:3andi €2 31#Pthe ,-structure with small torsion from E¢8:38) Eere exists
2 i Oindependent d@¥such that the following is true: f@small enough, there exigfs2 21#®

such thaie =i ©, d[ Cis a torsion-free ,-structure, and ©satis€es

[C aue 2¢2V

Vv.C

10



In particular,

e i¢, 2C%and B i€ o, 2€?Y2aswellasie i€ .., 282U

Here, the nornij jj 2u2 is a weighted Hlder norm. ‘e norms in the last line of the theorem
are ordinary, unweigﬁted norms. ‘e group is a €nite group acting through »-involutions
on) ’. In [Joy96b[ JoyQO0] the estimatge i jj,.  2&?2 was shown. In this sense, the
estimates from ‘eorem [3.84 are an improvement. ‘e theorem hiiges on an estimate for the
inverse of the Laplacian acting diforms on the resolution of ’s . ‘e crucial idea necessary
for obtaining this estimate is to spli2-forms into a part that is harmonic on thé-dimensional
€bres orthogonal to the singular set 9f’s |, and a rest. ‘e 4-dimensional €bres are subsets
of Eguchi-Hanson spacegy, and the proof of ‘eorem B.84 uses detailed knowledge of the
harmonic forms on gy. ‘e space - gy admits a harmoni@-form a; that can be wricen down
explicitly and comes from rescaling the metric. In ‘eorem 3.26, we dete the Laplacian on

- gn acting on?-forms by ».6,,, and we prove thag is essentially the only form with decay:

<eorem. For_ 2 1 4s(°, the! g. -kernels of ».s,, acting on?-forms of di,erent degrees are

the same as the?-kernels, namely:

Kert ¢, :! g. 1 21 NI 21 27_ EHP°° = hayi e

121

? ? 1)
Kert 6,5, : o Lgol 15 Lt g0 =0for? < 2

Here! ;_1 ?1. £0° denote the usual weighted Sobolev spaces on asymptoticallyoadman-
ifolds. ‘ey consist of, roughly speaking,! ?-sections with2 weak derivatives that decay like

A-asA!'1l |, whereAis a radius function.

Using the idea from[[Joy96b], some millions of-manifolds can be constructed, see [Joy00,
p.322]. However, using Be< numbers alone, only arouh@0of them can be distinguished.
‘is prompts the question: how many of these ,-structures are deformation equivalent?
An idea that may potentially help to answer this question comesrfr gauge theory: in the

seminal article[[Don83], the moduli space of anti-self-dual centions was used to de€ne in-

11



variants of smoothd-manifolds. Following this, a rich theory of gauge theoreticalariants
and their relations to other manifold invariants id dimensions was developed. ‘e article
[DT98] then recognised some of thiedimensional phenomena in dimensiof) for example
the existence of a functional whose critical points are iagtons. With great optimism, one
may hope to recreate the four-dimensional success story inafigion7, and use the moduli
space of »-instantons to de€ne deformation invariants of,-manifolds. ‘ere are analytic
dieculties present in dimension7 that were not there in dimensiod, and therefore the study
of o-instantons has mainly focused on the construction of exangple examples that have
appeared in the literature so far are [Wall3a, SEW15, Wall6, RINED20J, LO18]. In Sec-
tion g we add to this as follows: we prove a gluing theorem that canused to construct »-
instantons on the ,-manifolds from [JKZ1]. Such a manifold is a resolution of aorbifold,
obtained by taking the quotient of a ,-manifold. by a »-involution ]. ‘e resolution # is
obtained by gluing Eguchi-Hanson spaces over the singulao$ethli. Given a »-instanton

\ on. <h]i one may be able to construct from it a,-instanton on# . To do this, one needs a
connection over the glued in part. One way to get such a coniwtis by taking a suitable
family of anti-self-dual instantons over Eguchi-Hanson spasayB Our main result is that
one can glue togethér andBto a genuine s-instanton if Bconsists of a rigid instanton in

each €bre and they satisfy a simple compatibility condition. (eforem 4:130):

<eorem. Assume now that the sectiBis given by a rigid ASD-instanton in every pdsi !,
and assume that the connectionsed to de€ne the approximatginstanton from Proposi-

tion@:2y is in€nitesimally rigid.

Eere exist® | 0such that for smalCthere exist§. = 0k 2 ¥ 0 11Ad ©Posuch

that €c:= ¢, Ocisa ,-instanton. Furthermor@ satis€es0. »  2¢&1%8
1X,C

Here,U 2 10-1° must be a small number angl jj o denotes a weighted elder norm. We

use this theorem to construct a news-instanton on the resolution of) 2 K3°-Z§.

‘anks to the improved estimate for the di,erencee i ©on resolutions of) = from the
aforementioned ‘eorem [3:84 we have an even stronger gluing threm on these manifolds.
In this case, we need not require that the sectiBis given by rigid instantons, only that it is

a rigid solution of the Fueter equation (cf. ‘eorenr4-131):

12



eorem. Let# ! . Obe the resolution of the orbifol§=) 7= from before. Assume that the
connectioh used to de€ne the approximatginstanton cfrom Propositiofrd-27 is in€nitesim-

ally rigid and thatBis an in€nitesimally rigid Fueter section.

Eere exist® j 0such that for smalCthere exists a@.= 10k 2 *1 0  11Ad ©°such

that €c:= ¢, Ocisa z-instanton. Furthermorgsatis€es 0 2€ 2,

Here,jj jjx.denotes a complicated composite norm. ‘e basic idea of this norsthe same as
in the previous chapter: it consists of a part that is harmomn the Eguchi-Hanson directions

in the gluing region and a rest, and the two parts are scaled dgatly.

Unfortunately, no genuine examples of these more general éaignts are known. ‘at is:
all known rigid Fueter sections are actually sections of rigitsiantons. ‘erefore, we were

unable to use this theorem to produce new examples so far.

13



2 Batground

2.1 Riemannian Holonomy Groups

Let 1"¢6 © be a smooth=-dimensional Riemannian manifold and denote its Levi-Civitaneo

nection byr .

De€nition2.1 Given a piecewise smooth curw': »>»1%, ! " from W0 = Gto W1° = ~,
denote the parallel transport induced by alongWby Pyw:)g" ! )-" . For? 2" we then

de€ne theholonomy group @ at ? as

Holi6e ? = fP: Wsmooth loop based &g Endt)," ©”

‘e following are standard properties of holonomy groups, see e.§KN63, Chapters Il and

V]
Lemma2.2. 1. (Ee groupdoli6e ? andHoll6s @are isomorphic groups for & @ " .
2. For al? we have thaHol6e ? preserves the metric psi' , i.e.Hol6¢? $1)," ©,

Because of the this, we can€xapol " and anisometry," ' R~ and speak oHol16e ®

as a subgroup d 1=° and call it theholonomy group of'« 6 °, denoted byHol16°.

V)

Figure 1: Parallel transport on the sphére  R3endowed with the round metric. ‘e tangent
vector+ is transported along the yellow curve, resulting in the vectBpt+ °. ‘e holonomy
group of( 2 endowed with the round metric iSO-2°.

Not every Lie group can appear as the holonomy group of a Rieni@mmanifold. A list of

possible holonomy groups was given by Berger:

14



<eorem 2.3 ([Ber55]) Supposé"+6 ° is a simply-connected manifold of dimensiathat is
irreducible and nonsymmetric. Een exactly one of the fioljpkolds:

1. Hol*6° = SO=°,

2. ==X with< 2, andHoll6° = Uk°® SOX°,

3. ==X with< 2 andHol6° = SU<° SOX?°,

4. ==4& with< 2 andHol'6° = Spi<° ($ 14&0°,

5.==4 with< 2, andHol'6° = Spi<°Sp1e  ($ 14,

6.==7andHol'6°= , SO7,

7.==8andHol6° = Spint7® SO8&.
‘e list originally also included the group Spint%, but it was shown in [Ale68] and inde-
pendently in [BG72] to only occur in symmetric spaces. Berger dad prove that all these
groups occur as holonomy groups of Riemannian manifolds, antddk a long time to €nd
example manifolds for each group. In the casesand Spint7°, metrics with these holonomy
groups were shown to exist on non-complete Riemannian madigan [Bry87]. ‘e next step
was the construction of complete noncompact examples in [BSBi#ally, compact manifolds
with these holonomy groups were constructed in [Joy96b, Joy9Bethe rest of this section,

we will introduce the holonomy group$pi<® and » in detail. A thorough discussion of all

holonomy groups can be found in [Sal89].

2.2 Hyperkahler Geometry and the Egu’i-Hanson Space

We now turn to the holonomy grouspi< ©, the holonomy group of Hyperkhler manifolds.
Because of our later applications, we will be particularly inteted in dimension four, that is

the groupSp-1°.

To this end, consider the blowup @2f 1g, which is again a complex surface. More than that,

it admits a Hyperlahler structure that is asymptotically locally Euclidean (ALE), séey00,

15



Section 7.2] and [Dan99] for surveys listing these and more emies. In this section, we will
de€ne ALE Hyperkehler manifolds, write down an explicit formula for the Hypesgkler metric
on the blowup ofC2f 1g(cf. Proposition 2.5), and show that it satis€es the ALE Hyéller

property (cf. Proposition 2.10).

We begin with the de€nition of Hyperkhler manifolds.

De€nition2.4 De€ne the quaternions$i to be the associative, nonabelian real algebra

H=fG, G8, G9, G :&G2Rg' R%

endowed with the unique multiplication satisfying

8% 098 e 9:= :9=8 8= 8:= 9 B=F=:2= 1

LetH< have coordinate$@» """ @, with @= G. G8, G9, Gy 2Hand& 2 R. De€nea

metric and2-forms onH* by

cle: ¢]

6= 1dGP% l;= dG"dG, dG " dGp
;=1 B=0 =1
¢] ¢]

| o= dG”" dG,, dG" dGe l3=  dG " dG,, dG " dG”
;=1 =1

De€ne complex structures « on H" to be le%o multiplication witl8s 9« respectively. ‘e

subgroup ofGL14<e R° preserving6el 11 ¢l 3is Spi< ©. It also preserves -« .

A 4< -dimensional Riemannian manifold'«6 ° is calledHyperlahlerif Hol'6° Sp<?°,

‘us, on a Hyperk ahler manifold we have the data of a metric and three compatibleptex
structures and symplectic forms. Conversely, a metric togetivith three parallel symplectic

structures that are compatible in this sense de€nes a Hypdikr structure on a manifold.

We will now de€ne the Eguchi-Hanson space and the Eguchi-Hanseetrics, which are a
1-dimensional family of Hyperlhler metrics, controlled by a parameter2 R ¢. For: j 0
we get a metric on a smooth-manifold (this is point one of the following proposition), and

for: = Owe get the standard metric oRlef 1gor equivalentlyC2f 1g(this is point two of

16



the following proposition).

Proposition 2.5.LetAbe a coordinate on the o-factor ofR ¢ SO3°. Let

a
@ 0 @ 0 1 @ 1
['=2:0 o0 [2=2:0 0 o[3=2;1 0 ®2so¥
- ® _ ® - ®
0 1 0 1 0 O 0O 0 O
« = « - « -

and denote the dual basis extended to let-invafigotms onSG3° by the same symbols. For

0, lets :R,p SOF! R,obede€ned b 14 =1  Aol4and set

dc=5 1@ dA. e = A5 L A0 =514 % A0 =51 >

1- 0 1- 0

De€nd ; *1, +l; 2 2ZR;o SO3°tobe

| [P=dor gt #age 1 =dor R Brde 1 =doN 8 4 s (26)
and denote b§.. - the metric orR, o SO-3° that makestdC+% £+ £° an orthonormal basis.

1. If: i O, consider the copy 8f0:2° in SO'3° de€ned byexp!B [1° : B2 Rg, de€ning a
right action ofSO*2° on SO3. Denote by ' R? the standard representation et 2°.
De€ne :SO3P R,;p! SO3F + as 16°A& = 16-1A€0°°. Denote

-eH=SO¥ soxt”

Een induces a smooth injective map SO3° Rio! - enthatis adi,eomorphism
onto its image, and the forms 1| ;Z °o can be extended to smooth 2-forms on allepf
Furthermore” 16.. .° can also be extended to a metric on all@gf and?- ge " 16.. 0°°

is a Hyperkhler manifold.

2. If: = 0: parametrise the quaternions@s G8, G9, G with G*G* GG 2 R, embed
(3 H as the unit sphere, and €x the identi€catipn (3f 1g ! SO-3° that mapsG

ontothemap 7! G ~ G 1, wherewe uge®*f 1g Hef l1gand denotes quaternionic

17



multiplication, forG2 (3«f 1g Hef 1g. Denote

1S03 R;o! Hef 1g

1Ge€7! C q h@”

Een |g=1," for82 fle23gand 6= 6u:p, Wherebel 11 21 32 21H° are de€ned

as in De€nition 2.4.

By slight abuse of notation, we will denote the extensiond qglfo for 82 f1e2e3gand6..- to

- gninthe case | 0by the same symbol, suppressing the pushforward under

1- 0

Proof.For: i 0:the factthatl ;' +I , "+ ; "+6,0 can be extended to all 6fg was proven,
for example, in [LM17, Section 2.4]. One checks using a direct aaipn that| g * for 82
f12¢3gis closed and [Hit87, Lemma 6.8] implies trha;t' °is also parallel foB2 f1s2+3g. Both
the symplectic forms and the metric are de€ned using the sanmt@arormal basis, which

proves that they are compatible. ‘e case = 0is a direct calculation.

Remark2.7 A possible point of confusion is that the functioA: - g5 ! R is approximately

the squared distance to the bdi0'3° (g 1» fOgof - gy, SO itis not a radius function.

It is a folklore result that the group of isometries efg that also preservell: *is isomorphic
to Ul2°«f 1g. ‘is can be seen rather explicitly using the description of the etric from

Proposition 2.5, and we give a proof of that in Proposition A.1.

‘e Hyperk ahler structure on gy also has the important property that it approximates the fat
Hyperkahler structure onR* for large values oA ‘e following de€nition makes this notion
precise, and Proposition 2.10 proves that the Hypdtler structure on gy does indeed have
this property.

De€nition2.8 (De€nition 7.2.1in [Joy00]l.et be a €nite subgroup dbpt1°, and let|Nyel"ye" 3060
be the Euclidean Hypemkhler structure onH, andf : He ! » (01° the radius function on

He . We say that a Hyper&hler 4-manifold -« 1¢1 ool 32 @ is asymptotically locally Euc-

lidean (ALE) asymptotic tde , if there exists a compact subset - andamaygc :- n( !

18



He thatis a di,eomorphism between n( andfG2 He :f1@ i ' gforsome | O, such

that

AN

/¥ ic 160 B°=0¥ 4 °andfic UL NP =0 470 (2.9)

asf 11 ,for82fls23gand: O, wheref" is the Levi-Civita connection o8\

Proposition 2.10.

1. E&-sphere = SO gox f0g - gy has radius 4.
2. Eereexisy 2 - gynSOP sox fOgesuchthal ;° 1 ,% =dg " and for any

127

rig” =03 (2.11)

6100

wherer denotes the Levi-Civita connectiorbef. Furthermorel, ;:o I ;00 = 0, and

1- 0 1-0

|57 1.0 =0 Inparticular,t- gel "ol 5 "ol ; “+6.00 is ALE asymptotic tblsf 1g
3. Fore: 9 Othere exists a di,eomorphisq.. 0:- gn! - EH s.t.q.,, 1610 = %6 w for
_*= 5, which restricts to the identity on
Proof.
1. ‘e curve WB = »expy'B[?°+0%is a geodesicin - gy with W0° = W2c© of length
2c: 14, so(? has radius 4.
2. Explicitly,g, " = 152 5291 ‘e ALE property is [Joy00, Example 7.2.2].

3. ‘e fact that 6... and6.. » are conformally equivalent is clear on abstract grounds, as
there exists a classi€cation of asymptotically locally EuclidearpHgkahler metrics (this

argument is used in [Joy00, p. 154]). Explicitly,

q:S03 gogpt+t! SOF ggx+
(2.12)

DIAQPY, | Do 2A¢P
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satis€es the claim in the proposition.

Remark2.13 By de€nition,- g is an associated bundle ovBX3P+SG2° = (2. In fact,- gy is
di,eomorphic to the total space of (2, which itself is di,eomorphicto) CP2. Itis a folklore
result that!- gne 11: *ois biholomorphicto) CPYforall: j O, which in turnis the blowup of
C?%f 1gin the origin, see e.g. [Dan99, p. 17] for the statement. Westhave a blowup map

d:-gn! C2ef 1g

‘ere is another description of the ALE metric on Eguchi-Hansomspace arising from two
di,erent Hyperk ahler quotient constructions: €rst gy is a special case of the Calabi-Yau
metrics on) CP~ explained in [GRG97]. Secondgy is a special case of ALE manifolds
asymptotic to the metric orC2 , where SU2° is a €nite subgroup, which is explained in
[Kro89a]. (‘e special case of Eguchi-Hanson space in thisr@iruction is described in [GN92,

Section 2].)

We briefy describe the construction from [GRG97], as it will heeded in Section 2.4.2. Let

M = H? with quaternionic coordinate®, 0 2 f1+2g, and letU1° act onM via
@7 @S¢ 102k (2.14)
A Hyperkahler moment map for this action is given by

CIM! o ImiHO' R® ut1e
1 O (2.15)
‘@@ ; @8y”
02f1:2g
LetZ = % 2 ImiHe. ‘e group U1° acts freely on” 117° and the general theory of Hy-
perkahler reduction gives rise to a Hypeshler structure on the four-dimensional manifold

- 0=" lizoeyi1°, denoted byMe U1,

It will turn out that - %and- gy are isomorphic as Hypemhler manifolds. We now identify
the group of holomorphic isometries of © thereby recovering the result of Proposition A.1.

We view SU2° embedded irH? 2 as quaternion valued matrices with n®or : components.
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‘en  SU2° acts onM by right multiplication. ‘is action restricts to ~ 117° and commutes
with the action ofUt1°. ‘e actionis not e,ective,as 12 SU2° acts trivially, but the induced
action of the quotient grouflBU-2°«f 1g' SO-3is e,ective. Next, letSO-2° act onM from
the le%. via

@7 £C @ 2102V

Again, the action restricts td 11Z° and commutes with the action dfi*1°, but is not e,ective
as 12 SO acts trivially. ‘e actions of SO2°«f 1gandSU2°«f 1gcommute, as the €rst
group is acting from the le%., the second is acting from the tighfe thus get that the group
SO2«f 1g SU20ef 1gacts through isometries on °. Last, one readily con€rms that the

map

* 170f 1g SUPef 1g! ULXsf 1g

»YU» YVaTl» Y

is a group isomorphism. Its inverse is given y% 7! 1E>)det > -pdet Y%hich is not
well-de€ned as a map)t1°® SU2° ! U2 but is well-de€ned a%oer dividing ofit 1g. One
may also recover the full isometry group of the Eguchi-Hansgase by noticing that there

is an additional isometry induced by the map dvi that swaps coordinates, i.eM ! M |

‘@@ '@ @.

As a smooth manifold; °' ) CP1, so- g4 and- %are di,eomorphic by Remark 2.13. ‘e
Hyperkahler metric on- Cis asymptotically locally Euclidean by [CGLPO1, Section 2.4]. By
[Joy96b, Example 7.2.2]%is isomorphic as a Hypemhler manifold tol- ge 6. - for some
i 0.'ecurve W:»02c¥! - Ogiven by

© @ 122

1160° exp:C :
0

« « -

parametrises a perimeter of the minimaisphere!1s® SO3 in - © It has length2c, so- ©

is isomorphic to the Hyperhler manifoldi- gre61°° by the €rst point of Proposition 2.10.

We sum up the results:
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Proposition 2.16.Under theJt1°-action onM := H? from Eq.(2.14)ve have thaMe U1° "

L #6110 as Hyperkhler manifolds.

2.3  o-structures
2.3.1 Torsion of ,-structures on 7-manifolds

We now introduce »-structures and their torsion, following the treatment in [§60].

De€nition2.17 (De€nition 10.1.1 in [Joy0Q]et1Ge """ +43 be coordinates oR’. Write dGgg»:
for the exterior formdG” d®” " dG. De€nei g2 3!R7 by

I 0=dG23, dGus, dGe7, dG4s dGs7 dGs7  dGse’ (2.18)

‘e subgroup of GL!7R° preservingi ¢ is the exceptional Lie group ». It also €xes the

Euclidean metri&o = d& , dG, the orientation onR’, and i g2 #R™.

5

De€nition2.19 ‘e skew-symmetric bilinearmap :R’! R’ de€ned by
i glDeEeF=6pD E*P

for De E«R2 R’ is called thecross product induced by

eorem 2.20 (‘eorem 8.5 in [SW17]). Letk = i, Een R’ splits into irreducible

representations of, as follows:

1, — 1
+ = 70

2, _ 2 2
t =7 1

3, _ 3 3 3
t =1 7 27
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- =3 and

and correspondingly for 1R 7 1R with: = 456. Heredim |

2=fU: UM P=2g=f8Di g:D2R'g" %
l4=fUrtUNi°= Ug=fu:Urk =0g" g

=Hh Qi"

=W

~Nw

=f80Dk :D2R’g"' i and

3.=fU:U”rig=0andU”k =0g' SymyR"

De€nition2.21 Let" be an oriented/-manifold. A principal subbundl& of the bundle of
oriented frames with structure group » is called a »-structure Viewing& as a set of linear
maps from tangent spaces bf to R’, there exists a unique 2 31" © such that& identi€es

i withig2 3tR" atevery point.

Such »-structures are inl-1 correspondence witt8-forms on" for which there exists an
oriented isomorphism mapping them fo at every point. We will therefore also refer to such

3-forms as »-structures.

Let" be a manifold with ,-structurei . We callr i thetorsionofa »-structurei 2 31" ©,
Here,r denotes the Levi-Civita induced Ly in the following sense: we have, SO7°, so

i de€nes a Riemannian metricon " , which in turn de€nes a Levi-Civita connection. As a
shorthand, we also use the following notation: writeti °= i , where\ " denotes the Hodge
star de€ned by6. Using this, the following theorem gives a characterisatidntorsion-free

>-manifolds:

<eorem 2.22 (Propositions 10.1.3 and 10.1.5in [Joyd0O3}" be an oriente@-manifold with

»-structurel with induced metri6. (Ee following are equivalent:

(i) Hole®
(i) ri =0on" ,wherer is the Levi-Civita connection@fand

(i) di =0andd % °=0on" .

If these hold thef is Ricci-f at.
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‘e goal of Section 3 will be to construct »-structures that induce metrics with holonomy
equalto . Atorsion-free »-structure alone only guarantees holononepntainedn 5, but

in the compact se<ing a characterisation of manifolds with holomy equal to » is available:

<eorem 2.23 (Proposition 10.2.2 and ‘eorem 10.4.4 in [JoyOQ]Let" be a compact oriented
manifold with torsion-free ,-structurei and induced metri6. EenHol6° = , if and only
if c11" ©is €nite. In this case the moduli space of metrics with holgne on" , up to di,eo-

morphisms isotopic to the identity, is a smooth manifoldnoéadsior 31" ©.

Note that this theorem makes no statement about the existeofa torsion-free >-structure in
the €rst place. Finding a characterisation of manifolds which atartorsion-free »-structure

and even the construction of examples remain challenging proiden the €eld.

Later on, we will investigate perturbations of ,-structures and analyse how that changes

their torsion. To this end, we will use the following estimatesfine map de€ned before:

Proposition 2.24(Proposition 10.3.5 in [Joy00] and eqgn. (21) of part | in [Joyp8Here exists
nij Oand2 i Osuch that whenever is a7-manifold with ,-structurei satisfyingdi = O,
then the following is true. Suppgs® 't 3 " °andjjj n. Eeni , j isa -structure,

and

Heoje=bo)re 1o (2.25)

where \ " denotes the Hodge star with respect to the metric induded by 31" o1 41" o
is a linear map (depending on, and is a smooth function from the closed ball of radiirs

3 " to 4 " with 10°=0. Furthermore,
joj 2jjjte

jd* oo 2 jijEidig,ir jjiii e
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as well as

jreorjeep 2 i Piri gL ijiii e

»r 100y 205 Yy jij diva Jiri dive L i1 diE o1 Y, o1 Y i dive it Tl A e

Herej jdenotes the norm inducediby denotes the Levi-Civita connection of the metric induced

byi , and» Ysu denotes the unweightedlder semi-norm induced by this metric.

Finally, the landmark result on the existence of torsion-freg-structures is the following
theorem. It €rst appeared in [Joy96b, part |, ‘eorem A], and we psent a rewricen version

in analogy with [JK21, ‘eorem 2.7]:

<eorem 2.26. LetUe ;¢ o 3be any positive constants. (Een there existO-1¥and 4 O,

such that whenevé@Y C n, the following holds.

Let" be a compact orientédmanifold, with ,-structurei with induced metri® satisfying

di = 0. Suppose there is a clo8ddrmk on" suchthatdi =dk and

() jkijo  1®ikiie  1G2Y andjkjje  CT2Y.
(ii) Ee injectivity radiusnj of 6 satis€esn; -C

(iii) Ee Riemann curvature tend@mof 6 satis€egjRmjj o 3C2.

Een there exists a smooth, torsion-freestructuree on" such thatjje i jj o 4& and

»eYF 5 ¥Yin 31"« RO, Here all norms are computed using the original metric

‘e main purpose of Section 3 will be to prove an improved existee theorem, specialised to

the resolution of) “» . ‘is will be achieved in ‘eorem 3.82.
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2.3.2 »-manifolds and Hyperkahler4-manifolds

OnH with coordinatest~g ~* —* ~3° we have the three symplectic fornse | oo 3from De€n-

ition 2.4 given as

l o=d" a1, 2"z |1=d "N d O3 |o=d " d3, O " O

Identify R” with coordinatestGe """ «@with R® H with coordinatest1Ge Ge GO 1~1e ~e ~3¢ 4.
‘en we have for i g i o from De€nition 2.17:

G o
i 0= dQ23 dQA I g i 0= VOly I g ng;" (2.27)
&1 18099=11:2:3°
and cyclic permutation

‘is linear algebra statement easily extends to product manifolds itne following sense: if
- is a Hyperlahler 4-manifold, andR?3 is endowed with the Euclidean metric, theR3 -
has a »-structure. ‘e  ,-structure is given by the same formula as in the fat case, nigme
Eq. (2.27), a%oer replacihgel »¢| 3° with the triple of parallel symplectic forms de€ning the
Hyperkahler structure on- . ‘is product »-structurewill be glued into »-orbifolds in the

following sections.

2.4 Gauge <eory in Dimension 4

In this part we briefy review the theory of ASD instantons onmpact4-manifolds as well as
the (non-compact) ALE spaces. We follow the treatment of [DK&0]the compact case, and

the treatment of [Nak90] for ALE spaces.

Let!- %@ be an oriented Riemanniagmanifold. Let 21-°= .10 1- °pe the decom-
position of 21- ° into positive and negative eigenspaces of the Hodgeperator. A connec-
tion on a principal -bundle%is then called aranti-self-dual instantotfor ASD instantop
if its curvature satis€es = ,where is viewed as an elementin?t-¢« Ad °, and

acts on the2-form part while leaving theAd %part unchanged.
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2.4.1 On Compact Manifolds

Now, let. be a compac#-manifold.

De€nition2.28 Fix some smooth connectiong on %and assume there exists a faithful rep-

resentation+ of . Write =% + andfor€xed; 2 N,;: 3, we then de€ne:

ba=f 0,0:0212% 1Ad9E. o, Ois anti-self-duatg
»1:=fB212,1 %ENG °°:B~°2 forall~2. ¢
n 1;0 = ésd. T 1n
Here, '-!can be identi€ed with gauge transformations of the bunéftgand through this acts

on ;Viapullback. ‘en, " =" 3is called themoduli space of ASD instantons

Remark2.29 By the Sobolev Embedding ‘eorem, equivalence classes iA3° have continu-

ous representatives. Elements in,_, need not have continuous representatives for 2,

d
which is the reason for the choice 3 here. On the other hand, Proposition 2.30 states,

roughly speaking, that the exact value ptloes not macer, as long as it is at lea3t

Itis now that we make use of the compactness assumption.if compact, then the de€nition

of" actually turns out to be independent of the chosen regularity the following sense:

Proposition 2.30(Proposition 4.2.16 in [DK9Q]XEe natural inclusion df 1; , 1°in" %isa

homeomorphism for 3.

Because of this proposition, we may think of the moduli spacdotomade up oémoothASD
instantons andsmoothgauge transformations. De€ne the operator
X : MeAd®s!  O1LeAd9B 2. AR
’ (2.31)
07!'1d Oed Q°
whered- 0: 11+ Ad98 ! ?1. « Ad 98 denotes the composition of the di,erential andthe
projection of the2-form partonto - 1. °. ‘is operator governs the in€nitesimal deformations

of ASD instantons, as stated in the following proposition:
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Proposition 2.32(Proposition 4.2.23 in [DK9Q])For any connection on%let
=fD2 :Dt°= ¢

If is an ASD instanton, then a neighbourhood &in " is modelled on a neighbourhoodof

of the quotien® 1P where
5:KerX ! CoKerd
isa -equivariant map.

We will also make use of the following Weitzemsiok formula for the operatoKX :

Proposition 2.33Equation 6.2.5 in [FU91])et%be a principal bundle over, and a connec-

tion on%and& =d péd: l1e AdoB! 016 Ad%R ’21.-Ad%’.GEen

KKO0=r r O0,fRicOy,f <Op

where denotes the projection of tbidorm part of onto 1. °, andf « gdenote universal

bilinear forms.

We then have the following index formula foX :

Proposition 2.34(Equation 4.2.22 in [DK90])Let%be a bundle with structure gro§o-3°

over. ,and an ASD instanton. Een

indX = 222 ° 311 1;t.°, 11 0°”

One last result to mention is the classi€cation 80'3°-bundles andSW2°-bundles. It will be

mentioned in passing in Sections 2.5 and 4.6 but is not used irsaardial way anywhere.

<eorem 2.35 (‘eorem 1 in [DW59] and ‘eorem E.8 in [FU91]). Let%-<&beSOC-3P-bundles
over a compact-manifold. . Een%and& are isomorphic if and only #,198 = ?,1&° and

F 2198 = F,1&°.
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<eorem 2.36 (‘eorem E.5 in [FU91]). Let%-<&beSU-2°-bundles over a compatmanifold

. . Een%and& are isomorphic if and only %196 = 2,1&°.

2.4.2 On ALE Manifolds

Let SU-2° be a €nite subgroup and let be an ALE4-manifold asymptotic toC? . Even
though- is non-compact, some of the results from gauge theory on coatpaanifolds carry
over to this se<ing. First, we explain a correspondence betwaguge equivalence classes
of connections on and on its one point compacti€catiod = - [flg . ‘e following

proposition explains the orbifold structure o

Proposition 2.37(p.687 in [Kro89b] and Propaosition 2.36 in [Wall3H]et1-+6° be an ALE
manifold asymptotic t€% by meansofamap :- ! C2? in the sense of De€nition 2.8,

andlet-" =- [flg be the one point compacti€cation of

1. Ee topological spafeis an orbifold and there exist a neighbourheodf 1 and an
orbifold chart5 : % | +,where 4is the unit ball inR4.

2. (Ee orbifold” carries an orbifold metrig of regularity Y for anyU 2 101° such that
the restriction o®to-  -" is conformally equivalent &

Proof sketch.

1. Fix an orientation reversing linear isometfyof R*. Let acton 4 R*by6.G 7!

f 116 f1®@°and de€ne

%1 ifG=0 (2.38)
G7!

_%c Lif 1@ejG%  otherwise.
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2. ‘e metric 6 = 11, jcj?° % on- is shown in [Kro89b, p.687] to extend t6 as an

orbifold metric with regularity *Yand is by de€nition conformally equivalent 6.

Let be a compact connected Lie group with a faithful represerdati ! GL4+°. Let%
be an orbifold -bundle over-" and denote its restriction te by % i.e. %= %. . ‘atis, %
restricted to+ ' % from Proposition 2.37 is the trivial bundle® together with a €xed
li%o of the action of on *to 4 . Overthe point0 2 4, this de€nes a homomorphism
d: ! . ‘e following proposition states that this homomorphism esagtially characterises

the orbifold bundle over 4 completely.

Proposition 2.39.(Eere exists a trivialisatioh : 9§ 4 | 4 such that acts through let

multiplication byd:

WA 11e@ =~ 11w 10 dVFE° forW2 o11e@ 2 4 7 (2.40)

Proof. e li%o of the actionof to 4  canbeviewedasanelemegnt2 11 %Hom! « ©°
viaW1le® = ‘W1eF11°0\¥ 6°, ‘e space “is connected, so by Corollary A.12 the conjugacy
class off does not change over®. ‘atis, there exists f 2 11 % ©sych that; A :F 2

11 %Hom! « %%jsconstantandg; A :F1° =d. ‘us f de€nesatrivialisationof4 in

which acts through le%. multiplication vid.

Because of Proposition 2.39 we can €x a trivialisatiof@iver “such that acts through le%o
multiplication by d. ‘en denote by g any extension of the product connection with respect

to this trivialisation to all of % Di,erent choices of extension will give rise to the very same

spaces in Eq. (2.43). We identiy 1° (% ' - n for some' j O big enough and a
compact set - . ‘en the monodromy representation of ¢ restricted tof@ (3 , say

1c1f@ (3 °1 | satis€es
=d (2.41)
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under the canonical identi€cation ' c,1f@ (3 °. Extend the projection onto the €rst
component n '»'e1° (31 » 'e 1° to a smooth positive functior\on all of- . For a
non-negative integer, a weightX 2 R, and? 1 de€ne the weighted Sobolev norm on the

. -forms with values in the adjoint bundle with compact support,*Ad % via

~ 1

@) 14?2
jiVij7 = jroUPATX 97 dge . (2.42)
SO

and denote by ;?.Xl - LAd 98° the completion of *Ad %8 with respect to the normjjUjj, "
As before,set =% + and for; 3de€ne

=1 o, UrU2120 BAd%Cg

L AX 1 2
0 X _fBZ!;,l-Ioc

¢=fB2 :BdB'=dg (2.43)

1 Oippgr 0B @ 2 forallG2 « jjB Idjj>_ Y 1ge

BIXL=fg212 1 OEng °:B@ 2 forallG2 e

[o]

B Bijjz Y 1 forsomeB 2 4¢’

In the de€nition of X 1we regarded 2 4 asanelementint O1End °°as follows:
considerdoover “de€ned by the orbifold chart aroundl . Using the trivialisation from Pro-
position 2.39, this canonically de€nes a gauge transformatiogrov. (It is the same to say
that we obtain a gauge transformation by parallel transporttivrespect to q.) ‘is gauge
transformation is -equivariant by de€nition of 4 and Proposition 2.39. We then extend it
arbitrarily on the rest of-" to an elementin 1t 91Endt °°, ‘e choice of the extension does

not macer for the conditionjjB B jjz Yi1.

‘e gauge groups ;™ *tand X 1pothacton X and the quotient spaces:™ X1
and % X 1gre called the moduli space of framed connections and the moduksjud

unframed connections, respectively. We can restrict to as#if-dual connections:
o X o X : ;
wa=f 2 . is anti-self-duad

and obtain themoduli space of framed ASD connectioft§ := s - *** and themoduli
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space of ASD connectiongé- B IX L

‘e four quotient spaces e XL K LXK gnd Y 1K1 gre topological
spaces. Fdr X we will observe explicitly (cf. ‘eorem 2.49) that it is metrisablead there-
fore Hausdor,, and the same argument works for the other thrgaotient spaces, cf. [DK90,

Lemma 4.2.4].

Moving on to the orbifold, we de€ne:

De€nition2.44 For; 3let

P =f g, UrU212 Laddpog

wrob = £B212.1 OENd+0:B@ 2 forallG2-ABl1°2 4@

plob=fgp 1o .gjo = |dg

‘en  »M®and ;P pothacton 2P andwe canformthe quotientspaceg e i o
and" oD = 0. L1 Here 10 js called themoduli space of framed ASD connections
on-",

We also have the following analogue of Proposition 2.30.

Proposition 2.45.For3 ;1 Y ;,, the inclusion maps

nororb g e Svorb, it 2y w2 2

are homeomorphisms.

‘e proof of Proposition 2.45 works the same as in the compact eqs.e. the proof of Propos-
ition 2.30 given in [DK90, Proposition 4.2.16]. ‘e only di,erence ishat in the non-compact
case, i.e. for the clairh '** 23 " 2 2 one has to take the weighted Sobolev norms from
Eq. (2.42). ‘ese have their own versions of the Sobolev embeddingdtem and, if the weight

is non-positive, the multiplication theorem for Sobolev norrakso holds. ‘ese properties of

weighted Sobolev norms are proved in [Pac13, Corollary 6.8].
Proposition 2.46.Forany 2 Zthere exists a connectidl2 198 satisfying "jo, =
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Proof. Corollary A.17 gives a bundi® over-" with connection °together with an injective
bundle homomorphisn: %! %. A%oer €xing a trivialisation dfbaround1 , this canonically

de€nes an isomorphism of orbifold-bundles : %! 9%, and "= 1 ® satis€es”jy, =

De€nition2.47 De€ne the map
:n 32 ! nw 30rb

as follows: for» o, 0v4 2° ® 2let "2 198 be the induced connection from Proposition 2.46

and set 1» o, 0¥%40= »"Y

Proposition 2.48.Ee function from De€nition 2.47 is bijective.

Proof. is injective: let » o, 0%» o, 8% 2' ¥ 2such that 1» o, 0%°= »"Vas well as
1» o, 8Y:°= »" W If »" V= » W then " = B  for someB2 J°®. We haveB1° = Id,
solB Id° = OtjG°andr- B Id° = O1° for: 2 f1s2¢3+4g. Here,r - . includes terms
containing the Levi-Civita connection for the orbifold met®on-"for: j 1, andjG denotes

the distance fronL 2 -" in this metric. In particulary : ,'B Id° = OjG?! ‘°. We have
ri B Id° =11, Ko r’ 1B Id° = 02 jgtie=0w,l o

where6 denotes the ALE metric, in the €rst step we used the de€nitior®dfom the proof
of Proposition 2.37 and the fact that we are measuring a tensithh w covariant indices and
0 contravariant indices. ‘us, B2 6" 1 ‘erefore, » o, O¥= » ¢, 8Yas elementsirt > 2,

which shows the claim.

3orb

asd - Similar to the previous point we

is surjective: Let» g, 0% 2" %™ je. o, 0
€nd thatr* 0 = OA 29, By construction »! o, 0% %= » o, 0%which proves the

claim.

Because of Proposition 2.45 we will drop the regularity and decaynfithe notation of our
moduli spaces most of the time. ‘at is, we will 0%oen writé for " *Xwith any; 3and

X= 2 Likewise for « o o O 0 0b gng Orb,
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‘e important results about the local structure of" are the following:
<eorem 2.49 (‘eorem 2.4 and Proposition 5.1 in [Nak90])" is a nonsingular smooth man-

ifold and for» ¥4 2' its tangent space is isomorphic to

Y ,=fu21? 0 Ad9gO X WP = 0gf

For the linear operatoX we have the following analytic result:

Proposition 2.50Proposition 5.10 in [Wall3a]let 2 ! °be a€nite energy ASD instanton

on . Een the following holds:

1. If0 2 KerX decays to zero at in€nity, i.dima1  SURE-AJ0j*G = O, thenr - 0 =
Otjcj 3:°forall: O.

2. Ifthbel° 2 KerX decays to zero at in€nity, thébe1° = 0.

‘e Hyperk ahlertriple of- acts on thel-form partof 1Ad98. Itis checkedin[Ito88, Section
4] together with [Ito85, Proposition 2.4] that this action regits to  * ,forall» ¥ 2 . We
thus have a triple of complex structures dn. ‘e following theorem states that this de€nes

a Hyperlkahler structure with respect to the standard metric 6n:

<eorem 2.51 (‘eorem 2.6 and Proposition 5.1 in [Nak90]) Ee metricc- de€ned by

1

6 We¥= 6WU+Yvol forUe\2 1,
and the Hyperihler triple de€ned by acting with the Hypehker triple of on thel-form part
of 11Ad98 is well-de€ned oh and de€nes a Hypeakler structure oh .

<eorem 2.52 (‘eorem 2.47 in [Wall3b]). Letd : ! be a homomorphismg a connection
on a bundlé&sthat is fat at in€nity as in Proposition 2.39 whose holon@psesentation is equal

tod in the sense of ER.41)LetX2 * 3 1°and = o, Uforsomel) 212 1 11Ad9g°.
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Een the 2index ofX , de€ned as

dimfo 2121 liadoge\ 11 lipdogo:X 100 =0Qg

dimfo2121 0 21pdogoy 11 0 21pdogo: X 100 = Ogp

is given by
' O i 10 (i
indX = 2 2,1Ad% . = 1g'6" dimg, (2.53)
. 1 g, nfdg 2 tr6
Here?;1Ad % is the Chern-Weil representative of the €rst Pontrjagirs dé®%andj 4 is the
character o acting ong, the Lie algebra associated withviad, andtr 6 is the trace o6 acting

ong. Moreover, if is an ASD instanton, thend X =dimKerX =dim" .

Here come two examples of anti-self-dual instantons on ALE spaE#rst, recall the construc-
tion of - gy as a Hyperlahler quotient and the Hyper&hler moment map from Eq. (2.15).

Using this notation, we have the following result from [GN92].

Proposition 2.54Section 2in [GN92])EeU1°-bundleR =" 118201 - g, =" l1820.y11°
admits a non-fat €nite energy ASD instantoasymptotic to the representationZ, ! U1°

determined byl! 1°= 1inthe sense of E(R.41)

An additional property ofR that we will need later is the following:

Proposition 2.55.Cere exists a lit of the action of the holomorphic isometymyt2°«f 19

of- eyto R.

Proof.We have seen in the construction efgy as a Hyperlahler quotient before Proposi-
tion 2.16 that the holomorphic isometry groupt2°«f 1gis realised as an action @f*2°«f 1g
on’ 11820 that commutes with the action 0B)11° on " 11820, ‘e action of U2°sf 1gon

11820 js the desired |i%o of the action BE20«f 1gon- gp.

Remark2.56 We can apply ‘eorem 2.52 to theUt1°-bundle over- gy de€ned before to €nd
that it is rigid. AsAd R has rankl, we have thaP;1Ad R° = 2,'Ad R®® = 0, and plugging this

into the index formula from ‘eorem 2.52 proves the claim.
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Remark2.57 On simply connected compact manifolds it is the case that ds°-bundle
admits an ASD-instanton that is unique up to the action of thauge group. ‘is is a con-

sequence of the Hodge theorem. On non-compact manifolds a trariaf the Hodge theorem
for | 2-forms holds, see [Loc87, Example 0.15], and can be used to givteamative proof of

Remark 2.56 without the use of the index formula.

Here is a non-rigid example:

Example2.58 (Chapter Il in [Ati78]) Consider the BPST instantons from [BPST75]R On

the trivial SU-2°-bundle%over R* de€ne a connection via

1
= l,jq21\18’ \29, \g:©

where8e 9¢is the standard basis for the space of unit quaterniepsl® ' su'2° and

\1=Gde GdG GdG, G dG:
\2=Gdg GdG GdG, GdGe
\3=GdG GdG Gdz, GIG”
‘en has curvature
1 2

= —1 qu 1d\18= d\29= d\31°

and a computations shows thatis an ASD-instanton. ‘e Killing form on sp'1° is given by
DeDi = 8ReDD° for Die ) 2 sptl°
which gives

21Ad%® = —— h e ivolgs
R4
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‘us, by ‘eorem 2.52, lives in an8-dimensional moduli space of framed ASD-instantons.
‘is moduli space is given by the following connections: for any- 2 R*and_ 2 R- we
get another ASD instanton by translating byand dilating with_. One checks that di,erent
choices of- and_ give rise to connections which are not gauge equivalent. ‘e oaection

is irreducible, so its orbit under the action ofe o= 4 = isisomorphicto 4¢ 1 °=
SU2«f 1g= SO by [Nak90, p. 275]. ‘e framed moduli spacé is thus di,eomorphic to

R4 R. SO3.

Before ending the section we will state two results about unisarbundles that will be needed

later. ‘e proof of the following proposition is based on the probof [DK90, Proposition 5.2.17].

Proposition 2.59.Eere exist

~a -bundleP over' -"with anatural actionof 4' ¢ gonP covering the action of

daon”
~ aconnectiof 2 1P°thatis invariant under the actionofy' « ¢, and

" for each choice gf2 Iso * « %, ° a canonical isomorphism ofbundles with le} action

PJ flg !

=)

satisfying:

" forany elemenp %2 2 there exists an isomorphisyy,, ,, .~ Jbsuch that under this

isomorphisnRjs, 1,4 and agree up to the action ob.

~ if we decompose the curvatur@adver’ - according to the bi-gradingon) 1" - °
inducedby " -°=c;) " ¢, -,thenitscomponents satisfy the following:
{ 2 iHomic)) "ec,) - Ad9%°atl» %Q@isthe evaluationd 2), 5 at
[}
G
{ 2'2 2 1c, -° Ad%,where isde€ned using the ALE metric-on
"0 product= Rj f1g , Where proguct2 * " © denotes the product connection.
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‘e proof makes use of the following lemma. Here, the data, ™ " can be taken to be in€nite-

dimensional, which is the version of the statement that we useta

Lemma 2.60(Equation 5.2.16 in [DK90]Let. and." be smooth manifolds, ! . vector
bundle, and suppose a groupcts smoothly oA, covering a free action dh Let = " |

AN

. =."« be the quotient. (Ee data of

() aconnectior in "which is invariant under ,

(i) aconnection inthe-bundle? :."! ., determined by a horizontal distribution
de€ne a connectianon via
1. B =B (2.61)

in which Bis a section of corresponding to a local invariant sectbn.” | “and¥" is a
horizontal lit of* with respect to . Eis de€nition is independent of the choice of lif and the

curvature of satis€es
1101 % ¢4 0" = 11 ¥} Lo 1  1ke4 00, (2.62)

wherefe+ 2) 4, ,¥s £ 2) ., are horizontal lifs with respectto, :." Liet °! End”

is a linear map, and is the curvature of .

Proof of Proposition 2.5%t be the vector bundle associated %by means of a faithful

representation of . ‘en we will apply Lemma 2.60 inthe case™ = °B " = o™ |et

n N
|

=c, , wherec; : orb " is the projection onto the second factor. ‘e orbifold

asd

gauge group 8rb then acts through pullback orf'.

"carries a tautological connectiof characterised by the properties thét o f Gg is trivial
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andf] fgn= under the canonical isomorphisn’w‘jf g e connection [ satis€es

1P1DeE= 1 0Defe
101 Qe P = H)e e (2.63)

1P10s 0 =0

forD*E2)g" and0e12)  asd

We will now de€ne horizontal subspaces in the bundl€® | " = 9. o As 3 €rst

asd

step, we de€ne the horizontal subspacedor the principal bundle asq! " = asf# o0aS
=f02) asq= -+Ad%:d 0=0g (2.64)

Here, the adjoind is taken with respect to the ALE metric on.

e are o-invariant, i.e. forB2 gwe havethatd gt ©°= g . To see this, led 2
andD2 01-« Ad9. Under the identi€cation of -forms taking values in the adjoint bundle
with horizontal equivariant forms orf4 we can view0 as an element in 11%¢° andDas an
elementin °1%gP°. Elements in are in 1-to-1 correspondence with -equivariant smooth

mapso! , and we denote by : %! the map corresponding t& ‘en

hdg *d' g!0°%D = hd' gl0%dg Di
= hAdf g1o0edDi | h Adf g 100e»Adf g0 e D Vi
= HDedAdLf g°DPi , h0-AdH ?>Ad g0 e D Vi
= Hoed *AdH PDPi

= hd 0-Adf g°Di = 0

where we used that the Killing form i#d-invariant in the third step, and we used the assump-
tion0 2 in the last step. As this holds for a2 91-« Ad98, we have that! g!0°2 g .
‘e fact that they are horizontal, i.e. a complement to the vertal space generated by the ac-

tionof gon 24 is‘eorem 2.49. We are now ready to write down the horizontal supaces
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Ofor the principal bundle 281 " = 0. o | et

0=02) aq= "SAd%:d; 10.°=0g (2.65)

where again the Hodge star is taken with respect to the ALE metrie subspaces Care
right-invariant with the same proof as for . To see that they are horizontal, note that they

are not vertical, and satisfy
rank 0 rank =dim1" °=dim " orb »

‘e €rst step follows from the de€nitions of and © the second step is the fact that is

horizontal, and the third step is Proposition 2.48. ‘is shows it  °de€nes a principal bundle

connection.
By pullback, induces a connection on the principal bundle2® - I %% o . which
is trivial in the - -direction. ‘erefore, its curvature satis€es
IDeE=0r
(2.66)
10-EP=0
forDeR2)e and02) oF
Lemma 2.60 then gives a connectionon _ = " (‘)”b. And Egs. (2.62), (2.63) and (2.66) give
for the curvature ofr at the pointl» 4@ 2" - :
1R1DeE= 1 01DePs
(2.67)
11 Qe P = tDe
forDeE2 )¢ and0 2), 4. °® ' KerX 11Ad9%. Denote byP a -reduction of the

bundle of frames of and byf the connection orP induced byr . ‘e curvature of A still

satis€es the analogue of Eq. (2.67).

Last, anyg 2 Iso 1 «9%,; ° pulls back to an isomorphism of vector bundles withle%. action
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0. N f b . N
97 ) om g saq- BY de€nition off”, we have that

® roducto — A ”
1™ 1r p =] gsrg flg (268)

Using thatq®is o-equivariant and changing to the bundle of frames, we get amisoph-

ismg  Pjob g ! " o of the quotient. Lastly, because of Eq. (2.68), we have that

q product:Aj" flg -

By Proposition A.1, the group of holomorphic isometries agtion - gy is Ut20«f 1g. ‘is
induces a non-e,ective action ob)12° on -"g4 by demanding that each group element €xes
12 -"gn. ‘en  U2° acts from the le%o. oh (and equally’ °™®) as follows:U'2° is connected,
so!D ! and are homotopic bundles and in particular isomorphic. Di,erenhoices of

isomorphism give rise to gauge equivalent connectionspdd 1 ¥, 2' is well-de€ned.

Later on (cf. De€nition 4.9) we will need the following assumption

Assumptior2.69 ‘e action of U2 on" -k can be li%oed to an action éhthat preserves

R.

In the examples constructed in Section 4.6 this assumption wélldatis€ed because of the

following proposition:

Proposition 2.70.LetP ! " "ty be the tautological bundle with tautological connedtion

from Proposition 2.59.

If the action oU12° on-"g, can be lited to an action ¢ then the action df*2° on" gy

can be lited to an action ¢ If it exists, this lif can be chosen to pres&ve

Proof. First, assume that the action &#12° on -"gy can be li%oed to an action & ‘is is
equivalent to saying that for alb 2  there exists a bundle isomorphistg : %! %scovering

6:-en! -"en. Recalltha® ' c,% $® whereco: o gy! gy is the projection

asd
onto the second factor. Lét» %@ 2" -y andsD¥ P, we whereD2 c,% o © O
We de€ne’s : P! Pcoveringé:" -eq! " BnviateDVi= »hsDPY%To check that

this is well-de€ned, leB2 8”), and observe thate>BB= » Bl lotDPYe ssDYa
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It remains to show that this li%. preserv8s First observe that the map

CZ%loGO 3D7! bl 2 CZ%le 1 *6G°

preserves the tautological connectiofi which is the principal bundle connection 0o,%

inducingr" on the associated vector bundle, because

n "o; — A N 0 — —_ "
e Ol g-en="6" Jfbelg‘EH _biel -

‘e action of U2 on gs'g also preserves the horizontal subspace$from Eq. (2.65). By
de€nition of Yit susces to check that the action ofU12° on g preserves the horizontal

subspaces from Eq. (2.64). Tothisend, 16t2 ,i.e.3 0=0.‘en

db61 b610: dbGl b610: dbGl b61100: b611d1000:b611300:(}

where in the second and fourth step we used tiat : - g | - gn iS an isometry, and in
the third step we used that exterior di,erential and pullback oomute. ‘e connection & was
de€ned using the data of and by means of Lemma 2.60. ‘e action ofJ12° preserves”

and and therefore preservef.

2.5 Gauge «eory on Complex Vector Bundles
2.5.1 Hermite-Einstein Connections and Stable Bundles

‘roughout the section, let  be a complex vector bundle over a complex manifold

De€nition2.71 A bundle atlas of with holomorphic transition functions is called &olo-

morphic structure on.

We will 0%oen usk to denote a complex vector bundle together with its holomorphiusture,

and to denote the underlying complex vector bundle.

De€nition2.72 Amapm : %" o1  Oline othatisC-linear, satis€es the Leibniz rule
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mi5B =15 B, 5m!Pfor52 liCcandB2 ! ° and satis€esi = Ois called a

Dolbeault Operator

Given a holomorphic structure, we get a Dolbeault operator biitey the canonicaimin the
trivialisations of the bundle atlas. ‘e fact that transition furctions are holomorphic guaran-
tees that the resulting operator is well-de€ned on all'of, not just on one trivialisation. We
have the following result that describes the relation between Dedhlt operators and connec-

tions:

De€nition2.73 For a Hermitian metric on , denote by ! the set of unitary connections
with curvature of type!1+1°. Here, curvature of typeéls1° means that in the decomposition
of the curvature according to type, i.e. = 20 ¥ %2 wehavethat = 2=,

5 5

Denote bym = proj o« 3 the Dolbeault operator induced by

Proposition 2.74(Proposition 4.2.14 in [HuyO5])Let E be a holomorphic structure on €x
a Hermitian metric on and letng be a Dolbeault operator & (Een there exists a unique

2 Tlgychthatm = ng.

‘e uniquely determined connection from Proposition 2.74 is callebe Chern connectioi®ne
can also go the converse way: every2 'is the Chern connection with respect to some

holomorphic structure:

Proposition 2.75‘eorem 5.1 in [AHS78]). Fix a Hermitian metric on. For 2 1 there
exists a natural holomorphic structue on  which induces a Dolbeault operatorsatisfying

that is the unique unitary connection such tivat= m.

Now, a complex bundle will admit several holomorphic structures, some of them isombic.
‘ese isomorphic holomorphic structures will give rise todi,erent unitary connections. Iso-
morphism on holomorphic structures corresponds to the follogiequivalence on unitary

connections:

De€nition2.76 Denote by 2 the group of all smooth complex automorphisms otovering

the identity, called thecomplex gauge group of

‘egroup 2 acts onmoperators by conjugation, which induces an action ort*! as follows:
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let 2 T andletm be the associateshoperator (cf. Proposition 2.75). ‘ergt ©2 Iljs

de€ned to be the Chern connection with respect to thperatorem6 *=m * m6° 1.

Proposition 2.77Section 6.1.1 in [DK90]For 2 ldenote by the holomorphic structure

given by Proposition 2.75. Een, the map

1§ holomorphic structures oy

7E

descends to a bijective map®s 2! f holomorphic structures orge' , whereE ' E Cif there
exists a holomorphic map: E ! E °covering the identity such th&tis an isomorphism of

complex vector spaces in every €bre.

In this sense, studying holomorphic structures on a vector bundlessentially the same as
€xing a hermitian metric and then studying unitary connectis on that bundle. Later on, we

will be interested in unitary connections with the following |ial curvature property:

De€nition2.78 (Hermite-Einstein connectianl.et- be a kKahler manifold of complex dimen-
sion= with Kahler forml 2 ?21-° Let be a Hermitian vector bundle and be a unitary
connectionon . ‘en is called aHermite-Einstein connecti¢@r Hermitian-Yang-Mills con-

nection if it satis€es the system of equations

®2-0and | =_Id (2.79)

for some constant 2 C. Here, | 2 1Endt °°isde€nedvia ~I=1=1 | ° = In

particular, if==2,2 | =h eli.

All Chern connections satisfy the €rst of these conditions, i.&2 = 0, but they may not satisfy
the condition I = _Id. ‘e following de€nition and theorem give a criterion for when
a holomorphic bundle over a #&hler manifold of complex dimension two admits a hermitian

metric so that its Chern connection is a Hermite-Einsteintection.

De€nition2.80 (Chern class of a coherent sheaf, [EH16Ht be a coherent sheaf over an
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=-dimensional projective variety and let
or .t .. 1! ol 10

be a locally free resolution. ‘en the total Chern class of is de€ned as

O 8
21 0= Joat 8o1 o 1_ o
80

For this de€nition to make sense we need that all coherent slesav admit a locally free
resolution, and that2! © does not depend of the choice of resolution. Both is proved in

[Ful98, Section B.8].

De€nition2.81 Let  be a coherent sheaf over anrdimensional projective variety with

Kahler forml . ‘en, the slopeof is de€ned to be

2,1 0/\|=l
Y1 0= = 1 ”
rankt ©

De€nition2.82 (Stable bundle).et E be a holomorphic vector bundle over a projective variety
- .'en Eis calledstable if for any coherent subsheaf O! °with 0Y rank Y rankE
the inequality

‘1 0y 1iEo

holds.

<eorem 2.83 (‘eorem 1in [Don85]). A stable holomorphic vector bundle over a compact two-
dimensional &hler manifold admits a unique Hermitian metric so that ite@iconnection is a

Hermite-Einstein connection.

As an example, consider the tangent bundle=) CP? of CP?. ‘e complex projective space

CP?is a Kahler manifold, so it has a complex structure As for any other complex manifold,
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we have an isomorphism of complex vector bundles

b: 1 )¥cp?

1
E7! ElE 8 po”

) *0CP? is a holomorphic vector bundle, anblendows with a holomorphic structure via

pullback. We denote together with this holomorphic structure bye. We then have:

Lemma 2.84Lemma 9.1.8 in [DK9Q]E is stable.

‘us, from ‘eorem 2.83 we know that E admits some Hermitian metric so that its Chern con-
nection is a Hermitian-Yang-Mills connection. We can exactgtify this Hermitian metric,

too:

Proposition 2.85.(Ee Chern connection of the hermitian form induced by the F8hidy metric

6rson CP~™ is a Hermite-Einstein connection.
Also, the Levi-Civita connection of the Fubini-Study mistadHermite-Einstein connection.
Proof. Denote the Chern connection hy. ‘en 02 -, just because itis a Chern connection.

It remains to check the second part of Eq. (2.79). One checksi¢firairect computation that

6rsis an Einstein metric satisfying
Ric= 12= | 26g (2.86)
(see [Petl6, Section 4.5.3]). ‘e spaC®- is Kahler, and on any lihler manifold we have that
Ric=8 heli (2.87)

viewed as endomorphisms of the tangent bundle (see [Huy05, &sitjpn 4.A.11]). ‘e metric
induces the identity endomorphism on the tangent bundle, so EGL88) and (2.87) imply
r | = _Idwith _= 82= 20

On a Kahler manifold, Levi-Civita connection and Chern connectiorreg, which proves the

claim for the Levi-Civita connection.
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2.5.2 Rank Vector Bundles

To every Hermitian vector bundle of ranR we can associate aBO-3°-bundle, which is ex-
plained in Proposition 2.90. We then revisit the tangent bundle GR? considered in the

previous section and study its associat8@ 3°-bundle.

De€nition2.88 ‘e group PU=C = U1=C« 1J1=00 g called projective unitary group.

Lemma 2.89.(Eere is an isomorphisPUt2° ' SO'3° of Lie groups.

Proof.‘e group U'2° acts through the adjoint action on the space of trace-free méran
endomorphismgipt2®  ul2®. ‘is action is isometric with respect to the metric given by he
negative of the Killing form oful2° restricted toug!2°. ‘us, PU2° is a three-dimensional
connected Lie group acting e,ectively and isometrically on a #&-dimensional vector space,

and thereby isomorphic t&O-3°.

Proposition 2.90.Let be a complex vector bundle of réhwith hermitian metric over- .
Denote its unitary frame bundle kit °. Denote by : U2 ! PU2 ' SO 3 the quotient
map and de€ne

%=UL °© SO

Een, the characteristic classeg@f ° and are related via
?1tugt °0=21 02 42,1 %  Fylygl 00=2,1 °mod2’ (291)

Every connection on canonically induces a connection%ri-urthermore, the connection on

%is an ASD instanton if is a Hermite-Einstein connection.

Proof.‘e bundle %is de€ned as a principal bundle extension, and any connectiam loa
canonically extended to any principal bundle extension. Assulmatt is a Hermite-Einstein
connection on and denote the induced connection @aby F. We have that8 |dY= 0%
in the quotient spacd.ietPU2°° = ul2°«Lier 1U2°°, thereforeh coli = 02 01_e Ad98.

‘e 1020 and 12+(° parts of the curvature satisfy > = 2 = 0, thus 2'2 = g-o =0 ‘e
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complexi€ed space of self-duaforms splitsag 2°c = 2 hl i %2 sof is anti-self-dual.
Equation (2.91) is [DK90, Eqn. 2.1.39].
As in Section 2.5.1, let=) CP2.

Proposition 2.92.Denote th&O-3*-bundle associated tdy means of Proposition 2.90 bgnd
denote by : CP?! CP?the complex conjugation @P2. Een andf are not isomorphic,
while andf are isomorphic.

‘e proof uses:

<eorem 2.93 (‘eorem 14.10 in [MS74]) Ee total Chern class pCP~ is11, 0°°: 1, whered
is a suitably chosen generator GECP7sZ°.
Proof of Proposition 2.9%/e get from ‘eorem 2.93 and Eq. (2.91):

211 0:3).%1 0:3)20?11 0= 3)20F21 °=Om0d2’

where0 is a suitably chosen generator of?:CP2%Z°. Complex projective2-spaceCP? can

be given the structure of a CW-complex with a singtecell
CPl''f» G:G : 0% XP?g CP?

and nol-cells and nad-cells. ‘us, 2:CP?%RP°is generated by thi€P2. ‘e complex conjug-
ationf restricts toCP! and reverses its orientation, so acts ason 21CP2Z°, in particular
f 0= 0. ‘erefore, 211f ©< 2t ° which implies thatf and are notisomorphic. On
the other hand?;if ©=7?,1 °andF,f ©°=F,! ° So, by ‘eorem 2.35, we have that

andf are isomorphic.

Remark2.94 We will construct an explicit bundle isomorphism of andf  in Proposi-

tion 4.140. ‘us, we will obtain Proposition 2.92 without the useféeorem 2.35.
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2.6 Gauge <eory on »>-manifolds

De€nition2.95 Let.«i °be a ,-manifold,k = ;i ,and be a principal bundle over. A

connection 2 ! °iscalleda p-instantonif 2 t 2, Ad ©,i.e. (by ‘eorem 2.20)
Nk =00 (2.96)

where the wedge product is taken in tHeform part of 2 Ad
Example2.97 Flat connections are ,-instantons.

Example2.98 Let be an ASD instanton on a bundleover a Hyperlahler4-fold - . Denote
by?. :R3 - | - the projection onto the second factor. ‘enR® - carries the torsion-free
o-structurei from Eq. (2.27), an®d isa »-instanton on the bundl&?  with respect to
this ,-structure. To see this, ldtqel »»1 32 21- © denote a Hyperkhler triple on- . ‘ese
2-forms are self-dual, thus being ASD is equivalentto " | g= 0for 82 f1+23g. Recall

that for the product »-structure, we have that

P =l — 1 2 N A N

| _k_éll dq_z |3 d@g |1 ng,]_ |2
and therefore

s Nk =? 1 OAK=(

A o-instanton satis€es! ~Mj°= by ‘eorem 2.20. ‘us, if i isclosed,
d = d1 ANjo= 1d oA

which vanishes due to the Bianchi identity. ‘is means that is a critical point of the Yang-

Mills energy functional

YM: 1ol

>y,

70 j j2vol "
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But even more is true:

Proposition 2.99Proposition 1.97 in [Wall3a]Leti be a closed,-structure on . Een »-

instantons with respect toare absolute minima of the Yang-Mills functional.

Later on, we will study the linearisation of the instanton equati. ‘e linearisation at a point
2 1 090ofEqQ.(2.96)is
;o lteAd o1 ltepd o
(2.100)
07! tk~d o™
‘is is not Fredholm (if the structure group is at least one-dimensional), because elements
D 2 1t ©°of the gauge group satisfyp = D  and therefore preserve the,-instanton
equation. ‘erefore, the in€nitesimal action of the gauge grp is in the kernel of. As elliptic

operators are Fredholm, that also implieis not an elliptic operator.

As we have seenin Section 2.4 itis customary to add in@wallomb gaugeonditiond 0 = Qin
order to make the linearised instanton operator elliptic. Butdor casel;sd °: 1"e Ad ©!
1 1 Oo1e Ad ©cannot be elliptic either, because it is a map between vecterdies of dif-

ferent rank. ‘is problem is overcome in the following propositon:

Lemma 2.10{Proposition 1.98 in [Wall3b]lLet1.¢i ° be a compact,-manifold,k = i,
and be aprincipal bundle over,and 2 1 ° (Een isa y-instanton if and only if there

existsh2 91« Ad ©°such that

1 Ako, db=0 (2.102)

So, for a €xed connection 2 1 ° b2 01eAd ©° and02 1teAd ©°we consider the

system

1 ’QAkoa d ,Ob:O
(2.103)
do=0

Here, every solutiontbe @ de€nes the ,-instanton , 0 which is in Coulomb gauge with
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respect to . ‘e linearisation of Eq. (2.103) is an elliptic operator:

Proposition 2.104.Ee linearisation of E¢2.103)s

I 10l pg o1 0 loi.pg oo

@ ©0 d a @2 (2.105)
D87
0 d lkrd©° O

« = « K

which is a self-adjoint elliptic operatordfi = 0.

Proof.Denote; = tk A d°: 1eAd °! 11.Ad ©°and denote its dual by . For

0-12 1+.Ad °we then have

FOe;1livol=k ' d O 1=He 3 1k ™ 1°% vol = D+ 1k ~ 3 1°i vol
where we usedd i = 0in the last step. ‘us, ; is self-adjoint which implies that is self-
adjoint.

‘e operator ! is associated to the complex
0uad of Tiead off l.ad of  O1.pd o (2.106)

ForG2. andO<b2)s ' R’'t R the symbol of Eq. (2.106) appliedlds then the

sequence

lkl\l on bO

or 0 gr 1t g™ 1 g’ oo

g! @ (2.107)

It remains to check that this sequence is exact. ‘¢formk and the Hodge star are preserved
by ,and ;acts transitively on(® R7, so it susces to check that Eq. (2.107) is exact for
any (non-zero) choice d, sayb = 11000 0=0(°. ‘is is then an explicit calculation that

can be carried out using Eq. (2.18).

Remark2.108 A coordinate-free proof for the ellipticity of the complex in E(R.106) is given
in [RC98, Section 3, Lemma 4].
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3 Resolutions of »-orbifolds

We now turn to the construction of resolutions of ,-orbifolds, where we glue together the
orbifold ,-structure and the product o-structure onR® - gy, where- g denotes the Eguchi-
Hanson space as before. In particular, we will revisit the constion of [Joy96b]. Starting
with the torus) 7, we write down an €nite group that acts or) ” and preserves the fat,-
structure thereon. Following this, we construct smodthmanifolds# ccarrying al-parameter
family of »-structures € which are close to the fat,-structure, in a suitable sense. We then
give a new proof for the fact thait ©can be perturbed to a torsion-free,-structure, and give
an estimate for the size of the perturbation. ‘is is stated itthe main result of this section,

‘eorem 3.84:

<eorem. Choos&J 2 10»1° andV 2 1 1s(° both close t0. Let#¢cbe the resolution 9f’s
from Eq.(3.31pndi €2 31#Pthe ,-structure with small torsion from E@.33) (Eere exists
2 i Oindependent @@such that the following is true: f@small enough, there exigfs2 21#®

such thate =i €, d[ Cis a torsion-free ,-structure, andl ©satis€es

[C a2 2&2 Vn

Vv.C

In particular,

e i, 2C%and & i .., 2&%2Y2aswellase i€ .., 2@2U2

As is common in gluing constructions in di,erential geometryye obtain this result by fol-

lowing the three step procedure of

1. Constructing an approximate solution (cf. Section 3.2.1)
2. Estimating the linearisation of the equation to be solved &éction 3.2.3)

3. Perturbing the approximate solution to a genuine solutieh Section 3.2.4)

‘is method was €rst employed in [Tau82] for the construction banti-self-dual connections

over 4-manifolds. A similar but slightly simpler proof of the same resuissgiven in [DK90,
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Section 7.2]. An expository article about this principle, whiighin spirit close to the macer of

this section, is [Don12].

3.1 Analysis on the Egu’i-Hanson Space
3.1.1 Harmonic forms 0AC? n f0g°sf 1g

In this section, we will list homogeneous harmonic forms @2 n fOg°«f 1g with decay.
BecauseC? n f0g°sf 1gis the cone oveiSO'3, we will see that such forms correspond to
eigenforms or5CG3°, and we will therefore review the spectral decomposition oéthaplacian

on(®andSO.

We begin by de€ning cones and homogeneous forms on them.

De€nition3.1 For a Riemannian manifoldl «6 °, the Riemannian manifold® © = Rio

endowed with the metrié = d& , A6 is called theCone over .

De€nition3.2 Let_ 2 R. ‘en W2 -1 1 99js calledhomogeneous of ordeif there exist

U2 ° 11 oey2 1 ogychthat

. 3A
W= A= %"U, A

Remark3.3 ForC2 R;pdenote by: ©: * °1 1 ©the dilation map given byt C*A«P =
ICAHfortAsP 2 1 © ‘en,if W2 -1 1 °jshomogeneousoforder, we havet C jWs =

GWs .

Homogeneous harmonic forms do not exist for all orders and we mtiie following de€nition:

De€nition3.4 Foracone = 1! ° denoteby .. the Laplacian acting on-formson . ‘e

set
D . =f_2R:9W2 "1t %Wk 0 homogeneous of order with .. W= 0g

is called the set ofritical rates of .. .

It will turn out that critical rates are intimately related to hanonic forms on Eguchi-Hanson
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space. ‘is is the content of the next section and we will see theetD _ appear again

there. ‘e purpose of this section is to describ® andD which is achieved

1o 1SO3°° 2» 1SO300!

in Proposition 3.10. We prepare the proposition by pu<ing semesults for harmonic forms

on Riemannian cones in place:

Lemma 3.5Lemma A.1 in [FHN20])LetW= A~ %’\ U, V bea -formon * °homogen-

p—

eous of order. For every functioB = D2 we have DW=A-" 2 3—AA’\ . ,Where
=D4U t_ : 201 = :oy 2BV M2 = 1°0U0 AKBU.
=D4V t = : 2t oy 2BU M2 = 1oV KV’

<eorem 3.6 (‘eorem A.2 in [FHN20]) . LetW= A-- %\’\ U, V be a harmonic-form on
1 ©homogeneous of ordercEenWdecomposes into the sum of homogeneous harmonic forms
W=W, W, W, Wwhere=A-* 381 1 \g satis€es the following conditions.

() Vi =0andy; satis€eSU, =0and Uy =1 . 201 = 0.

5

(i) WM 2 S.lcoac  acoxSatis€es the €rst-order system
3 =1 1% 3Vo=1 = o

In particular, iftU» W < Othen_, : <0< _, = : and the pairtl» \4° is uniquely

determined by either of the two factors, which is a coexact/eigenform of the Laplacian

with eigenvalué_, :°1 = :°

5 —_

(i) W MC 2 5 lcoc  acoxSatis€es the €rst-order system

30,1 .= P\V=0=3\, 1 | 2

5

In particular, iftUse\4° < Othen_, : 2<0< _, = : 2andthe pairtUs \{° is
uniquely determined by either of the two factors, which eeaact/exact eigenform of the

Laplacian with eigenvalue_, : 20t = : 20,

5

(iv) Uy =0andVysatis€e8 Vy=0and Vy=1 = : 201 :0\,

— >
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(Ee decompositio=W , W, W, W is unique, except when= :—22; in that case forms of

type (ii) and (iii) coincide, and there is a unique decortipo$v=W, W, W.

‘e previous proposition relates harmonic forms on the cone :SO-3°° to eigenforms of the
Laplacian onSO3°. ‘e group SO4° acts via pullback on complex-valued di,erential forms
on (3, and it turns out that the decomposition of this action intor@ducible components gives
the spectral decomposition for the Laplacian 6f ‘is is made precise in the following two
theorems, and a6® is a double cover 0833, we will get the spectral decomposition of the

Laplacian onSCG3° from them.

eorem 3.7 (‘eorem B in [Fol89]) . Ee complex-valuel?-functions andl-forms on( 2 de-

compose into the following irreduciSi€*4°-invariant subspaces:

EL
01( 30C0 = o<®
<=1
1173 E
1(»Co = 1< o< <
<=1

Here, o<, 1<* 1..* 1< are de€ned as follows: denotedby 3! R*the inclusion map and

|
de€nd1=G, 8G1,=G, 8@ andmA ‘g,:ngm@ Een let

o< =9 o< 1*Where o< is the smallesb(G4°-inv. space containing L
1< =9 1<*Where 1< isthe smallesBO'4°-inv. space containing lm)9x1dl 1N dl e
1< =9 L.ewhere .. isthe smallesBO'4%-inv. space containing *matdi~ diz®”

1< =9 1<*where 1< isthe smallesBG4°-inv. space containing Tdiy”

<«eorem3.8 (‘eoremCin[Fol89]). Let p<* 1<® 1..* 1< asinEeorem3.8. Eeg<* 1<
1< »and 1< are eigenspaces for the Laplacian with eigenvaltes 2°, 1< | 1°2 and< i< | 0

respectively.
Corollary 3.9. Let( 3 be endowed with the round metric é@3° = (3f 1gbe endowed with
the quotient metric.

1. Een, the spectrum of the Laplaciago acting on real-valuet>functions orSG3°
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Speé osox®=fi1, 211 2Z o every=f0-824""Y

2. (Ee smallest eigenvalue of the Laplaciago = acting on real-valued-forms with coef-

€cients inl 2o0nSO'3 is4 and has multiplicitys.

Proof of Corollary 3.9.

1. ‘is follows from ‘eorems 3.7 and 3.8 and the fact that functionsin the space o<
de€ned in ‘eorem 3.7 are invariant under the antipodal map 1° : (3! (2if and

only if < is even.

. By ‘eorem 3.8, the smallest eigenvalue of the Laplacian acting ammplex-valuedl-
forms on(3is 3. We see from the explicit description of the eigenspace that eigen-
forms are not invariant under the antipodal map. ‘us, the eigeralue3 does not occur

on SO3°,

‘e next smallest eigenvalue is4. It is realised, and it remains to check the dimension
of its eigenspace: for the complex vector spaces de€ned in ‘ear 3.7 we have 1.1 '
2 € and 1 2 C, the complexi€cation of (anti-)self-dual constant forms Bri.

Here is how to see that 1.1 ' 2 C, the other isomorphism is analogous. We have

di;?dl2=dGs dGa, 8dGs, 8dGs=:I"

1 0 @
20
-1 00 ®
‘e element 6 = : 2 SO sends thisto dG3, d&4, 8dGs, 8dG,, so
000 8
- ®
((O O l Q|

the smallestSCG4°-invariant space containingg must also contain the self-dual form
dG3z dGy4 = %1I 6l °. Because’2 is irreducible, thisSG4°-invariant space must
contain all of1 2°C. Contracting with the radial vector €eldnfand restricting to( 3

are SO4°-equivariant operations, one checks that the result is n@ra, and therefore
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] 2 C
11 .

Altogether, 14 and ,,, are representations 06CG4° of complex dimensior8. ‘ey

consist ofl-forms on( 2 that are invariant under the antipodal map, which proves the

claim.

We can now combine the results about harmonic forms o¥8C3°° with the spectral decom-

position of the Laplacian oi$CO'3° to €nd the critical rates for the Laplacian ontSC-3°°:

Proposition 3.10.

1. Eere are no harmorfidorms ontC? n f0g°«f 1gwhich are homogeneous of ordéor

_ 2 » 2(°. In other word® g\» 200 =,

1:1C2nf0goef 1

2. Eere is a six-dimensional space of harm®focms ontC?n f0g°«f 1gwhich are homo-

geneous of order2.

Eere are no harmoniforms ontC? n fOgf 1gwhich are homogeneous of ordéor

21 2P

Proof. It follows from point two in Proposition 2.5 that :SOG'3°° and :C? n f0g°sf 1g are

isometric as Riemannian manifolds and we prove the statements1SO-3°°.

1. Let 2 » 2(° and assume there exists a harmonic homogenebfsrm of order_ on
1SO-3°°. We show that thel-form must vanish by showing that forms satisfying any
of the cases (i), (ii), (i), and (iv) from ‘eorem 3.6 are zer®Jsing the notation from the

theorem, we get the following:

(i) Inthiscase, U =1 1°t  3PU,. For_ 2 » 2, the factort_ 1°t  3Pis

—_s

—_

negative, so our assumption implies thidt is a closed-form that is an eigenform

of sow for a negative eigenvalue, which implid$ = 0 by Corollary 3.9.

(ii) In this case\, is an exactl-form with ggzV =1 | 1°t = 3°\L. We have

— 5

1 101 P Y8for_2» 2P, and thereforé> = 0 as in case ().

R
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(i) In this case\s is an exactl-form with ggzVs =1, 1°t 3PV, andVz =0

follows as before.

(iv) In this caseV, is a co-closed-form with sgzVa =1 | 1°%Va. For_ 2 » 2(P,

we have! | 1°2Y 3, and because of Corollary 3.9 this implies= 0.

2. Let_2 » 2(°. Going through the cases (i), (ii), (iii), and (iv) from ‘ecem 3.6, we will
€nd that there are six linearly independent harmonic homogens@dforms of order 2
in case (iii), but no other harmonic homogeneous forms. |gsihe notation from the

theorem, we get the following:

() Inthis case, we get &form that is an eigenform of the Laplacian &0 3° for the

eigenvalue * | 2° Y 0, which must be0 by Corollary 3.9.

(i) Inthis case, we get &form that is an eigenform of the Laplacian dC-3° for the

eigenvaluet_ | 20?'Y 4, which must be0 by Corollary 3.9.

(iii) In this case, we get d-form that is an eigenform of the Laplacian cBCG+3° for
the eigenvalue 2. ‘ere are six of these by Corollary 3.9 for_ = 2 and none for
_ 21 2. Inthe case of = 2all six eigenforms give rise to harmonforms

oforder_= 2on 1SO3°°,

(iv) In this case, we get &form V, that is an eigenform of the Laplacian 0c80-3°
for the eigenvaluet_, 202 Y 4. ‘e Hodge dual Vj is then al-form that is an

eigenform for the same eigenvalue, which must®by Corollary 3.9.

For an application later we will not only need to know how many haonic homogeneous
forms there are, but also how many harmonic homogeneous fomith logA coescients
there are. O%oen, these two notions coincide, and the follownogsition asserts that this is

also the case in our se«ing.

De€nition3.11Let be a connected Riemannian manifold and= * °its cone. For_ 2 R,
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de€ne

i
o _Q\N: SotlogAWfor<  O,W2 ?1 1 90 sych that%"

—_ 2

:3 2. 1 oWE= 0, where eaclWyis homogeneous of order 3

i
Proposition 3.12.LetW= ;Ollogﬁeg\/\é 2KY 22, ., theny=0for9j O.

Proof. Write W = A" %A’\ Ug, Vo . ‘en, by Lemma 3.5, for9 1,

1ogA WP = A 2 d—AA’\ . *where

=ioglﬁ991 {Ug 2dV?°,29IoglA’9 Uy 99 1°logtAe® 2Uge (3.13)
z
=0
=ioglﬁ991{Vg 2dUe°, 29l0gt#° Vg 99 1°loglA® 2V (3.14)
z

=0
Here, the terms Uy 2dVgand Vg 2dJg vanish, becausélg is coexact and satis€es
2Vo = dUg, andVy is exact and satis€ed Vg = 2Ug according to the discussion of point 2 of
Proposition 3.10. ‘e term Wis a polynomial inlogt/4, and the condition W= 0 prescribes
that all coeescients of that polynomial vanish. Assume that j 0and check the coescient
of logt%#< % Eq. (3.13) implies that = 0 and Eq. (3.14) implies the&t = 0, i.e. W = 0.
Repeating the argument, we €nd the{ ; =0, W »,=0,... W=0,W =0, which is what we

wanted to show.

3.1.2 Harmonic forms on Egu’i-Hanson Space

In the previous section we looked at certain harmonic forms@? n fOg°«f 1g. ‘e Eguchi-
Hanson space gy is asymptotic to the conéC?nf0ge«f 1g, and we can say a great deal about
harmonic forms on g just from knowing the harmonic forms otC? n fOge«f 1g. ‘isis a
consequence of the work of Lockhart and McOwen (cf. [LM85, Lic81d will be the content

of this section.

We will want statements about harmonic forms in certain weigld Helder spaces. ‘ese

spaces are de€ned in the following:
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De€nition3.15 De€ne the weight functions

F:-en! Ro Fi-en -en! Ro

G7'1,jd@j 1Ge2 7! minfF 1@ F1~og’

Let* -gn. ForU2101°,V2R,: 2N,and52 - 1- g° de€ne theweighted Hlder norm

of 5via
y Vj51G’ 51~°j6110
L = 1GeQ .
»5/43U1* o GSI~J29 G 36.,,1G* Y
36111316.'0 FlG..Q
A o \VJ .
”5”!\1/1*0.— FC 5 !11*0
@)
JiBjj U w0 = r% 1 wo, B ouno
\% =0 "V 9 VvV 9

‘eterm 5!@ 5!1~°in the €rst line denotes the di,erence betweeh!@ and the parallel
transport of51~° to the €bre - 1- g°jg along one of the shortest geodesics connecizand

~. When* is not speci€ed, takeé =- gp.
‘roughout the article we will set Vto be a negative number. Informally, an element in the
:\;U Helder space decays likg, .2 *d 110°°V, as3s,,,L od 120°° 1 1

We will now make the meaning of gy being asymptotic to a copeecise.

De€nition3.16 Let be a connected Riemannian manifold and= ! ©° be its cone with

cone metridcb . A Riemannian manifold"«6 - ° is calledasymptotically conical with cone

and ratea Y 0if there exists a compact subset " , a number 0, and a di,eomorphism
q:te1° I " n! satisfying

jrlg 16 ° 6 ° =0¥? °forall: Oasr!1l "~
Here,r denotes the Levi-Civita connection with respecto andr : 10-1° 11 01° is

the projection onto the €rst component.

Proposition 3.17.Ee Eguchi-Hanson spacgy endowed with the metr& 0 is asymptotically
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conical with cone = 1SO3*°and ratea= 4.
Proof. ‘is is the second point of Proposition 2.10.

We then have the following results about harmonic forms!id on Eguchi-Hanson space:

Lemma 3.18.
1. We have Szingl- EH’ = 2 ppa- P =R.For | Ode€nea 2 2- g Ptobe

a =51% 8Adar [t 510 g2~ 3 (3.19)

and endow gy with the metrich.. .. Eena 2121 21- 500 4 a = 0,8 Ygenerates
2 Rhani- B0, @nda; is the unique element It 21- £.0°\ »a Ysatisfying ,.a = 0.

Moreoveray 2 %t 21- 0. Away from the exceptional orlait11(° * (2, we have that

a =d_,where. = 51 1

2. el 2-kernels of g, , acting on forms of di,erent degrees are as follows:

Kert ¢, ,:! 21 27 01 ! 27 27 EP0=haie

Kert g ,:121 2101 121 21 g 000= Ofor? < 2
For: =1andV2 » 4 2 they coincide with the’-kemels.

Proof.

1. We have that gy =) (2 as smooth manifolds, therefore?_ - £© = R. On smooth
sing

P 2 1. o— 2 1_ (o] ot
manifolds sing ™ EH GeRham™ EH by de Rham's ‘eorem.

One checks with a direct computation that from Eq. (3.19) is closed and anti-self-dual,
and therefore co-closed. ‘e equalitya = d_. follows from a direct computation as

well.
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For: = 0, Eq. (3.19) still de€nes an eleme@gt2 2:C%f 1g n f0g® One checks
through direct calculation thagy 2 %t 21C%f 1g°° Using the fact that gy is
asymptotically locally Euclidean (cf. Proposition 2.10), one ge¢sHilder estimate on

- g Furthermore, % 11, 1%s0a isanelementin 21 21C%f 1g°°

By Poincae duality, we have Zl- g0 = Szingl- ex® = R, where Z!- g° denotes
the de Rham cohomology with compact support. [Loc87, Exampl&)ahd [Loc87,

‘eorem (7.9)] give that the map

H 21 EHC = fb2! 21 2) -eH°: db=db= Og I Im gsl- eRC ¥ geRhaml_ EHC

b 7! »bYa

is an isomorphism. ‘us »a Y.generates geRhaml— es® anda 2 »a Yis the unique

elementin! 2t 21 00\ » g Ygatisfyingda. = 0,d a = 0.

It remains to check thag. is also the unique element ih?1 21- 20\ »a Ysatisfying
6..8 = 0. ‘e equations ¢, .2 = O0andd, d° = 0are equivalent by the same
integration by parts argument as in the compact case, namety'f j O:

1

hidd , d d% «ai dvol,. .
fA " g .

hidd % ea i dvok,. . , hid d°% +ai dvok, ,
fA " g , fA"g

hd a «d a i dvok, . , dda ~ a°
fA;" g A" g

hda. «da. i dvok, . , dla ~ da®°
fA" g ' fA" g

lIhdaesdai, hda «da i° dvok, ,
fAL" g '

1

1

5

1

, ‘da ™ a,a ™ da°
nA " g

whereweusedilda » a°=dda » a da ~d a inthesecond step, and Stokes'
‘eorem in the last step. ‘e lasttermtendsto Oas" !1 , because of the decay of
elements in %,1& 2. g% So, ¢,.a = Oimpliesthatda = 0,da = 0, and the
converse implication is trivial.

2. ‘e €rstline is a restatement of the previous point. ‘e other lines are [Loc87, Example
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(0.15)] with proof in [Loc87, ‘eorem (7.9)].

22Uy ?1_

9 eHC° embedsintd 21 ?1- g0

‘e 12-kernels coincide with the \Z,'U-kernels, as
for VY 2and the explicit description of thé?-kernels shows that all kernel elements

are actually in 2% ?1- geoforv 4.

Remark3.20 Note thata. from the lemma cannot have compact support by the unique con-
tinuation property for elliptic equations. We only have that. Ycontains a form of compact

support.

‘e previous lemma makes statements about the?-kernels of the Laplacian ongy acting on
?-forms. Using the results from the previous section aboutmanic forms onC2%f 1g, we
can rule out additional harmonic forms even in some of the weigtitHelder spaces that do
not embed intd 2. ‘e key proposition that will be proved throughout the rest ofthis section

is the following:

Proposition 3.21.ForV 2 1 4s(°, the kernels of theg,,, acting on forms in \2/-u of di,erent

degrees are as follows:

. 20, 2 oU, 2 e
Kert g, : 2Vt 2oy OUs 21 p00= ppjje

2?2 ? ‘1]
Kert 6,1 &0t PLgpot  XU1 71 gp00=0for? < 2

‘e connection between the Laplacian on Eguchi-Hanson spacedaits cone is described in
the following results taken from [KL20, Section 4] which were deveéal in [LM85, Loc87].
‘e theory works for a much bigger class of operators, but we wilbnly reproduce it for the

Laplacian here.

De€nition3.22 Let" be asymptotically conical and let the notation be as in De€nitid.16.
Denote byr : 1 °1 R (the radius function, and use the same symbol to denote a map
from" toR,othatagreeswittg r onqe 1° " . Let be avector bundle with metric and

metric connectiorr over" . ‘en,for 1j ?i 1,; 0,_ 2R denote byl ° the completion
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of L °withrespectto the norm

~ 1 I 109

Wi, > = jir =% SW’r “4vol- "
"~ g0 "

‘e space ! ° is called the ?-Sobolev space witllerivatives and decay faster than

<eorem 3.23 (‘eorem 4.10 in [KL20]). For_ 2 R, denote by 7., : !gl Pl g p0 |

! f )t ?1. g0 the Laplacian of the metr o acting or?-forms. EenKer 246,50 IS INVariant

under changes of as long as we do not hit any critical rates. Eat is, if therviale» « Yis

contained in the complementf , then

241C2nf0gOsf 1g

@, 2 @
Ker 2460 - ! o 1 71 geol !0‘ 21 S
= 0@ 4 2 @ ? "
=Ker oy !, ot 1 0! | o0 IS 100

Proposition 3.24(‘eorem 4.20in [KL20]) . Let_; Y _psuchthaK?®_g , ., =0for82 f1s2g.

Een, the maps

2 1 ?1_ _ 00 2 1 ?1_ _ oo
260012, o ST EH
2 2 2
n 2 | 1 1_ [e]0) | | : 1 1_ [o]e]
and 260012, >, EH “, 2 EH

are Fredholm and the di,erence in their indices is given by

o]
. . _ . 1 0
Ind ?'61100! '2’ 2 Ind ?'61100! '2’ 21 - dlm K —_ ?-1C2nf0g°°f 19 (325)
- 1 e 50

-2b 1C2nfogosf 1g\ 12

Combining everything, we get the following characterisatioh harmonic forms with decay:
<eorem 3.26. For_ 2 1 4s(°, the! g. -kernels of ».s,, acting on?-forms of di,erent degrees
are the same as thé-kernels, namely:

12 2 2 2 — H
Kert Bugo - | o 1 1. EHOO [ o 21 1 EHOOO = I’H]_I’

? ? il
Kert 61101!3.1 1Pl !S. 21 L gPoo=Qfor? < 2
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Proof. 0-forms andd-forms: it follows from the maximum principle that every harmamfunc-
tion that decays at in€nity must vanish. ‘e Hodge star is an isoorphism betweer0-forms
and4-forms that commutes with the Laplacian, so the statement@dorms implies that state-

ment for 4-forms.

1-forms and3-forms: the kernel of the Laplacian is zero for rat€ by the second point of
Lemma 3.18. By the €rst point of Proposition 3.10, there are itiwa&lrates in the interval
» 200°. So, ‘eorem 3.23 implies the claim forl-forms. As above, we get the statement for

3-forms by using the Hodge star.

2-forms: by Proposition 3.10 the only critical ratein 22°is 2. ‘e kernel of the Laplacianon
2-forms stays the same for rates2 * 4= 2° by Lemma 3.18. By ‘eorem 3.23, the dimension
of the kernel of the Laplacian acting o&-forms with decay_ 2 * 4+0° may therefore only
change at = 2. We know from Propositions 3.12 and 3.24 that the index increbgesix
when crossing the critical rate = 2. We will now check that the dimension of the cokernel

decreases b§, which implies that the dimension of the kernel does not change.

‘ 2 a1 2 ‘ .12 2 00 2 2 00
e dual spaceof!o._ls!o_ 4 erefore, the cokernelof ¢, : !5 ;b “- gy ! 15 41 “'-EH

2 0

isisomorphic to the kernel of the adjointoperatog, , = 6., 1! 55> 2% gn® ! 13,1 21- g

110
Here we used that elements in the cokernel of. , are smooth by elliptic regularity, so it does

not mac<er how many derivatives we demand for sections acted grthe adjoint operator.

We now explicitly write down six linearly independent harmonic forsin! 5,01 21 00 three

of them are the (self-dual) &hler formsl ,*,1 ,", andl ," de€ned in Proposition 2.5.

Analogously, we can de€ne three harmoraati-self-dualforms with respect t®:. . for all : j
0. To this end, extenfl e[ % [3 2 s013° from Proposition 2.5 teight-invariant forms onSG-2°,
denoted by, [%, 5. ‘ese forms satisfy dfy, = [¥~ [ etc. In analogy to Proposition 2.5,

de€ne

4100 = ASTL0P R0 = 51012 £ = 5103
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and
O =dor 4t #ag N =don # Arah P =don B A

One checks through computation thdtg ° are closed and anti-self-dual, and therefore har-
monic. A priori, they are de€ned oR; o SCO3, and it remains to check that they extend
to all of - g. We havel, * = diA'2 andI; * = diA3e, whereA™ and A are well-de€ned
1-forms on all of- gy, because they vanish@d 0. ‘erefore, I"; ° andl"; ° are well-de€ned

on- gn.

We have that®, * = A521dAN [ 5 2142 A 3, where the €rst summand vanishes as
Al 0, and the second summand is a multiple of the volume form®@#3° sg» fOg ' (2

pulled back under the projection

SO ggxt+t ! SOF gox+

16 B 7! 160"

‘us 1n/ " is also de€ned on all of gy ‘e forms [ 1e[% [3[Xe[ %[ are linearly independent

1- 0 1- 0 1- 0 1- 0

which implies thatl ;**sI ; “s1 ; “In; "I, “eln) ” are linearly independent.

Last, note that for each 2 SO-3° we can expresg?!6° as a linear combination f16°. EacH &
decays liked*2asA! 1, which shows that thé"; ° have the same decay as the Hypetker
triple | 4, which is covariant constant. ‘us, we have thal 4 +I%" 2 12,1 21 00 put

812 1 2-geoforallnj 0and82 fls2-3g.

‘erefore, the dimension of the cokernel of ¢,,, :13 1 - g1 12 1 21 g,°° changes

by six when crossing the critical rate = 2, and the dimension of the kernel stays the same.

Proposition 3.21 is now an immediate consequence of ‘eorem 3.26.

2

Proof of Proposition 3.Horn j Owe have that VUn is embedded img.\ﬁ so the claim follows

from ‘eorem 3.26.
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3.2 Torsion-Free »-Structures on the Generalised Kummer Construction

In the two articles [Joy96b], Joyce constructed the €rst examapiemanifolds with holonomy
equalto ». One starts with the fat-torus, which admits a fat ,-structure. A quotient of the
torus by maps preserving the,-structure still carries a fat o-structure, but hasingularities

‘e maps are carefully chosen, so that the singularities are modallen) 3 C2f 1g. By the
results of Section 313 C?%f 1ghas afamily of resolutions® - 4! )3 C2%f 1gofone

real parameter, where gy denotes the Eguchi-Hanson space, and the parameter de€nes the
size of a minimal sphere ingy. We can de€ne a smooth manifold by gluing these resolutions

over the singularities in the quotient of the torus.

‘e product manifold ) 3 - gy carries the product ,-structure from Eqg. (2.27). ‘at means
we have two torsion-free »-structures on our glued manifold: one coming from flaf, and
the product »-structure near the resolution of the singularities. We willtierpolate between
the two to get one globally de€ned,-structure. ‘is will no longer be torsion-free, but it will
have small enough torsion in the sense of ‘eorem 2.26. ‘is is the angment that was used
in [Joy96b] to prove the existence of a torsion-free-structure, and the construction of this

»>-structure with small torsion is the content of Section 3.2.1.

Sections 3.2.2 to 3.2.4 give an alternative proof of the existenegafsion-free »-structure

on this glued manifold.

3.2.1 Resolutions gf’e

We briefy review the generalised Kummer construction as ekpta in [Joy96b]. LetGe"""+{3
be coordinates o / = R’+Z7, whereG 2 R+Z, endowed with the fat ,-structurei o from

De€nition 2.17. Late VoW “ ! ) 7 de€ned by

U:iGe"" " @711 Gr Gr Gr GrGeGeG™
V:lq.""".ﬁ 7! Qo% GZQQOQQ G—)o &OG . (327)

1 1
WGBTS GrGs GG GG G
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Denote = HJe VeMV'e next lemmata collect some information about the orbifoldl s :

Lemma 3.28Section 2.1 in part |, [Joy96bJY« Ve Weserve o, we havef = \V2 =W =1, and
Ue VeOmmute. We have that' Z3.

Lemma 3.29Lemma 2.1.1 in part |, [Joy96b{Ee elementy VWV UUV andUVVEf have no
€xed points oy 7. Ee €xed points ddin) 7 are16copies of 3, and the groupivVe Wacts freely
on the set 0f6 3tori €xed byU. Similarly, the €xed points & Wn) ’ are eac6copies of %,

and the groupslJ«\WandHJe V act freely on the sets b6 3tori €xed byVeWespectively.

Lemma 3.3QLemma 2.1.2 in part |, [Joy96bJEe singular seit of) 7« is a disjoint union of
12copies of 3. Eere is an open sub%ebf) ’ containing , such that each of tHeconnected
components of is isometrict) 3 4+f 1g , where 7 is the open ball of radiuin R* for

some positive constah{Z = 1+9 will do).

We now de€ne a compadtmanifold" , which can be thought of as a resolution of the orbi-

fold) 7= , and a one-parameter family of closed-structuresi Cthereon. We can choose an

identi€cation* ' ! ‘Z‘-f 1g such that we can write orf
& 1 s
io=X" XX I g™ X io=§|1’\|1 I g™ X" X o
&1 18099=11:2:3°

and cyclic permutation

where Xge %+ Xg are covariant constant orthonormdk-forms on!, andl j¢1 »¢1 3 are the Hy-

perkahler triple from De€nition 2.4, cf. Section 2.3.2.

As before, denote by g4 the Eguchi-Hanson space and by: - g ! C?f 1gthe blowup
map from Remark 2.13. De€Ae= jdj:-gn! R o. ForC2 1010, let¥" :=*c:=1 f G2
- EH:AL@ Y ZClg De€ne

#e= Yo ontt ¥ . (3.31)
where forG= 1GeG° 2 * | C2%f lgand~ =1~ e~° 2 N1 _gqwe haveG  ~if
G =~ andC d~g = = ‘e smooth manifold #calso comes with a natural projection map
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c :#¢c! )’ induced byd, and we extend\to a map on all of¢ cvia

A #c! R g

éjdl@j if G2 ¥+
G7!

EC 1z otherwise

Write Ac:= Q\and choose a non-decreasing functiprt »0» 2% ! »01%such thatj 1B = Ofor
B Ze4andjP® =1forB Z¢2 and set

bg:=14 djAcg" ” (3.32)

‘e gélo were de€ned in Proposition 2.10, and are the di,erence betweenftht Hyperlahler

110. I

triple on C%f 1gand the Hyperlehler tripletl ;"1 ,"+I ;0 on- g. On¥* we haveeg =1 g

whereA i Z+2, andeg=1 ;10 whereA Y Z+4. Now de€ne &8-formi €2 31" ©and a4-form

02 “1Pasfollows:on) = °n*  #gseti =i ando= i.0On" | - gylet
iC=XMr %X G kgt X (3.33)
&1
1 o
o¢:= Cfélelf‘ e, G g™ XgN X " (3.34)

18090=11s23°
and cyclic permutation

‘is de€nition mimics the product situation explained in Sectia 2.3.2. For sma{} the 3-form
i Cisa ,-structure and therefore induces a met6€. Bothi ©andoC€ are closed forms, so,
if i ©=0C theni “would be a torsion-free ,-structure by ‘eorem 2.22. However, this
does not hold, and Cis not a torsion-free »-structure. ‘e following 3-formk €is meant to

measure the torsion af &

k€= 1@ @ (3.35)

Its crucial properties are:

Lemma3.36Letk©2 31" °asin Eq(3.35)Eere exists a positive constaimdependent ot

69



such that
dkC=diG kS w26

where the ldlder norm is de€ned with respect to the métriand its induced Levi-Civita con-

nection.

Proof.‘e equality d k€= d i “follows from Eq. (3.35) and the fact thatis closed.

‘e operator is parallel, so the covariant derivative. and commute for every vector
pEXN XN

I 110 . .
X G §=1I 81 ~ Xgfor the product ,-structure on- gy ! and denote the induced metric,

€eld- on#¢ therefore it susces to estimate k € rather thank €. Write i _fH

which is the product metric, b)ﬁffH , - Recall the linear map and the non-linear map
from Proposition 2.24 satisfyingti , bi°= i ) *b® p°fora ,-structurei and asmall
deformationb. Using this notation, we get:

i@ of= ' EqndjAcg”

EH
go 15, Gerxnd ] A"
“EH '

=) &~ djrA%” Exq N d jAcg "

, BN XN d j A"

Here we used the equalityi: ° 1= dgi: ° from Proposition 2.10 in the €rst step and the

de€nition of) and inthe second step.

Note that 1 ® 0oCis supported onffG 2 " : 1Ze4°Cl Y A Y 1Ze2°Clg ‘erefore, by
Eq. (2.11),
éd . 1 0 110 éld 1 00 110 é 1 ) 110
| *APg, 6 | 1A, Coue ® j AP dg;

. 2CjAPdg,”

661111

2ccg”

CQ6110 CQ6110

=@1A% O1A% 2¢
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Using the estimates for and from Proposition 2.24 we get the claim.

3.2.2 <e Laplacianon R® - gy

In the next section we will prove an estimate for the Laplacian &fiorms on#c We will
use a blowup argument to essentially reduce the analysisteyto the analysis or) ’» and
R3 - g4. Inthis section we will cite a general result for uniformly elligtioperators on product
manifoldsR™ . from [Wall3b], where is a Riemannian manifold, and use this to €nd that
harmonic2-forms onR?3 - gy are wedge products of parallel forms & and harmonic forms

on- gn.

De€nition3.37 (De€nition 2.75 in [Wal13b}\ Riemannian manifold is said to be obounded
geometnyif itis complete, its Riemann curvature tensor is bounded fratrove and its injectiv-
ity radius is bounded from below. A vector bundle overis said to be obounded geometif
it has trivialisations over balls of €xed radius such that themisition functions and all of their
derivatives are uniformly bounded. We say that a complete orighRiemannian manifold
- hassubexponential volume growifhfor eachG 2 - the functionA 7! volt A!&° grows

subexponentially, i.eyolt AlP° = >texpl2R°asA! 1 forevery2i 0.

Lemma 3.38Lemma 2.76 in [Wall3bJLet be a vector bundle of bounded geometry over
a Riemannian manifold of bounded geometry and with subexponential volume grawth,
suppose that : 11e o1 11 ojsguniformly elliptic operator of second order whose
coescients and their €rst derivatives are uniformly boutidbat is non-negative, i.&.0«0i 0
forall0 2, 2?1« © and formally self-adjoint. L&: R~ . ! . be the projection onto the

second component a@@ R~ .+? ©°such that

andjjojj 1 is €nite, ther is constant in th&=-direction, that i91Ge« 2 = 01~°. Here, r= actson

asectio® 2 11R¥ .«? ©°byusingtheidenti€cation! tR= .«? ©°= 11R% 11. o0

Corollary 3.39. Let. be a manifold of bounded geometry and with subexponentiahgo
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growth. If0 2 2tR3 . °satis€e$j0jj,: Y 1 and

6R3 6110 O = 0

thenO is a sum of terms of the for ~ 0, where0; 2 *R% js parallel, and), 2 1. °

satis€es ¢,,,00 = 0.

Proof. We can view the vector bundle &&forms overR® . as a pullback bundle pulled back

from. via

21R3 o' 9 21 o 11 o 11R30 21R30

where ‘1R denotes the trivial vector bundle over whose €bre at each point is* R,

Under this identi€cation, rs = = rs, ? ' ., ©°, where isthe canonical Laplacian on

trivial vector bundles.

So,if02 2R3 . °with jj0jj» Y1 and ¢, 6.0 =0, thenQis the pullback of a section

of 21,0 110 LiRd3  21R3 gyer, whichis in the kernel of by Lemma 3.38.

5

Elements in the kernel of over. are of the form0;” 0,, where0; 2 * 1R%is harmonic,

and0; 2 1. °satis€es g,,,02 = 0. Bounded harmonic-forms on R23 can be identi€ed with
tuples of harmonic functions o3 which are constant by the maximum principle. ‘is means

that the bounded harmonic-forms are parallel which proves the claim.

3.2.3 <«e Laplacian on #¢

We now move on to the heart of the argument: an operator bourd fhe inverse of the
Laplacian or#¢ ‘e Laplacian on 2-forms has a kernel of dimensiot?# @, so we can only
expect such a bound for forms which are not in the kernel. Stamdalliptic theory would
give an estimate for forms orthogonal to the kernel. ‘is estirate would depend on the gluing
parametelG but we want auniform estimate, i.e. an estimate independeni®Proving such

an estimate is the content of this section.
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Stating the estimate We €rst de€ne weighted Blder norms analogous to the previous sec-
tions. ‘ese norms have the following two important properties far away from! , they are
uniformly equivalent to ordinary Helder norms, and neak they are uniformly equivalent to

the weighted Helder norms onR3 - gn, a%oer applying a rescaling map.

De€nition3.4Q ForC2 10-1° de€ne the weight functions

Fc:#c! RiO (341)

G7!' C, As

Frere:R® R*! Rig
1G‘Q7!j~j°
Fre .oy 'R® -EH! R0

G7'1, A

and for: 2 N, U 2 101° V 2 R the weighted Felder normsijj jj .u on#candjj jj .u on
VC \Y

R3 R%*andR® - gy respectively as in De€nition 3.15.

We now de€ne a way to decompose elemefit® 2'#® into a componenTc that looks
likea; 2 2% g0 from Eq. (3.19) on every €bfeg -g4 )2 - gn, and a remainder,
denoted byds ‘e reason for this is the following: the Laplacian onimCTc¢is approximately
the Laplacian ol , and its inverse has operator norm of ord€rt1° uniformly in Cas a map
GOl o1 Jdt 2100, Notice that the weight does not change when applying the
Laplacian. Onimdg it will turn out that the Laplacian has operator norm of orded1°

uniformly in Cas a map >t 20t 29

~ 21#©°. Here the weight changed in the
same way as it did on the non-compact asymptotically conicalcaey, cf. Section 3.1.2. In
order to prove an estimate of the forrjOjj  2jj 0jj we will de€ne norms that incorporate

these two di,erent scaling behaviours in this section. ‘e idead taken from [Wal17].

Letda 2 2% g2 be harmonic and with unit 2-norm with respect to the nornG.0 on - g

As a shorthand, writg ¢:= j 124°. De€necc: 2#® !  Oloyia
1001~ == j~g - oy® j A1 226 - for~21le (3.42)
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wherea 2 21 g0 is a multiple ofa satisfyingh @ jai; z.¢q o 1 ‘is is equivalent to

h @ jci 26 _, = 1 i.e. inthe metrié. ., rather thanCe. ,,, because the*-norm on2-forms

is a conformal invariant. De€ng: %ol 21 via

1°=jc 2,6 2. _as (3.43)
where6 2 %1° and? :! -gq! )32, :! -En! - enare projection maps. As
wricen, 1$°is an elementin 2t - g2, but becaussupp]®® ¥, we can view it as an

elementin 21#®. ‘en
cdb=6foralle2 O (3.44)

Last, de€n€c:=]cc aswellagddc:=1 Tg

Proposition 3.45.Forall: 2 NandV | 4there exist® j 0independent afsuch that for all

62 O11°we have that
i 2C* Vij6jj (3.46)
Proof. For the! 1 -norm we have that

26 ?
26 7 _a Ty

4
272672 2 1C 0, o

4 2
27262 a1, mRCC? 6.,

2€ 2,6 ,
where we used thaa = OA % and therefore

a i g 2 (3.47)

EH

in the last step. FoV i 4 we have thatjjj gj,: 2C* V. which proves the claim for the

weighted! * -norm. ‘e proof for higher derivatives is analogous.

Proposition 3.48.For all: 2 NeV Y 0Othere exist® ;| 0 independent ofsuch that for all
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02 21#® we have that
jicdjj - GV P 0] w7 (3.49)

Proof. We €rst estimate the ! -part, i.e.jjc0jj 1 . To this end

1

. . -
jcd'@j o ey ClngOJcZG_ o Jajes , VOlas

CjiOi;,  'C. A€ jajs ,vole
- EH

ZévjjOjj!\ll;c 11, AV 11, A *vols _,
H

1 =
1
26V 11 AV ARdA
0
| {z }

2

28 Vijojj, 3+

where in the second step we used the de€nitionjpfj L and switched from measuring in
C6. ., to measuring irb. _,, which introduces the factor of; in the third step we useghijg o

211, & # inthe fourth step we used polar coordinates to switch fromégirating over gy to
integrating over>(=1° . ‘e estimates for the Helder norm, derivatives, and for other weights

are proved analogously.

We are now ready to de€ne the composite horms which weigh teand dc components

di,erently.

De€nition3.50 ForU 2 10+1° andV2 1 1.(F° let

Olix. = jjddjj 2u, C¥2jjcdjj au

110jjve = Jiddij ov . C*?jjcdjj ou”

In the following, we will always assume thdtl and V are close to0. ‘e most restrictive
estimate in which this fact is used is Eq. (3.81). For conoege, one may choodé = 116

andV= 116
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De€nition3.51 (Approximate kernell.et 1#”””+ 1, be the connected components $Hfand
letj 4 be the characteristic function of the sek. ‘en de€ne the approximate kernel of on

#cto be

K=f1 jPc0:02Ker yz. g spanjc ?. _a j .

EH 8 g-1em32

wherec :#c! ) 7 isthe projection map from the previous section.

Proposition 3.52.ere exist® independent afsuch that foralD 2 21#®,0? K we have

i0jix.  2ji Ojjy.” (3.53)

‘e proof of this proposition will extend over the rest of the se&tion. ‘is linear estimate

perpendicular to the approximate kernel is one thing we need. ‘®ollowing proposition
states that by restricting to the orthogonal complementkfwe are not forge<ing about any
important 2-forms | the image of the Laplacian remains the same when restdd to this

orthogonal complement.

Proposition 3.54.CEe operator

“K?1 Im

is surjective, whelen  denotes the image of the Laplacian on all &# .

Proof. Step 1Show that the! 2-orthogonal projection@ Ker x.!K is an isomorphism.

Assumethereexist8< 02 21#Pwith 0=0suchthat®®® =0,i.,e.0?K .‘en 0< Oby
Proposition 3.52, which is a contradiction. Now naten'Ker 5 ° =100 1217 0=12 :
which is proved using the Mnneth formula (see [JK21, Proposition 6.1]). By construction,
dimiKe =12, :, so@ls a surjective linear map between vector spaces of the samedsion,

and therefore injective.
Step 2Checkim? jk2°=1m

It suecesto check thatlm Im? jk-° Let~2Im ,and G=~. Denotethée 2-orthogonal
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projection ontoK by projy . Let

| = @projt @

en 1G, 1° =~ andproj !G, 1° = O because oproj, @!=1d,i.e.G, | ? K which

completes the proof.

Comparison with the Laplacian onl ‘e embedding Jc: °°! 214 @ is de€ned using
acut-o, of @ 2 2% g, If not for this cut-o,, we would have that Jc = ]Jc , where we
use the symbol to denote the Laplacian o#cas well as the Laplacian oh. In our actual
situation, we still have that and]cnearly commute, and that is the content of the following

proposition.

Proposition 3.55.For anyV  Othere exist® j 0independent aEsuch that for alb 2 01 ©

we have
it Je le %ii ou_ 2Eii6ij 20" (3.56)

Proof.De€ne the magc: 0ol 293 - g oviaglee =26 2. _a, wherea 2 21 g0

is harmonic and has unit 2-norm with respect tc6. ,,. ‘en

L & %=0 (3.57)

We aim to estimate

| "z "}y I 2y {2}

1 ]C ]C 0g=1 ]C §t°6,1 qt qt 06,1‘330 ]C 0g”
VA VA VA

We begin by estimating I, where it will be convenient to estingadn two regions separately:

1=fG2! -gq:A@ Clzesp
(3.58)

5> =fG2! -g4:C1Z8g AR Clze4g
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i ii oo it @96 2

= 7?26 ? 13 2°
4] e 2U
: EH Ve

?6 7 _ta a ay,

EH 1°° 26 e @ ey 2°

ViC viC

We will estimate the two summands separately. ‘e €rst summand te€ned on the region

1=fG2! -g4:AQ®@ C'z-8gwhere neitheranorais cut o,. We have that
jpl@ @Qjes , 2CforG2-gywith A@ C'Z-8

for the following reasonta<ai, 2.¢5 -1 by de€nition, thus

1

W@ jdi 2ee , hadi zes jaigg  Vvoles
EH L BH fG2- gyAl@ ZClegg 8. gy EH
1
1 11, &2 883da 1 2¢
zCl.8

(3.59)

If A@ C1ze8we have thata!@ = al@«hj @¢ @i 2.¢s - because the cut-o, is applied

whereAL@ ; C1z+8. ‘is implies, at the point G

S — 1 _ c
Ja ajgs,, al a

h @ejdi 2es 1 C 1 Cg

EH (6. EH

Using this for our estimate of the €rst summand of |, we obtain:

26 2. % & a, , C 26 x 2Cj6j 20’
: 1 : viC

V,C
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For the second summand we get:

?! 6 J c?. EH la a° \zl-lél 0
? 46 i _a a°
)30 2y | N 201

%6 aullidlzu Nl 2 o o JIAI) 2us o, 018 20.

2(2:]]6” 2u®
where in the last step we usejjlj] 2u 2, which holds because far away froin the
weight functionFy 4ocis uniformly bounded. We also used

j@ies _, =C?@js ,, 2C*1, "% 2&ic, ge* 28on (3.60)

Together with Eq. (3.59) this shows thaijeg o 2€on .
Altogether jj jj ou 2Ejj6jj »u. Furthermore, = 0 because of Eq. (3.57). Lastly, lll is

estimated like I, which shows the claim.

‘e goal of this section is to prove an estimate for the operatanorm of the inverse of the
Laplacian with respect to the normig jjx_ andjj jjy.. ‘@ purpose of these norms is to essen-
tially split the problem into an estimate ofm cc and remainder. ‘e following proposition

contains the estimate ofmcg

Proposition 3.61.CEere exist® | 0independent dfsuch that forCsmall enough and for all

62 010 satisfyingé ? Ker | we have that

Ji6jj 2u  2jjcc 1Bjj ou” (3.62)
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Proof. We have
ji6jj 2v 2]j 6] ou
=2jjcdc 6jj ou
2jjcc 1&jj ou, 2jjcc J& cdc 6] ou

2jjcc 1jj ou, 2@ Yji6jj 2ue

where we used elliptic regularity for the operatoron! inthe €rst step, and Propositions 3.48
and 3.55 in the last step. At this point, the last summa&&i Y jj6jj »u can be absorbed into

the le%o hand side f@small enough.

«e model operatoron R® - gy

De€nition3.63 For92 fle"" "1y let 8be a connected component 8, but made slightly

smaller, explicitly
J:i= o\ft GeGP2! gy AG® Clzedg
ForV2R let

Bvee P! 2R3 f G2-gy:A@ Clze4ge
07! CY %2 1 Celd® 0jg -
where? : R3! ) 3denotes the quotient map.

en:

Lemma 3.64.For92 f1+”””42y, V2 R we have that forald 2 2!R3 - g.° we have

%-VQ ;U = JJOJJ U (g)0° and

V.C

Bowvac #0655 6Boev J 9=0

Here 6.3 6.1 denotes the Laplacian &% - gy with respect to the metrizs  6110.
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Proof.'emap 1 C ?ed°: ! R® f G2-gy:AQ@ ClZ-4gpulls back the metric
C6gs  6110° to the metric induced by C. ‘e extra factor CV 2 cancels out the facto® when
changing the metric from®6gs  6:10°t0 6gs 6110 0N 2-forms and cancels out the fact@¥

coming from the de€nition ofjj jj -u .
VC

Estimate ofd{0 In Proposition 3.61 we essentially proved an estimate for the isg®f the
Laplacian onimcg In order to get an estimate with respect {9 jjx. andjj jjy. we need to
estimate the inverse of the Laplacian dmds Recall the projectiortc onto the €brewise
harmonic part from Eq. (3.42) and its complemelat ‘e two operators satisfy ccdc = 0, so
the following proposition implies an estimate for the inversé the Laplacian for elements

02Imdc 21#(;0.

Proposition 3.65.Write K%:= f11 j 0 :0 2 Ker )7 9 21# . Een there exisij 0
independent aEsuch that fo0 2 21# @ satisfyingd ? K °we have

i0jj 2u 2 jj Ojj ov , jiChz " (3.66)
Proof. ‘e Schauder estimate
ji0jj v 2 jj Oj eu , iiOj (3.67)
B C C

can be derived as in [Wall7, Proposition 8.15]. It then suscedtovsthat there exist such

that
o, 2 i Ojj ou . iTiiz, (3.68)

Assume Eq. (3.68) is false, then there e@ist 0,052 21#¢° satisfying0g ? K % andG 2 #¢

such that
iiOij 2y 2°FugiG0s'GY =1-andjj O oo ! O Telsyy ! 0" (369)

Here, we gotjj0jj v 2from Eq. (3.67). Without loss of generality we can assume to be in
Vi@
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one of three following cases, and we will arrive at a contradictio each of them.

Case 1the sequencé€g concentrates on one ALE space, '@%@1630 I 2Y1 (see Fig. 2).

N, R3E X

Zj

Figure 2: Blowup analysis near the associative is reduced to ttayais of the Laplacian on
R3 - En

By passing to a subsequence and translating in Riedirection if necessary, we can assume
that G concentrates near one €xed connected component ofLet ¢ ! - gy be the
connected componenf containing an accumulation point of the sequenGe De€neg =
B2 2R3 f G2-gq:A@ G'Z-4g°and letGgbe ali%o from gto R® - gn. ‘e new

2-form Bgthen satis€es
jiBsij 20 21, A Viesr&] 2+and jj B o ! O

which follows from Lemma 3.64. Now the weight function no longer i@ it and distances

and tensors are measured using the me6ig  6:10.

By the assumption of case 1, we ha¥&? ! 2 Y 1. By passing to a subsequence we can
assume thag converges, so writ€s = limg; 6 2 R® - gy. Using the Arzed-Ascoli
theorem and a diagonal argument, we can extract a lihit2 2R3 - g° of the sequence

6g satisfying:

jjo jj!\ll 2+¢and (3.70)
63 Bige 0 =0 and (3.71)
11, AGoe Vi0 1G9} 2” (3.72)

By Corollary 3.39 (applied to the caf®® - g4), we have thaD is independent of theR3-
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direction. By Proposition 3.21, the only harmonic forms-gg, that decay liked are multiples

ofa;. ‘us O is the pullback of a multiple o&; under the projectior??. _,, : R -gn! -en

BecauseTgOs ,» ! O, we havethad is perpendiculart@on everyf~g - gy R3 - e
e

Here is how to see this in detail: let 2 ! , then we calculate ofi~g - gy:
MDeai =Dea ja@ai,hO 6gjqai, hbgji= , , 7 (3.73)

Here,

jj Mea jaitg o cizesg, 0@ jAIfe- A clizesg ®

where we have for the €rst summand

1
Clz.8

0«a jditc qme cizesg 06 @ ] A6 A dA

clz.8
2 Adpda 2¢V! O

Here we used Eq. (3.70) and Eq. (3.59) (a%.er changing flj@mEH toj je .,)inthe second
step. For the second summand we €nd

1
1

0«8 j@ifco cyae cizesg 2 AAYRdA 2¢Y! O
Ze8C1

where we used = OA % anda = OA “° in the €rst step.

In order to estimate , let; j 0. ‘en

jj 0 6rjditegme g, M Brjdife yae g°

and we €nd for the €rst summand

1

1
0 6fjdiic e g 2 0000y, ii6hl; A 4PdA 2V
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for a constan® independent of. For the second summand we have

1

W 6jditce come ;g 10 Beji1ico: cymo ;g0 . A %3 dA

2jj0 61 itce guae jgo! O
as8! 1 by de€nition of0 . Last,
i j=C?Vjtedroj=C? Vitede 0] 2jTLeiiy ! O

where we used Proposition 3.48 for the estimate.

Altogether we see that, by takinimg: in Eq. (3.73), we have th# «ai  2;Y, where the
constant2 was independent of. ‘is is true forany ; i O, thereforelD «ai = 0. But thisis a

contradiction to Eq. (3.72).

Case 2the sequencé€g concentrates on the regular part, i.4;*G? ! 2 0(see Fig. 3).

Nt Y

Figure 3: Blowup analysis away from the associative is reduocdti¢ analysis of the Laplacian
on) ’e .

Using the Arzeh-Ascoli theorem and a diagonal argument, we extracta ligni2 2% 7 nl©,
Denote, furthermorelimgy G=G. We havej0 j Y 2 31«19V so we have thad is a well-
de€ned distribution ori' «h]i acting on! ?-sections becausé¢; 2. We also have 0 =0, so

0 is smooth by elliptic regularity, e.g. [Fol95, ‘eorem 6.33].

Furthermore,

D11 j123e10%° U)o = liMIDg™l A C Wing =0’ (3.74)
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By the unique continuation property for elliptic PDES, the irnproduct

h o171 jO 1231 6|00 |

is non-degenerate on harmonic forms. ‘€-form 0 is a harmonic form that is orthogonal to
all harmonic forms with respect to this inner product, theref®®0 = 0. But this contradicts
01G°; 2

Case 3the sequencé&g concentrates on the neck region, i&GP ! 1 , butA!G° ! 0O(see
Fig. 4).

N R3£ R4

Figure 4: Blowup analysis in the neck region is reduced to thelgsia of the Laplacian on
R® R

De€neBs 2 2R3 - 2and& 2 R3 - gyasincase 1. Inthis case, we have jla&?j ! 1

In order to be able to obtain a limit of this sequence, lef! 1  be a sequence such that
"gejdi&°j ! 0. Cucing outthe exceptional locus of the Eguchi-Hanson spase can consider
flGeG° 2R3 -gy:'s jdj!G® ZglgasasubsetdR® C2f 1g OnR3 C2f 1g,

we have the rescaling map jd*&Pj°.
We now de€ne:
B =1 jd'&)° Bgiryjaj zglg 10'E] 2V
2 2R3 f G2-gy:' gjdi&) jdI@] zglejdigPjge (3.75)

& = Grjd16]"
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‘is sequence satis€es

8 ,, 2and B&° | 2" (3.76)

\%

‘e data B and®g are de€ned on (subsets oR® C2f 1g. We use the same symbols to

denote their pullbacks under the quotient magy | C2f 1g.

As before, we extracta;z;gz-limit 0 2 2R3 R*nf0g°satisfying
R0 =0 and ”0 JJ| \1/ 1R3 R40 27

We see asin case 2 thatde€nes a distribution on all dR 7, and is smooth by elliptic regularity

on all of R”.

We also get ant 1 -bound for0 as follows: away fronR3 f Og, this is given by Eq. (3.76). To
seethaD does not blow up in theR3-direction nearR® f Og, consider any- 2 R3 f 0Og. Let
1Y?Y 4V, thenjjo jji»:. ;100 2 independent of, by Eq. (3.76). So, by elliptic regularity
ji0jjjz: 100 2forany< 2N, and by the Sobolev embedding we hay@jj . 2, where

all of these estimates were independent-of

By Corollary 3.39 (applied tR® R%), 0 is constant in theR?3 direction. ‘e limit 0 is
therefore the pullback of a harmonic, decaying formRf, and must thus vanish, which is a

contradiction to the second part of Eq. (3.76).

Cross-term estimates We have now established uniform estimates for the inverse abn
ImccandImds As it stands, it could happen that the operator normdf Ccor cc dcis
very big. It will turn out in our proof of Proposition 3.52 that isuch a case one would be
unable to deduce anything about the inverse of the operator n@in with respect tojj jjx.
andjj jjy.. Fortunately, it turns out that the operator norms afc ]c (and thereforedc Cg

becaus€c=]cd andcc dcare small, which is the content of the following proposition.

Proposition 3.77.CEere exist® i 0independent dEsuch that for allb 2 91 ° and for all
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02 21#® we have

jide 16ij ou 2@ Yjijj 2u fFVY O (3.78)

jicc djj ou 22 VjjdQjj au if 2YVY O (3.79)
Proof. We €rst prove Eq. (3.78). We hasldc = 0 and therefore

jidc 1jj ov = jidc 16 e 6°j ou
V.C ViC
i 16 e 6j ou,jilect 18 o 6% ou
VC ViC
i 18 I 6jj ou, 2C* Ve 16 le 6%) ou
i 16 o 6jjou, 2CYjj 16 e 6jj ou
VviC V,C

2@ Yji6jj »ue

where we used Proposition 3.45 in the third step, Proposit&A8 in the fourth step, and

Proposition 3.55 in the last step.

Now to prove Eg. (3.79): assume without loss of generality thatd. De€ne

21) 3 01! (o]

€c: - eH° !

led°1@ = Mai g .

‘e di,erence between ecandccis that they used andj @ in their de€nition, respectivelya
is notcut 0,, j Ais, and both are rescaled to have unit norm. It susces to provestblaim for
02 2@ which is supported neat. We can view sucl) as an element in 2% 3 - g
and applyecto it. Also de€nd: %1101 23) 3 . 0 aghl60 = %5 2. ,A en ede=

and we also de€ndc:= 1 édec

We haveec = egthusedd=0) ec 0=0, and thereforeec dc= 0. Hence

Cc d0 = 1cc e dc}O ec id 11 e, ec 111 {]Cec" 420"
o z }
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We €rst estimate I:

1
Cclz.8

hd0a jiines,, 26V i Ao 11 A2V R
| @ }

2CVjjdOjj 2uif 2 V 0
1 Vv.C
1

, 2¢ jjddjj 2u 11, A2 2V AR dA”
C1z.8 Vi
| {z }
2Cjjd0jj 2y
VC

Here we applied Eq. (3.59) on the regit®2 - g4 : A@ ZC'+8gand we used

A jces ., i@es ., .iides , 2C, ACC

EH °

on the regionfG2 - gy : AA@ ZCle8g. ‘us
jittc e® ddjj:  2€"YjjdDj] 2y

and the ®Y-estimate follows analogously.

For estimating Il we need the estimate
jiedjj v CVY )] a (3.80)
which is proved like Proposition 3.48. ‘en

jiec *dc *'1 ]ed?0jj ou = jjec Yccc ]P0 ou
2C%jj Iccc ec0jj oy,
2CY jilc *cc ec0jj ou, Cijlcc ec0jj au
2¢Y11, &jjicc  e®0jj 2u
2¢Y11 . G°Cjjojj 2

U ' ..
2€ Y jjddjj 2y
where in the €rst estimate we used Eg. (3.80), in the seconidnege we used Proposition 3.55,
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in the third estimate we used the estimate for the operatormoof Jc from Proposition 3.45,
and in the fourth estimate we did the same calculation as wherireating | and we again used

2Y VY 0. In the last step we used the assumption titet dc0.

It remains to estimate Ill. We €nd

jlec 1 Jeed® dP0jj ou = jjec Yc &edjj ou
2C%Vij e &fedijj ou
VvV 2C
2C%Vjje & edjj ou_, C % Vijjedij aue
where we used Eqg. (3.80) in the second step,&and= é&:together with Proposition 3.55 in
the third step. Here we €nd for the €rst summand
2€Vijie & edjjou  2C%Vijja @jov 7 ed ou jiljj ou
V 2C oc : oC Vv 2C
2cYV @ ii edjj ou
2 Y%V jiedijj 2u
2€ jiojj 2
where we used Egs. (3.59) and (3.60) in the second step; we 8seddd ouv = jj edjj ou
. s
which holds becausg, ed is constant in the Eguchi-Hanson direction, so the derivatine

the g'g—norm is just a derivative in thé -direction; in the last step we used Eq. (3.80). For the

second summand we have
& YViedjj v C *2jj0jj 2u
by Eq. (3.80), which proves the claim.

Proof of Proposition 3.52

Proof of Proposition 3.5y de€nition,jjOjix. = jid0jj 2u , C3?jjcdjj 2u. We treat the €rst
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summand €rst:
jjddj v ji - ddij ou
iCc ddjj ou . Jide Ojj ov . jjdc TAH)j ou

where we used Proposition 3.65 in the €rst step and in the sesiagd usedL = C¢, dctwice.

Here, the €rst summand satis€es

iic ddijj ev  CYiicc ddjj ou

2 2jjddjj 2ue
V,C

where we used Proposition 3.48 in the €rst step, and Eq. (3nABkisecond step. ‘e resulting

term can be absorbed into the le%. hand side of Eq. (3.53).

For the third summand we get from Eq. (3.78) that
jide TPjj ou  2€ Vijjcdjj aue
VvV 2C

which can be absorbed into the le%. hand side of Eq. (3.633% ifusciently small. Regarding

the ccterm, we €nd that

C*?jicdjj 2 C*?jjec Jedij ov

C*2 jicc 0jj ou, jicc ddjj ouv *

where we used Proposition 3.61 in the €rst step dnd T, dcin the second step. Here we

have for the last summand
C*?jicc ddjj ov  C¥2C-% Y jjddjj 2u (3.81)

which can be absorbed into the le%o. hand side of Eq. (3.53). ‘e lieing terms, i.e. the ones
that have not been absorbed into the le%. hand side of Eq. (3x&&}lyesum up tojj Ojjy,,

which proves the claim.
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3.2.4 <e Existence <eorem

We will now prove the theorem which guarantees the existendadorsion-free ,-structure

when starting from a »-structure with small torsion.

<eorem 3.82. Assume there exis?§ O0such thak©2 31# 2 satis€esl i ©=d kand

26

kC o 2¢

oc

c
dkC

Een, for smallG there existg® 2 2#@ such thati ©, d[ is a torsion-free ,-structure and

[€y. 2¢
To ease notation, we write =i Sk =k S and[ = [ “throughout the proof.
Proof. We will construct] 2 21# & satisfying
[ =dk, di5k, db id %« where5 = gh'- di” (3.83)
Sef{p=0and,if[g12 2#Pisgiven,lef o2 2# be such that
[o=dk, d1m ko, d dg1° *«wherex = gho doaie

and such thaf g ? K . ‘is is well-de€ned, i.e. such]| g exists, becausbnd Im and
restricting toK ? does not change itsimage by Proposition 3.54. We aim to showthygtion
that [ ¢ Xe 2¢. For9= 0this is true by de€nition, and we will now derive the estimate for

9; 0.

By de€nition of| g together with Proposition 3.52 we have that

2

[Qxc [ch

2 jjdKjjy,, d*make, , d *do1®

C
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By assumption we have = jjd kjjy. 2C.

Now to estimate II:

A5k, dBak y, Hadk = 7,

Here

"= dddS ayk© ou C¥2 cddm 1yk° oy

;|_CU> C3'2 U, Vo d@ 1yk oU

vV 2C
1cY, c*2UVo d5 oy jikjj ou
vV 2C oc

26

where for the €rst estimate we used Propositions 3.45 and 248 for the last estimate we

used the induction hypothesis] ¢ 1 ,_ 2¢, which implies d% 1 ou 22, together

VvV 2C
with the assumptionjjk jj ou 2C. ‘eestimate ”  2Cis derived analogously.
It remains to estimate |II:
=ddd dor® o ,C¥edd dor® w= ", "
V 2C

‘e summand Ill.A is estimated as

" 2cY d Idg1° ou ®
Vv 2g

where we €rst estimate thé?! -part of the *Y-norm. Namely, by Proposition 2.24:

d *doe1° |1 2de1,, rdo1,, C»V
"V 2C "V 1C "V 2C
2
,2dg1 !\1/1,c”d kjj!\1/2£C2,2V

2¢"

e » Yepu-part is estimated analogously. To estimate” = C¥2 cc d dg1° ou,
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we again estimate thé?! -part €rst. Fix some- 2 ! and computecc d d g 1° ~° by

computing anintegral over gy 'f ~9 -gy ! - gy. By Proposition 2.24 we have

cc d *do1° hd *de1® *jaics ,
1

2 jdloa jr doaj jj@ivoles
- EH
| iz )

N wwq

2 jdeqj ideqj jdKj jjdivolss

| {z }
"2
Here,
1
""1 =2 jd'€de1, dd91° jrd€de1, dde1° jjcjvoles
1' EH
A
2 IC,# 7" dtdg1 ou rdtdo1 ou IC A 4C AdA
0 3G c
| {z
. 2jjed o 1jj22-u 2G4 32
Zz
L2 1IC, AV 3 ddd g1 ou rdddo: ou IC A 4C AdA
0 VvV 1C V 2C
| fz }
' ..2
2jjdd 9 1] \2/olé 2¢4
! Zz
) 1C, AVS dedo1 ou rdddo:r ou  IC A 4C AdA
0 3C Vv 2C
| 2 }
2jjed 9 4] aujjdd o 1jj 2y 26322
. ;
A
.2 1C, AV 5 dddg1 ou rdcdoi ou IC 4 ‘C AdA
0 V 1f 4C
| {2 }
2jjed 9 1jj 2vjjdd o 1]j 2y 262
2 614’3.20076 é4@V 3@ 2633'2’4C/ 5@
26
thus 71 2 ‘epart ”"2andthe *Y-partsof ”"”land ”"2are estimated

analogously. Altogether, this gives ~ 2C.
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‘e sequence [ g satis€es

[9 2u ddg 2u, T9 =2u
Ve ViC viC

2V, 32
[ 9 Xc C : [ 9 Xc

2&‘2 Vi

As usual, the constar? is independent ofg but in particular independent of ‘us, there
exists, up to a subsequence, &% 2-limit limg; [ o =:[ by the Arzeh{Ascoli theorem. ‘is

limit solves Eq. (3.83) and satis€es
ilii 2wz 2082 V»
VC
By [Joy0O0][‘eorem 10.3.7],i , d[ is atorsion-free »-structure, which proves the claim.

Taking everything together, this gives us:

eorem 3.84. Let#cbe the resolution df'e from Eq(3.31%ndi €2 3#Pthe ,-structure
with small torsion from E(3.33) CEere exist® i 0independent afsuch that the following
is true: forCsmall enough, there exigts 2  2#® such thate = i ¢, d[ is a torsion-free

>-structure, and Csatis€es
[ C 20U 2 2@2 Vn

Vv.C

In particular,
e 1%, 2C%and & % 4, 2€*YZaswellase ¢ ., 2@2Y>
Proof. By Lemma 3.36, we have thi jj ov  2€. Combined with Propositions 3.45 and 3.48,

we also havek jjy, 2C. ‘us, ‘eorem 3.82 can be applied, which gives the claim.

Remark3.85 ‘e power 7¢2 Vin ‘eorem 3.84 can be improved to4 nforanyn 2 10-1°
by de€ning the normsj jjx. andjj jjy. with a factor of C" instead ofC *2 for » 2 10-2° close

to 2.

Remark3.86 In [Joy96a], compact manifolds with holonomypint7° were constructed. In
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the simplest case, one construcBpint 7°-structures with small torsion by gluing together
the productSpint7°-structure on) 4 - gy and the fatSpint7°-structure on) 8. ‘is gluing
construction is analogue to the de€nition of the,-structure in Eq. (3.33). In contrast to the
>-sSituation, however, Joyce's theorem about the existentwsion-free Spint 7°-structures
cannot immediately be applied, because the torsion of the gluedtcstire is too big. He over-
came this problem by constructing a correction of the gluedustiure by hand which has
smaller torsion, to which the existence theorem can be appliece same can be done in the
2 case. In fact, one gets a correction in the-case from theSpint 7°-case by considering the
Spirt7°-orbifold) 7» (1. Using this corrected structure, one would get even be<er troh
over the di,erence between glued structure and torsion-fregusture than what is known

from ‘eorem 3.84.

3.3 Torsion-Free »-Structures on Joyce-Karigiannis Manifolds

In [JK21], the authors constructed new examples of compact folts with holonomy
by generalising the construction that was described in Satt®2.1. As in Section 3.2, they
€rst use a gluing procedure to construct g-structure with small torsion. ‘ey then apply

‘eorem 2.26 to perturb this ,-structure into a torsion-free ,-structure.

‘e main di,erence to Joyce's original construction is the follaving: if one uses the cuto,
procedure from the ‘s case in the new se<ing, one produces g-structure that does not
satisfy the necessary estimates to apply ‘eorem 2.26. ‘e authorsfdJK21] overcome this
problem by constructing a »-structure with evensmaller torsion, to which ‘eorem 2.26can

be applied.

3.3.1 Ingredients for the Construction

Let. be a compact manifold endowed with a torsion-free-structurei . Write 6 for the
metric induced byi . Let] :. | . bea »-involution, i.e. satisfying?=1d,] < Id,]i =i .

We then have:

Proposition 3.87(Proposition 2.13 in [JK21]bet! = €x]° and assumé < ;. (Een! is a
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smooth, orientabl@-dimensional compact submanifold afvhich is totally geodesic, and, with

respect to a canonical orientation, is associative.

Assumption3.88 We assume that is nonempty, and we assume we are given a closed,

coclosed, nowhere vanishingform _on!.
Such al-form need not exist, and cases in which its existence cantmrgnteed are discussed

in [JK21, Section 7.1].

3.3.2 ,-structures on the Normal Bundlea of !

‘e metric de€ned by i de€nes a spli<ing

). jrta )l (3.89)

which is orthogonal with respect t®&. Write 6, for the metric on! induced by6 and6j, =
a 6. Write F2 for some connection om. For now, we may think off2 as being the

restriction of the Levi-Civita connection ddtoa! !, but later we will need the freedom to

choose another connection. We write elementsils'Ge+ 9, whereG2 ! ,U2 as. For' | O

let

* =fiGeB2a:jy, Y'(g

Write ¢ : *. | | for the projectionG<9 7! G We will make use ofamap : *: !
satisfying the following:

1. is adi,eomorphism onto its image,

2. G =GforG2!,

3. 1Ge WP =] 1GeUforiGeg2*.,

4. the induced pushforward :)* . | ). restricted to the zero section gf . is the

identity mapon)g ag.
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For example, = expwould satisfy these four conditions for small. But later on we require

to satisfy an extra condition thaéxpneed not satisfy.

Write 1 @ :a! afor the dilation maplG+9 7! 1 Ge ClJand forC< 0, de€ne ¢ = 1@
gt -

‘e connection £2 de€nes a splicing
Ja=+ e+ where+t' c @&and ' c 1! % (3.90)

where+ and are the vertical and horizontal subbundles of the connectid@ombining

Egs. (3.89) and (3.90), we have tfaat c 1). j °. Denote by
i 22 310k3 2 410 and6? 2 (%1a° (3.91)

the structures obtained from ,k , and6 via this isomorphism and fo€j Owritei §=1C i 2,
aswellak@ = * © k?, and6g = * © 62. Note that this de€nition implicitly depends on the

choice off 2. ‘e main result of [JK21, Section 3] is then:

Proposition 3.92.(Eere exist | 0, a connectioR?onaandamap :*: ! " satisfying

1. isadi,eomorphism onto its image,

2. G =GforG2!,

3. 1GeWP=] 1G-UforiGey2*.,

4. the induced pushforward:)* . | ). restricted tothe zero sectionof is the identity

mapong!  ag

and forCj Oa closed p-structureed onasf 1gand closed-formi€2 2 “1asf 1g°satisfying

the following properties: €rst,

id B2=01CK° and k& €2 =0CKo (3.93)
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Second, there exjs  2ta%Z2 31a° such that
e = QA% and jdje= i B = Ol
JZJGB. = OlA?O and JdZJGa — k l@aj*l . - Ol&on
3.3.3 p-structures on the Resolution%of asf 19

‘e o-structurei 2 31 °de€nesforallG2. acrossproduct :)a )e ! )o asin

De€nition 2.19. We then have a complex structur2 Endta® given by
40= =+ for+ 2axG2!” (3.94)
IJ
Recall the metric ; onade€ned by6j, = 5 6, cf. Section 3.3.2. ‘en and 4 together

de€ne aU2’-reduction of the frame bundle ad. Denote by- g4 the Eguchi-Hanson space

110. I

with Hyperkahler triplel 11°'I 5 ;10 from Proposition 2.10. Denote ly: - gy ! C?f 1g

the blowup map of the blowup with respect to the complex struatuinduced byl 110 from

Remark 2.13 and let
%= Fr yip- gx’ (3.95)
Denote byf : %! ! the projection of this bundle. Analogously, we have
asf 1g=Fr yipC2%f 1g’

Let!© I be a nonempty, open set on which we can extefad:= I 2) 1 ®toanor-
thonormal basist4ys 4+ 4°. ‘en there exist 1N o|* o|* 2 211g¢f 1g°j ° such thati 2 from

Eq. (3.91) has the form

ia:41A42A43 nNAg N NL N NG (3.96)
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Wede€nd o o« 2 219 ® asfollows: FoilG2! 0 let5 2 Frg such that5 : tasf 1g% !

C?%f 1gsatis€es

1 1 1 . .
5 1| lG).I ZG).I 3030 - 1|/\ J%.II\ .I/\ J O¢

Ja*" s

ey ;OP-I ;000 denotes the Hyperihler triple onC?f  1gfrom Proposition 2.10. ‘is

wherell |
choice of5 de€nes isomorphisms of complex surfadgs' - gy andlasf 19% ' C?f 1g.
Letl «f ol 2 2190 be the pullback of ;"1 ,"«I ;¥ 2 21 g0 under this isomorph-
ism. ‘is is independent of the choice of5, and therefore de€nels | « 2 21040 ‘e

following diagram sums up the situation:

. . . ! 110 110 110
10/@" J%;'l J%;'l J%;O > - EH'I 1 ol 2 ol 3 °

ld \Ld (3.97)

tagef 101N jaset 101" Jaset 101" Jaget 18° —— 1C%F 1gel Tel [Tel o

Here, by abuse of notation we denoted the m#p ! acf 1g which makes the diagram
commutative also byl. Horizontal arrows pull Hyperlahler triples back to one another, Hy-
perkahler triples connected by vertical arrows are asymptotic iretsense of Proposition 2.10.
A complicated point is the actual de€nition ¢f ¢I I as2-forms on%, 0. Equation (3.97)
tells us what they look like €brewise. To make sense of them as dlobgects orn% one needs
to choose a connection o#o In [JK21], the horizontal subspaceswere de€ned to this end
which allows us to decompose forms éfinto vertical and horizontal components, much like

for forms ona. ‘ere are then unique vertical 2-forms which restrict tol  jog*l jog*l  joi ON

every €bre.
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We are now ready to de€nel2 3194, ©, k22 419 ® via

i(%]::io.g> él 21
(3.98)
=f 14N 4o 4° G f 14,07 | f 14,01 | f 14,01 o
kg); dk4,o . ékz.z
:%I AI f 142I\430/\| f 143/\410I\| f 141/\420I\| ”
‘ese expressions are independent of the choice & 4°, and therefore de€ne formis? 2

3108ek% 2 4198, not just forms over © 1. Let alsc6¥ denote the metric induced biy.

As in the previous section, we add terms i@ andk 2 to de€neclosedorms on% and we

have the following control over how they are asymptotic to fogmnasf 1g:

Proposition 3.99Section 4.5 in [JK21]§Eere exisbuor s 2 3198, 2 21 G2 %: AQ |
1°, such that

el:=i 2, Ch., Chys
is closed and satis€es
el=ded, Cdga (3.100)
whereAj 1. Eese forms satisfy the following estimates:

_§01é=°- A I
¢ ?o@iA3¢°- Aj 1
éo@i% A 1

riChd , = (3.101)
c Eo@ww- Aj 1o

r 1CGgua® . owd Ad o (3.102)
C

Proposition 3.103Section 4.5 in [JK21]{Eere exis} 13*\31°\20 2 4198, Ep 2 31 G2 %:
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A@ i 1° such that

B :=k&, Cjia, Qa1, Qo (3.104)
is closed and satis€es
%=d 2 Gdi. (3.105)

whereAj 1. Eese forms satisfy the following estimates:

%Olé " 0s A 1

r1Gj 1 o (3.106)
c go@:Ai‘:O- Aj 1o

_ éo@:f’- A 1

riic\ 31° = (3.107)
6%
c _50- Aj 1o

. %01@:0. A 1.

ri1C\ oo o (3.108)
c _501@:,6810- Aj 1o

r'1CRy° =0 A3 o (3.109)

3.3.4 Correcting for the Leading-order Errors 0%

Armed with the »-structuresi on. and ie?é’ on % we could de€ne a glued together,-
structure just as we did in Section 3.2. However, in this casedtid turn out that the torsion
of the glued together »-structure is too big and ‘eorem 2.26 cannot be applied. We thus
make use of the following correction terms which will make thersion of the glued together

2-structure small enough.

eorem 3.110 (‘eorem 5.1 in [JK21]) Eere existhor Ug 2 2198, Ve Vo 2 3108, satis-

fying for all Cj Othe equation

i ® Crdlpo¥az , CodUno¥so, Chiz = CdVos, CrdVoa¥ss, Cj1a, Clayr”
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Moreover, folVj 0sueciently small and for all:

Gy <
ri1 L =
% 3
01
S0
' 1dU2'006°/°:§
¢ 2012
o
r 1AV .
c ?o@
S0
r-1¢v2e1° W=
“ fow

3.3.5  ,-structures on the Resolutior# cof . <h]

We are now ready to glue togethé&band. <h|i to

small torsion on it.
De€nition3.111De€ne

h
#o= d v ouof 190

b

whereG ¢ di@forG2d 1* -1 of 1g°

De€nition3.113Let0 : »0»1° !
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0, these forms satisfy the following estimates

A 1l
"AZ o Woe A Te
: O A 1l
PAZ W AT
: O A 1
FAZ V0. A s
: O A 1l
FAZ W A s

a manifold, and de€ne a,-structure with

L nloHi o

(3.112)

R be a smooth function witfD*@® = 0 for G 2 > 1¥:and



0@ =12 »21° . De€ne then

€2 d»i 0CK°1CE,, CVos, C\Var®, Z% ifC*®> A 2C%5%

el, dClp, Clngh ifA CLo%
B, dClpz, Cln, 01C%%  [% ifCct® A 2c%%
&= % dClyy, Clho, [% ifoct® A c*5 (3.114)
%‘eé} d»41 010 1Cq.; , Clyn, CUnP, [% ifC*> A 2C*5
Sje elsewhere
€L, dCVos, CVogl ifA Cl%
€%, dCVog, CVaq, 01C%  Zt4 ifc® A 2ci%
k& él@gﬁg Vs, CVay,  Z%: o9 A C45 (3.115)

ke elsewhere

‘e important properties of these forms are thati £ andk are closed, and tha&t is close
to being the Hodge dual of . ‘atis, the 3formi& .k satis€es the assumption of
‘eorem 2.26 and i £ can be perturbed to a torsion-free,-structure. ‘is yields the following

theorem:

<eorem 3.116 (‘eorem 6.4 in [JK21]). For smallCthere existc 2 21#® such thatef =

i £, d cis atorsion-free p-structure, and
BE &, 2¢% (3.117)

for some constatj Oindependent o
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4 <e Gluing Construction for Instantons

We now turn to constructing »-instantons on the resolutions af «h|i explained in the pre-
vious chapter. Much like explained in the introduction to Semti3, we will follow again the
three step process of (1) constructing an approximate sotyt{2) estimating the linearisation

of the equation to be solved, and (3) perturbing the approxiesalution to a genuine solution.

In Section 4.1 we explain how a sectiBof a moduli bundle gives rise to a connecti@h °
on the bundle of Eguchi-Hanson spacggrom Eq. (3.95), cf. ‘eorem 4.15. If the topological
compatibility condition Assumption 4.1 is satis€ed, we can giue® toa ,-instanton\ onthe
orbifold. ¢hji. ‘e resulting connection cis close to being a »-instanton and in Section 4.2
we will quantify this. We will see that this error is small in a staible norm ifBsatis€es a €rst
order partial di,erential equation, the Fueter equation. Sen 4.3 is the diecult part of the
analysis, where we give an estimate for the inverse of the lingad instanton operator. In
Sections 4.4 and 4.5 we complete the argument and construct éfefpation that turns the

approximate solution from before into a genuine solution toeth ,-instanton equation.

‘roughout we will use the notation from the previous chapter.‘atis, . isa »-manifold
with ,-involution]:. ! ., and#cis the resolution of <hji. ‘e resolution #cis obtained
by gluing in the Eguchi-Hanson bundl&over the singular locus = €x1]°. On%we have

. Q
the -structuresi &

anded, and on#cwe have the ,-structurei £ with small torsion and
the torsion-free z—structure'eé . In the case thattcis a resolution of) '« , we also de€ned
the -structuresi “ande® ‘ese two will also be denoted byi £ ande respectively and
the special case 9f’» will need no special treatment most of the time. ‘e exceptiorsithe
pre-gluing estimate for resolutions ¢f’e , Corollary 4.57, which is be<er than in the general

case. In the case of resolutions)ofe , our main result is ‘eorem 4.131:

«eorem. Let# ! . Obe the resolution of the orbifold=) ‘s from before. Assume that the
connectioh used to de€ne the approximatginstanton cfrom Proposition 4.27 is in€nitesim-

ally rigid and thatBis an in€nitesimally rigid Fueter section.

Eere exist j 0such that for smalCthere exists af-= 10ch? 2 *1 0 11Ad ©°such

that €c:= ¢, Ocisa z-instanton. Furthermorg,satis€es 0 ,_ 2€ Y,
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Here,jj jjx. is a complicated composite norm similar to the norm denoted wilte same
symbol from Section 3, and 2 10»1° is a number close t0. In the general case of resolutions
of. <h]i we only have a weaker result. Namely, we require the Fueter sectd be pointwise

rigid. ‘is is ‘eorem 4.130:

<eorem. Assume now that the sectiBis given by a rigid ASD-instanton in every pds® ! ,
and assume that the connectionsed to de€ne the approximatginstanton from Proposi-

tion 4.27 is in€nitesimally rigid.

Eere exist® | 0such that for smalCthere exist§. = 10ch® 2 ¥V 0 11nd ©osuch

that €c:= ¢, Ocisa p-instanton. Furthermor@ satis€es0. s  2&18
1sX,C

We will use this theorem in Section 4.6 to construct a new exangfl@ »-instanton on the

resolution of?) 3 K3ez2.

4.1 <e Pregluing Construction
4.1.1 Moduli Bundles of ASD-Instantons

Letc : o! . <hji be anorbifold -bundle with connection , i.e. a -bundle with connection
over. together with a li%§ of ] such that]® = Id and such thaf*\ =\. As before£x?]° = !

and we now set 1 = oji, whichisa -bundle with Z,-action, and ; =\j ,. Denote by
" the framed moduli space of ASD instantons on a bundlever Eguchi-Hanson space-y
from Section 2.4.2. ‘e homomorphisnd : Z, ! used in the de€nition of de€nes &,

le%o action on . We then ask for g and" to be compatible in the following sense:

Assumptiort.1 For all; 2! there exists an isomorphism of manifolds with right action and

Z, le%o action : 1 j. !

Proposition4.2.Let 4 be the stabiliser afas in Eq(2.43) (Een there exists g;-reduction

of 1 suchthat ; reducesto.

Proof. As before, led : Z, ! be the representation that de€nes the asymptotic limit for
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connections in' . De€ne
=fD2 1 :D dt 1°=1D°¢g’ (4.3)

To see that this is a ¢4-bundle, €x; 2 ! and letq : 1] ! be the isomorphism from

Assumption 4.1. ‘enD2 j. ifandonlyifqil® 2 g4.

It remains to check that 1 reduces to . To this end, leWW: ! be a curve. ‘en

1 W00 =] QPO

3 .
1 3—01WC‘? d? 1°°j@0 (4.4)

= Adldl 100 1 1 1W0)OO”

In the €rst step we useft\ =\. ‘e second step is the de€ning property of from Eq. (4.3).
Now, for any subgroup we de€ne thecentraliserof in as/ ! °=f62 :6 1=6

forall 2 g ‘en
Liet/ t 0=z =f+ 2g:Ad °+ =+ forall 2 ¢ (4.5)

‘is equality holds, because for- =@#+0° 2 Liel/ * ©°°,where6: ! /' °isacurve, we have
that Ad? °- = :%Cl 6 1C joo=- by de€nitionof/ * °. Conversely, for 2 z , we have
that 61C = exp'C+ is a curve with@20° =+ in/ * ° becauses !C ! =expiC Ad! %+°=

explCP =61Cforall 2

‘erefore, by Eqgs. (4.4) and (4.5), we have that j takes valuesirLie! 4°,i.e. restrictsto a

connectionon .

De€nition4.6 De€ne themoduli bundle

M=Fr ©° o ," 4.7)

d
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and itsvertical tangent space

+M =1Fr ©° (i d)"" (48)

4.1.2 Fueter Sections and Connections on Bundles o%er

In the following, we will study section®8:! ! M. It will turn out that such a sectiorB
gives rise to a connection that is almost g-instanton, if it satis€es a €rst order di,erential

equation, theFueter equatio(cf. De€nition 4.13).

De€nition4.9 LetB:! ! M be a section. We de€ne its covariant derivativB2 1ile+ MO
as follows: forG2!,- 2)d let52 liFPand42 11 °be local sections aroun@such
that Cd5!@ = 0and ; ld4l- °© = O, where LCis the Levi-Civita connection of . Let

11" be alocal section aroun@such thatB= »5 48 Yi‘en

r- 183: »15.2'.3 1. 0]/4 2|II‘ ° U2 g )"”

De€nition4.10 LetB:! ! M be a section. Fig2 ! and let4,, 4, 43 be an orthonormal basis

of)gl . ‘e o-structure on. de€nes a map

Ingler .o
(4.11)

7! | o, =1 ¢

‘e | gcorrespond to complex structures d¥; and therefore, by ‘eorem 2.51, to elements

g 2 Endi+gM °. We thus have a Cli,ord multiplication given by

4 +cM | +cM

(4.12)
07! gtQe”
De€nition4.13 A sectionB:! | M is called aFueter sectioif
¢
FB:= 45 r4B=02 B+M?%% (4.14)
81
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where 4.+ 4+ 4° is a local orthonormal frame.

‘e following is an extension of [DS11, ‘eorem 1]:

<eorem 4.15. Denote by? ! " Len the tautological bundle with tautological connection
R over" - gy from Proposition 2.59 and assume that there exists a lit bf-f8-action on

" “eqto P preservind®. LetB2 11MP©, and denotéo= Fr (:»-"gn Een there exists a
natural -bundleB © over%with connectiof® © 2 !B °j,° together with an isomorphism

of -bundles withiZ let action B %jy,,! 1 sothat:

(i) Ee pair'B %B ©°°j, representB@. (Eat means: iBQ = »5 8 » Yulfor 5 2 Frg,
421 %, » ¥ 2' , then under the di,eomorphismgy ' %, ~ 7! »5¢Y4the -bundles

B °j, and are isomorphic, andandB ° are gauge equivalent.
(i) Ee map identi€es 1 andB °over the €bre atin€nity,i.e. 1 =B %y,

(iii) Ee connectioB ©jo,is akZ2 -instanton if and only iBis a Fueter section. Hee, °
: Yo ; v |
being akk Z° -instanton means thaty A1k =0, wherek@® =" f 1407 f 14%n

| . Heref : %! ! isthe projection of the bundle KE8.95)

Proof. Construction of B- °,Bt ©,and :together with the connections LConFrand ; on
, the connectiorf induces a connectiok) on the principal -bundleFr ° (o P!

Fr ° pyi» 41" gx°via the formula
UL»¥e+ 0e) 1/,0= A1) 06 (4.16)

where* 2) Fr,+ 2) are horizontal vectors ang 2) P. By assumption is le%o-invariant,

which makes the de€nition ol independent of the chosen representative.

Consider the map

A " A
1B Id°: %: Froyie-eEq!t Fr ° (ip d 1 - EHC

»H el 71 »Eefel e~0L4
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whereBf 14°0 = »5 e8¢ /4, M. 140. ‘€N

B °:=1B Id°Fr ©° yip ,P% B °:=1B Id°U

d

and the trivialisationg : Pj- o 14 ! " o' from Proposition 2.59 induces an isomorphism
B e
"1B ldja, 0 Fr ° u» 4Ping ! BT ° gy o, " (4.17)
1 d 1 1"

‘e last point of Proposition 2.59 states thag product = Bjr 11 Whichimpliesthat 1 =
B lpe

B °is alk("{“’ -instanton if and only if Bis a Fueter sectionfor easier notation, assume that
the bundleFris trivial and r € is the product connection. ‘e proof of the general case works
the same. Inthiscase, ‘gy=%andB °=1B Id° 1 PO ‘en€x L@2! -ty=%
an orthonormal basig4;s 4+ 4° of ) .! and denote by-4%s £+ 4° its dual basis. Around, write

B'@ = »d+ Yaith the property thatd4*+° is parallel for all+ 2).!. ‘en, for / 2)c en:

B O148./0 1lB IdO UO 1%/0

U Io0414Le 1d 1400 0PV 5041400 10w / 0140
(4.18)

Ald 1480./ (o]

=d 14Py o

In the €rst step we used that the curvature of a pullback connentis the pullback of its
curvature. ‘e third step is the de€nition of U from Eq. (4.16), and in the last step we used
the curvature properties of the tautological connecti® from Proposition 2.59. As before,
denote by 1¢ »* 3 the Hyperkahler triple of complex structures ongy andl 121 o0 1 3 the cor-

responding symplectic forms. ‘e Fueter condition from De€nitin 4.13 foBis equivalent to
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the following equation of elements in 13- geAd 96:

¢ ¢ &
0= gld 1400 = | gld 140 © = | gl g oldgp OO

&1 &1 &1 |

= | g2 g ol4p ©
81

where denotes the Hodge star ongy. ‘e €rst equality is the Fueter equation, the third
equality is Eq. (4.18), and the second and fourth equality aesliralgebra computations that

can be computed in standard coordinates.

Applying to both sides gives

&
0= | 8/\ B 0148’ (o]
81
which in turn implies .
O .
0= | 3/\ 49/\ 4 Ny Bt 01/211.10‘
8¢9eryclic

where» g o%.0 denotes thé 1+1°-component of g - accordingto the bi-gradingon ) !
- ex° induced bw U - g° :) ! ) - en. Onthe other handy g o Vi 2 21, eq*Ad 98
is anti-self-dual by Proposition 2.59, thus

@]
0= | 8/\ 49/\ 4 N Bt 01/2().20"
8+9eryclic

i : L :
Last,0= " g.g.cyciic! 8" 49N & Ny oYy, because this is a sum of forms of typ24° which

must vanish ag has dimensior8.

4.1.3 Gluing Connections ove¥and. <hji

We will de€ne here a further modi€cation of the élder norm.
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De€nition4.19 (cf. Section 6 in [Wall7ForXe;2 R, let

F;-X;C:#C! R
éeﬂc, AL X if AXRP Pe (4.20)
G7! 0
?AC:»X if '@ C”

Note thatF ..xc is not continuous, but that does not cause any problems. For &imé on
#c de€ne the weighted Bllder normsjj jj R as in De€nition 3.15, where we use parallel
transport with respect to the Levi-Civita éénnection inducdxy the metric6, and measure
vectors in6. If no metric6 is speci€ed, we také = 6?;. For the instanton analysis, we need

X211 1P, U2 10:1°U | X, forexampleX= 164 U= 1+ 256will work.

Proposition 4.21(Proposition 6.2 in [Wall7])If 15«8 7! 5 6 is a bilinear form satisfying
i5 6j j 5jj6j, then

ii5 6ij
11,52

o i Siieu 6l
1. %X2,C 11%C 2% C
We have shown thaB °is alk("{‘“ -instanton. It is, however, in general not a,-instanton
with respect tok @ because of thé2-0° part of its curvature. We will later estimate the failure

of B ° of being a »-instanton.

De€nition4.22 For; 2 ! choose a neighbourhood?2 +. I over which 1 is trivial. Use
the identi€cation : B %jy, ! 1 and parallel transport with respect t& ° to get a
trivialisation of B ° around%,; n%.., say on a neighbourhoot, % Using this, we can
view the pullback oB °jy,,,under the projectiort . ! +. asaconnectiorf; 2 B %.°.

‘is de€nition is independent of the choice of; 2 !, and therefore de€nes some connection

"1 2 B °:° where* %is aneighbourhood of the points at in€nit§bn %

Now is the €rst time we cite a non-trivial result from [Wall17]. 'erein, Fueter sections into a
moduli bundle of ASD-instantons oR“*were considered, while in this chapter ASD-instantons
on- gy are considered. At some points this changes the analysis, aeséhesults are reproved
in this new se<ing in the coming sections. At some points, téts carry over without having

to change the proof. ‘e following proposition is the €rst such esult:
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Proposition 4.23(Proposition 7.4 in [Wall7])Eere exist j 0such that for allC2 10») ©:

> o0 T oy L. 2C (4.24)
20C e
»B oY1 00 o 2& and (4.25)
30C
> B o%2 0U o 2¢ (4.26)
40C
Proposition 4.27.Let ¢! . <h]i be an orbifold bundle with connectioisatisfying Assump-
tion4.1! =€x1°,andB:! ! M be a Fueter section.

Een there exists a-bundle cover#cand a connectioncon csuch that

1 c Coj#d”l 1 © "1 0’\0j#cn Her® and

1 c Coj ct* 10 "1 B %B OOjd lix 10"

Proof. Construction of ¢ By ‘eorem4.15we have abundleisomorphism: 1 ! B %jyg.

Let* $obe a neighbourhood dfn % Now use radial parallel transport with respect to
on gand parallel transport with respectto; (the pullback of 1 to a neighbourhood of
9Yn%de€ned in Proposition 4.23) to extendo the neighbourhood *.© . of!, denote the

extension by . ‘e conditions T\ =\ and Assumption 4.1 ensure that this is well-de€ned.

As in Section 3.3.3 we use the symiablo denote the map : %! af 1ginduced by the
blowup map- gy ! C?f 1gon Eguchi-Hanson space. For small enou@he have that the
overlap$ =* 1+ \ d¥* °is non-empty. Use this to de€necby gluing together ¢ andB °

via over$,i.e.
C:: Oj. n Cl*cl' r$°[ B]' Ojd 11*C1' o® © (428)

whereE PP forE2 oj ageo.

Construction of ¢ Letj : #c! » O1¥andj : #c ! » O1¥dbe rescalings of a smooth
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Figure 5: ‘e cut-o, functions j - andj  from Eq. (4.29) for smaQ

cut-o, function such that

jcite @ Oandjcjia 2oy 1°
(4.29)

Jeltae ve2g landjgjia g O

Similar to the de€nition of ; 2 B °jx °, de€ne ; 2 o 1+, o by pulling back
1 2 1 ;° By de€nition of g we have that 1 and ; are both connections ong ‘e

map identi€es ; andB ° by the second point of ‘eorem 4.15. Becauseis an extension

of de€ned by radial parallel transport, and; and _1 are also de€ned via radial parallel

transport, we have that ; = ; as connections ong ageo.

We then have 2 11AdB °jg°andl12 1Ad gjs° such that

B o= 4, fo \ = 1, 1 over$”’ (4.30)
De€ne then
%BL 0 onAkYC
c=, 1.icl,jef onC A (4.31)
g\ onAij "

‘e following proposition follows immediately from De€nition 4.19.
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Proposition 4.32.Letj - andj s as in Eq.(4.29) (Een there exis8 i 0 such that for all
C2 10»)0:

je gu. dic oy 2

e ou, dic ou 2

‘e following proposition is proved like Proposition 4.23 with theproof from [Wall17] directly
carrying over to this se<ing. ‘e estimate for f holds because of the fast decay of the curvature
of ASD connections on ALE spaces, see Proposition 2.45. ‘e eatirforl holds because over
I we havethat ; =\, notjustin the! -direction. ‘atis because ; is de€ned using parallel

transport with respecttd as in De€nition 4.22.

Proposition 4.33(Proposition 7.6 in [Wall7])Letf 2 tAdB °js°andl 2 *Ad gjs°as
de€ned in Eq4.30) (Een there existsj 0such that for allC2 10») ©:

0 0y s p ros O 0 i o 2&and
”1” ?{l)J,ClpC "0 d_ll ggplpc "o Zé

4.2 Pregluing Estimate

‘e goal of this section is to derive an estimate for .~ I€Z . ‘is is achieved in Corollary 4.54

in the general case, and in Corollary 4.57 in the special casesaflutions o)) ’e .

4.2.1 Estimates for the »>-structures Involved

We have constructed a connectiorc that looks likeBt © near! and looks like\ far away
from! . ‘e connection B+ °is close to being a p-instanton with respect t %, so in order to
control the pregluing error, we will need to estimate the di,ereekZ i Z ‘is will be done

in Propositions 4.34 and 4.37.

On the other hand) is a j-instanton with respect tdk, so we will need to estimate the
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di,erence ké‘ k. ‘is will be done in Proposition 4.39.

Proposition 4.34.Eere exist& i 0independent afsuch that
k& k& oo 2ct (4.35)

Proof. We have

k& ke
dCVos, CVou, YL 13, Caq, Cloo ifA CT°
Bz, CVag . 01C°% 2 Gjrg, Pag, Clpp ifCEY A 2010
Vs, CVor, 2% Cj1a, Aaq, Aop if 2c9 A C#5
ifc*> A 2c#°
CGjrz, Cag, Qg 0'C°ACEL

2dt Z°, Cjig, C\3q, C\px ChEo if 245 A (4.36)

§d>> 1 0C01CVhg , CVou® |,  ZY4,
owe ifA C
O %0 ifC A CI9
OMA® G fct® A 2c™°
Ox3, CXe jf2c® A C#5
QWK A% ifCc*> A 2¢45
201CK, A% if2C*°  Ae
where we used Propositions 3.92 and 3.103 and ‘eorem 3.110 is¢twend step. Multiplying

with the weight function 1C, A®° 2 gives the estimate for the%,op—norm, and the estimate for

U :
the ,gcnorm is proved analogously.

Proposition 4.37 Let# cbe the resolution pfe  from Section 3.2. Eere exists Oindependent
of Csuch that

k& k& % e, o 2¢ (4.38)
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Proof.‘is is a restatement of Lemma 3.36. In the case théicis the resolution of) '« we
have thak Zis closed, so the form@j 1.3, C\ 34, C\ 2, from Proposition 3.103 can be chosen to
beO. Furthermore, in this cas€g = * i °, soZ = 0. Using this and that the cut-o, happens

whereZC2 A ZCl, the same proof as for Eq. (4.35) shows the claim.

‘e following estimate holds in general, not just for resolutions of ’e :

Proposition 4.39.Eere exist® j 0independent dfsuch that

# 21
ke K ou emene 10 2€ (4.40)
Proof. Using Propositions 3.92 and 3.103 and ‘eorem 3.110, the proah&ogous to Propos-

ition 4.34.

Last we need an estimate comparil®§ andk in a Helder norm. In ‘eorem 3.110 we had
this estimate for thel * -norm, but not for the gé’p—norm. Going through the proof of 2.26,
one can improve this to ag'éJp—estimate as stated in the following proposition. For the case
resolutions of) “» , this was done in [Wal13a, Proposition 4.20], and the proof esaver to

resolutions of. <hJi.

Proposition 4.41.CEere exist& i 0independent afsuch that

e k& , 2¢&¥® (4.42)
00C

4.2.2 Principal Bundle Curvature Estimates

For our pregluing estimate we will wantto estimate % °. ‘isis done in Corollaries 4.54
and 4.57. Most of the heavy li%.ing is done by the following Propmsi4.43: here we get an

estimate for?  _~ k& © which then is combined with the estimate f&@% k& .

Proposition 4.43.Eere exist® i 0such that for alC2 10») ° we have

1 Akfo o 2C” (4.44)
20C

C
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Proof. We will estimate * .~ k& © separately on some regions:
1. OnA 2Cwe have
. . 1 . 2 H ”
C: Bt o, ch ]_:I.> Jc)f'1]/4>§11 CO )ﬂ.']]./4>djcl\ 1
‘us by Proposition 4.21, Proposition 4.32, and Proposition 4.33:

Cc Bt ° O.Zl-JO,ClA:: 20
i j O'ZL‘Jo,cl'AC 20 jC %Jclk 20 d 1 8‘31(21,06 o

e o o lifI oy 20 LI a0

1 (4.45)
e . 2 s D
N Elllll 0w 2o lc LoRrS o 111)) o ap 2
>” 1” O'ZL‘JO,Clpc 20 dJ C 0.1l-JOp1A3 2@”1” %chmc 20
2¢
where we also used the fact thagljj U ip 2o 2Cif ; i 0, which follows from

De€nition 4.19 usinge 2C

Remember thap g %o k@ = 0by the ASD condition andh g %3 * k%= 0by the

Fueter condition (cf. ‘eorem 4.15). By Proposition 4.23, we tbéore have:

A%
BL © kc 02L-JO£1A3 e

0,
» g oYor " k& e 2

0,
»pt o \ i Vg0 ()ZL:loclpc o ké’ 83’&&: 0 - (4_46)

0/ e g un
\ i %Jplpc 20 kC0 %Jplpc 200 1] Oz%plk e

26

where we again used Proposition 4.21. Last, note that by Préipast.23 and Eq. (4.45)

we have . ou e 2o C because the weight function in this region is uniformly
40C
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bounded from above and below €. ‘us, by Proposition 4.21 and Eq. (4.35):

# % # %
NMkE KEP oU i 2o c U i 2o ke k¢ 0 ap 2 (4.47)
2C”
Pu<ing the estimates from Eqs. (4.45) to (4.47) together, we ge
#
1 C/\kCO OIZU‘O,C:lA: o
0, 0,
Blo/\kéa) U g 20 lgo CO/\ké) 0 A 20
# %
s ke ke® Gz%clpc p.¢]
2¢, ¢, 2cC”
2. 0n2C A 'e+2wehave ¢c= 1, f , 1andtherefore
c= o\, ))f'11/4> B © 1" (4.48)
First,
%
Lo N ke AR SRS
A k%
B ° 1 20 C ou ipc 2
20c'2C Ko (4.49)
B o k&

26

where we used point (ii) of ‘eorem 4.15 in the €rst step and Propition 4.23 in the last

step. We also have

1 onip# %o
B ° 1 ke k¢ Oz%plzc A e
1 ) # % 4.50
B © 1 O.Al‘JOplZC A " o0 kc kc g:é)plzc A " o0 ( )
2C
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where we used Proposition 4.23 and Eq. (4.35), therefore

#
1go 10Akc 02%9120:%"?
1 oA k%
Bt ° 1 C ©OU 1o "o
2002 fe (4.51)
s Ypo 10A1ké kgm 0‘290,0120'%'.20
ZCH
Second,
11 #
e 1% K¢ 0U 12 A 1o
.. .. IEVEE #
21 §j 0 1z po + o0 JIiT 0a2c oz KE 90 g e (4.52)
2¢
by Proposition 4.33.
‘ird,
AL H
\ kC 0‘2%(:120 A ‘e
i\ M Kjjou 12C Y
2002 fe (4.53)

e e #
vl evaac s e K K0y apc p

2¢&

where we used the fact thatis a »-instanton with respect tk as well as Eq. (4.40) in
the second step. So, altogether
1A ké‘ ) VA ké*

0‘2%(:12(; A '@ O'Zlfoplzc Y.

FTAKE oy

1 OAk#
L e 1TKe op e e

2C

by combining Egs. (4.48) and (4.51) to (4.53).
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3.0n" <2 A ' wehave c=\, jf and therefore

c= L Ied Tl S R Ve di e P

‘erefore, we €nd that

c \ Ooct *2 AP ie S5t a2 pco”d\f” 0.4l‘JOQ1I 2 A° jiLj g‘gcl' 2 A°
1.

2 iif .2 i
. 5 le Qa2 AP ) 0U 12 Ao 114 QUr 2 AP
. dig ou

Soct *2 AP ”f ” 03L-Jo,cl' 2 A° ”1” %JCP 2 AP
2@

where we used Propositions 4.21, 4.32 and 4.33 in the secondUsi@p. this, we see
# #

MRS oo Toe VNS ep e

Mk

5

26

U 4.
20,(:1 2 A°

where we used the fact tha¢é =k whereA 'e+2andthat\ isa s-instanton with

respect tak .

We have that .~ k& = 0outside the three considered regions, which proves the claim.

Corollary 4.54. (Eere exist& | 0such that

LN 2¢&1® (4.55)

oU
20C

Proof. First, observe that

c oU 27 (4.56)

20C

‘is follows from estimating . separately on the three regions from the proof of Proposi-
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tion 4.43. ‘en

1 A% o 1 Ak#o 1 A1|eH # 00
C l@C U c kC O'ZL‘JOC 5 c leC kC oU
20C f 20C
1 A k# o l@# k#
ou ou
C C 200 C 20C C C U

00C

ac, ¢l @18

where we used Proposition 4.43 to estimate the €rst summantthélast step, and Eqgs. (4.42)

and (4.56) to estimate the second summand in the last step.

As promised, we now turn to the special case of resolution 6f , rather than general -
orbifolds. We get a be<er pregluing estimate here, which is duethe following two facts:
€rst, we get a becer estimate fort _* ké ° on the resolution of) s , because near the
associative, cis close toBt °, which is close to being a »-instanton with respect td(é”’, and
Proposition 4.37 says th&z  k&is small. Second, the dierendg? kg is smaller on

resolutions of) "= than in the general case.

Corollary 4.57. Let#¢c be the resolution §f’e from Section 3.2. Een there exsts 0 such

that for allC2 10+) © we have

L N e 0 2@ (4.58)
20C
Proof. We €rst prove
1 Akge o 2¢ (4.59)

as in Proposition 4.43, the only di,erence being that Eq. (4.38%gs. (4.47) and (4.50) gives a
factor of @ rather thanG yielding Eq. (4.59). For small enougt2 10»1° we have that

e k¢ ,, 2€? (4.60)
o0ocC

by ‘eorem 3.84. Taking Egs. (4.59) and (4.60) together gives Bgbg) as in the proof of
Corollary 4.54.
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4.3 Linear Estimates

We now arrived in the second step of the three step processldtbnstructing an approxim-
ate solution, (2) estimating the linearisation of the instantequation, and (3) perturbing the
approximate solution to a genuine solution. ‘e estimate in quaion is Proposition 4.77. It
makes use of the normg jjx. andjj jjy. that are de€ned in Section 4.3.1, and the analysis is

analogous to Section 3.2.3.

‘e idea of the proof is this: near the resolution locus of the assative! , the linearisation of
the instanton equation is approximately equal to the lineai®n of the Fueter equation. De-
formations of the approximate solution and deformations oétRueter section live in di,erent

spaces, so some work will need to go into making this statemenetise.

Over the course of Sections 4.3.3 to 4.3.5 we work out an estimat@é linearised operator
modulo deformations of the approximate instanton that comenfrdeformations of the Fueter
section. ‘is estimate is given in Proposition 4.105. Its pro@ very similar to the proof of
Proposition 3.65: we use a Schauder estimate for the linearipedator, which is given in
section Section 4.3.4, together with analysis on the local moRéls - gy andR3  C?%f 1g,

which is explained in Section 4.3.3.

So we have estimates for the linearised operator on instandeformations that come from
deformations of the Fueter section from Section 4.3.2 and orother instanton deformations
from Section 4.3.5. In Sections 4.3.6 and 4.3.7 we combine both amlete the proof of
Proposition 4.105.
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4.3.1 Stating the Estimate

In the previous section, we constructed a connectiog2 ' &®. ‘e linearisation of the

>-instanton equation together with the Coulomb gauge conditiis

IC:I C:l 0 lo1v, Ad o1 0 lo1ne Ad o
@ ©0 d a @p2
D87 L °
(0_| d c ll@c A d c0

<« « K T

cf. Eg. (2.103). We introduce the following notation for the camttpart and the quadratic
part of the ,-instanton equation: fol) = tbe@®@ 2 ¢ O loig «Ad © de€ne4dcas well as

&d0° 2 OgeAd P via

1 N o
c0 leC# s dC,Ob

=1 n~gko 1d 0rEo d b, 1 1507 0V4 L0 »be@s (4.61)
z ) iz }
=Ac =:&c10°

In this section we will study the operatorcand derive an estimate for the operator norm of
the inverse ofl ¢ ‘is operator norm will be taken with respect to the complicatd norms

il lix andjj jjy, taken from [Wall7, Section 8], which we will explain now.

We need a way to decompose elements itt#Ad @ into a part coming from a section of

B 1+ M °, which is nonzero only near the gluing area, and a rest:

De€nition4.62 ‘e section Bgives rise to a connectioB ° 2 1B °°py ‘eorem 4.15. A
section5 2 1B+M? analogously de€nes an element)ig o !B % = 106AdB ©°°, say
8 5. Use this to de€ne

lc: B+Mol  ligpeg o
(4.63)

57! j 85"
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Further de€necc: #cAd ! B+M°for02 1i#eAd LandG2! by

O 1
lCCOOlG) = m.B\iGOCA) VOIGOCA)J'D/G Ne (4.64)

A %

where” runs through an orthonormal basis df+ M °g. with respect to the inner product
Hc']ciag- Here the integral is taken with respect to the metric induckyi Zrestricted t0%.

Let furthercc:=]ccand[¢c:=1d CTc

‘e following proposition states that ]c and cc are bounded operators. ‘e proof of these

estimates is similar to the proofs of Propositions 3.45 and a8[Wall17, Proposition 6.4].

Proposition 4.65.For; landX2 Rsuchthat U, Xj 3and;,6 XY 1thereisa

constan® j 0such that for allC2 10+) ° we have

ilc5jj ov  2C* "jj5jj ou and

jieij ov 267 0 0y a4

Proof. ‘e €rst inequality is proved like Proposition 3.45.

To prove the second inequality, note that by Proposition 2.50heee forG2 ¢~ 2 1+ M %
jBNjgp 211, A 3

for a constant. depending onG 2 ! and on”. Becausé+ M % is a €nite-dimensional

vector space we can take= maxjpjj , =12 to get the estimate

0=
1

j8Aj6°1/° 221, R 3”/\”6‘1/"-!2 (4.66)

for a constanRindependent of. By compactness df, we can assum2to also be independent

of G2 ! . By measuring irbZinstead of6.°we get from Eq. (4.66):
j8jgw = C1j8 g  2€:C, @ *jjjggur2” (4.67)

For some interval R andG2 ! we denote%. = fD2 % : AID? 2 gand similarly for
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. . 4 . -
lasf 19%.. By abuse of notation we ert90|6go for volﬁoc/oj-o/G 2 "9 and similarly forvolg.

1

%;

m. JC 8/\| GgoVOIGE{f)

1

% jOjgel] & 8" Jgu VOlg

¢
2 ———F % VOl jjOjji1 oo i iy 2uges
%ssqn/alcs @3 XCTTC I :-x;cG(’?”A”!ZGl
. 2 e g ixcVOlee 1101 2 g i1l s

Boec 11, >
2vo|654{10/g- 01422 C 1 jjojj, L el 2
5 ¢ E L volka (i -
. C o’ ixcVoleg 101 g )11 g

tarf 19%,0c 11,
26 ji0li 1, e 2y
1 p.

C
2 . Cac, 4 X R dA jj0jj Lo 1Ml 2

B

1

.2 CAXC, A RA 01 it gy

(4.68)

Here we used Eq. (4.67) in the second step. In the third step, wielsead from integrating

over%;,q.c 11,10 integrating overag,4.c 1, We could do this becaus&on %corresponds to

the radius functionAon a, anng‘]%”l_,C 1, d GSjO/%ﬂ_,C y! 0 measured ir62 asC! 0by

Egs. (3.93) and (3.100). ‘e lacer implies that we can changtﬂego to volsa by Proposition A.4.

We used the de€nition oF ..xcand changing into sphere coordinates in the fourth step.

We now treat the two integrals separately.

1 p_
pC

0

: . ¢
1C, A% 3R dA= 1A, CF
: : X,; Y2, X, ;%A C
e
e A, C
11X, %A C 1 Xy, (4.69)
ncXi 1l X252 12

2% 1,
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where we used a computer algebra system to compute the integrthe €rst step and used
X, ;, 1Y 0in the third step. For the second integral we €nd that

1 1

AXic, o Nda | At XdA
C

h = i

A" p

Pe

c (4.70)
C C;'Z X2 1e2 é’ 2

261t

where we used the factthat; X 1 Oto estimate the €rst summand in the last step, and

the fact that; 1to estimate the second summand in the last step.

Combining Egs. (4.68) to (4.70) we get
1

0ejc 8"igevolge 267 jj0jj 1 il 2" (4.71)

%
[f e 2 4+ Mg, then

e 871tjc 8Maizge hBM1r8Ma o
4.72)
éI’BAf 8’\2i! 2°6’f’.

where means comparable uniformly i€ Here, in the second step we used the fact that
volﬁoc/oj-o/d3 = dVO'eg/OjO/G and H‘11~°-A21~°i6? = CZH‘11~°-’\21~°i6<1/0 for ~ 2 %. Equation (4.72)

implies that if* has unit length with respect to the inner produdic-]ciego, then
iMiizg  2CY (4.73)

Becausgj jji 2.6 andjj jj1 .+ @re norms on a €nite-dimensional vector space, they are equi-

valent, and thus
iPiing 2C7 (4.74)

Combining Egs. (4.71), (4.73) and (4.74) and recalling the da€oitccfrom De€nition 4.62
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gives
O 1
jiccjjia o [0 B vl 1 gy

N

2& jjOjjs
‘e estimate for the jj jj v Helder norm follows analogously.

We are now ready to de€ne the norms which we will use to prove esites for the operator

ol
De€nition4.75 Denote byXc and Yc the Banach spaces™™Vi# 1 © o Ad @ and

CUiger 0 1o Ad @ equipped with the norms

0, =C*"[@ w ,Ccd . and
e (4.76)

0y =C*% [0 o ,Ccd o
c 2XC
respectively.

Using these norms, we can now state the main result of this et

Proposition 4.77 Let# cbe the resolution e  from Section 3.2. LBbe the Fueter section and
\ be the ,-instanton used in the construction @f(cf. Proposition 4.27).Bfs in€nitesimally
rigid and\ is in€nitesimally rigid and irreducible, then there ex&tsonstan? j 0 which is
independent aEsuch that for small enougband allg 2 ¢ © lowgeAd &

0 2190, (4.78)

= Xc = Yc

Unfortunately, we are restricted to the case whe# is a resolution of) ' . ‘e reason
for this is that in this case we have improved control over the-structureief as proved in
Proposition 4.37 and ‘eorem 3.84. ‘e proof of the proposition e&tends over the rest of this

section.
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4.3.2 Comparison with the Fueter Operator

Given an elemenE 2 1B+ M?©° one may do two di,erent things to it: either embed it into
LigeAd @ €rst, and then apply ¢ Or apply the linearised Fueter operator €rst, and then

embeditinto 1#c~Ad .

Compare this situation with Section 3.2.3: there we consideredlamentin °t1 °and could
either embed it into 21# & €rst, and then apply #.. Or we could apply | €rst, and then
embeditinto 2#. In that case it turned out that the two are the same up to a smalbg

cf. Proposition 3.55.

In this new situation this still turns out the be true with a sirtdar proof. In [Wall7], Fueter

sections into a moduli bundle of ASD-instantons &f were considered, and the following
proposition was proved in that se<ing. In this chapter ASDstantons on g are considered,

but the proof works essentially the same way. ‘at said, we do neeldt€Z  k Zis small. ‘is

is true on resolutions of ‘e by Proposition 4.37 and ‘eorem 3.84 but not proved for general
resolutions of »-orbifolds. Consequently, we only know the following two propogihs to

hold on resolutions o ’» .

Proposition 4.79Proposition 8.26 in [Wall17])Let# cbe the resolution ' from Section 3.2.
(Eere exists a constadtj 0 such that for allC2 10)° and allE2 B+ M?° the following

estimate holds:

iHdE JedeFEj oy 2€jjHj w” (4.80)

‘e following proposition is a consequence of Proposition 4.7%at is proved like Propos-
ition 3.61. It essentially provides the estimate for the inversd @bn the spacdmcc

LigeAd &

Proposition 4.81.Let#c be the resolution §f’s from Section 3.2. Bis in€nitesimally rigid,

then there exists a constahf O such that for allC2 10»)°and allE2 1B+ M?° the following
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estimate holds:
jj8j »v  2jjcd ddHj ou” (4.82)

4.3.3 < Model Operators on R® - gqandR3 C2%f 1g

As before, let g be the Eguchi-Hanson space. To prove the estimate in Prdjpos#.77, we
will compare the operatot ¢ with the linearised instanton equation in the model case of a

pulled back ASD instanton oR® - gy.
Properties of the Model Operator

Let be a €nite energy ASD instanton on abundle over- gy. ‘e in€nitesimal deforma-
tions of are then governed by the operatd from Eq. (2.31). Denote By, : R® - gy !
- en the projection onto the second factor. By a slight abuse ofatiin we denote the pull-

backs of and toR3 - gyunder?. - by and aswell.

Denote by! be the linearised »-instanton operator from Eq. (2.105). We can de€ne the map

1oo¥i 12 ) RO 2

e ) - en, Which takes al-form, dualises it, and plugs it into the

product »-structurei from Eq. (2.27). It mapdGto | g Using it, we can relatX and!

as follows:

Proposition 4.83(Proposition 2.70 in [Wal13b])Under the identi€cation
1 o%i 1?24 R32. ) -Ed

and accordingly

0 11R3 - epAd ©° 01R3 e ? EH»JR =) - EH ) -e® Ad Yi°

the operatot canbewri'enag = | where
G _ © X2
hele@= thrgel gergh | ¢ gg® and  =: &
81 X 0

« |
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Moreover,

a
Il = gs,: & (4.84)

Recall the weighted lllder normsjj jj ou 0N R3 - gy from De€nition 3.40. ‘e following

proposition is then a consequence of Lemma 3.38:

Proposition 4.85Proposition 2.74 in [Wall3b]Let€ be an ALE space. L¥¢2 1 3-(°. (Een
02 Yisinthekerelof : Y1 %Y ifand only ifitis given by the pullback of an element

of the! 2kernel ofX toR3 €.

Comparison with! ¢

We now explain two map&°andB: the €rst for "zooming into" the resolution locus of the
associative , the second for "zooming into" the gluing region 8t Fix a point- 2! , a scaling
parametei3 2 Z, a gluing paramete€2 10+) °, and two positive real numbens;* » de€ning

the scale of the region into which to zoom in.

Let
+ 0 = TG2%:f 13 2 IMIEXPL ji 1yunos®ACPCY g %o
o cpec = fIGeP2R% - 1G2 1 meCopCodlOY e’
Here we implicitly used an identi€catiop-! ' R?3to haveexp. acting on! men°3. Choose

this identi€cation so that it maps the orthonormal basigl~%s 41~% 41~° 2 ) | from Sec-
tion 3.3.3 to the standard basi(G*dG+dG 2 11R3 ° Fix an element 2 Fr. of the
unitary frame bundle ofa around~ 2 !. It induces an isometry gy ' %, and assume that
5is chosen so thalt g is sent tol gjo, under this map for82 f1.2¢3g. ‘en, for small ny, we

de€ne

%.%x % I+ % C1~o
neCeppCC " Npemnp;
(4.86)

1GP 7! P g1 exp. 1cBe- 5 °° 2 %”
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HereB7! exp.'BGdenotesthe unique shortest geodesic frefw exp*C&in! , andPg;i exp_ 1ces
denotes parallel transport if6with respect to  along this curve, cf. the paragraph before
Eqg. (3.98). Far small enough, this is a di,eomorphism. ‘e reason for this de€nibn is the
following: because of our choices of identi€cationsl ' R3and% ' - gy we have that
1 Y% 1j %010 |0 js the standard p-structure onR® - gy, for alll 2 - gy, cf. Eq. (3.98). L&
be a tensor €eld of valenck¥?s @ i.e. in index notatior? lower indices and@upper indices,

on +,;’f1m.cl~°. We then de€ne

Bf00 = B0rige = &7 @ %o oo (4.87)

which is a tensor orf ..c.»cc ‘€ point of this is the following proposition:

Proposition 4.88.Eere are constan®s; 0andn j 0such that for smalCthe following holds:

forallmerp 2 10rrPandforallg2t 0 loig. o

0PIy
'C“ Q !'lxl* % o

é.:
n1+Cep+CC
G

(d1447]
Eg'(} Q f'U 1% %

o
;. X npeCenpeCC

0

1+r:’/o. 100 °® (489)

11
TieXiC T h1m

Q ;:;(J;C1+F°/%E,61~oo ¢ (490)
where means comparable independentl§ &furthermore, using the Hypeatter isomorphism
% ' - gyinduced by5, we can view the connectiBh © over% as a connection oveky,
denoted by 1B~°°. (Een
p-p- 1 pP_P_ p_
e CeC o Ce ”
10 B Lo EHsleoi o0 2C0 w g 1mo0 (4.91)

CU 1,9% . 1_00 1oXi
+ Op_1~
2%C '{c’? o

Proof.We €rst prove Eq. (4.89): foi0»1° 2 * . .c.pccthe mapdige # (cf. Eq. (4.86)) is an
isometry for the metric®16gs  6110° 0N) 10,0tR3 - g1° and the metric 0n) w0 %induced

by 6. Because of the scaling fact6 ? @from Eq. (4.96) we have that
B0 19 6. = GO 200190 (4.92)

‘emap %is not, in general, an isometry away from this one point, @gp. need not be an

isometry. ‘us, EqQ. (4.92) need not hold in points di,erent fromt0» [°. However, using Taylor
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expansions in a neighbourhood efin ! for 0 and6§§°we get

P ¢ o ”

> 1 1 100,30
G- =1 = et o
¢ P %™ ngecepecC’ DR A &

Now Eq. (4.36) and Proposition 4.41 give the claim for the méffiénstead of6%, which is

Eq. (4.89). Equation (4.90) is proved analogously.

Now to prove Eq. (4.91): as in Eq. (4.92), we see th& B, A Y 1'pC
PP 1 PP
! Bt 091@ OCE: ¢ ! ? EH5 1Bl~oo§.ocf: Ci_) =0 (493)

And ¢ B °=011°0n%, so

p-p- 1 p_p-
' BZ"C? ¢ Lo EHSlBlmqf@C )

. P=
O e fD2% ADPY 1" Tg°

. Oe (V/, i . P
2jj»c B OL/41JO'ZL.’X;leozo/u:AlDPYl- Qe

(4.94)

s T oji . P
2”0” OﬁxclfDZ"/alAlD’VPngO” c B 9] O:tloyclfDZO/a:AlDonpQ]o

p_.. ..
2 Gjojj O'lL.chlsz%AlDf’Yl-p@°
p

2C0 = P
= i fD2% APV Og°

where in the third step we usedc B ° = O1° to estimate the second factor a?sf: ‘is

was possible because the weight function is boundeé)lﬁgon fD2% :ADP Y 1'p®.

Equation (4.91) now follows from using Taylor expansionsgoﬁi"c/", andBaround~, and com-
paring6®andé as in the proof of Eq. (4.89).

We now de€neB': letrny j O, j iz j O, and

0 = fG2af 1g:f 1@ 2Imiexp. ji pepes®ers Y AC Y o

X meCopCopoc = (TGP 2 R3 C%f 19:G21 meCopC3npeCY jdI % Y npe @y’

Just as in the de€nition of )%, o we implicitly used an identi€cation-! ' R3so that4®is

sent tod@ for 82 f1+23g. Recall also the framB that sendd gto | gjo, for 82 f1e2e3gunder
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the isometry- gy * % induced by5. We see from Eq. (3.97) tr‘lagoo is sent tol"gj,. under

the isometryC%f 1g'tasf 1g° induced by5. For smaliye i 1y, the map

a.x a | +@ 1.0
neCepr CegrCC* nerpers;,C (4.95)
1GeP 71 P §7! exp. 1CBq3151I 00 2af 1g

is a di,eomorphism, whereP 2 denotes parallel transport ia with respect to the connection
£2 from Proposition 3.92. Because of our choices of identi€catjoh ' R3andtasf 1g° '
C2f 1gwe havethat *° 1j 810 |°jsthe standard ,-structure onR3 C2f 1g, foralll 2

C?%f 1g, cf. Eq. (3.96). We now de€i@just as we de€ne®®in Eq. (4.96), only exchanging

“for 2: for a tensor €eld of valencet?« @on e 0 Set
100 = @:3&“”“3100 = é ? @ ao 0" (4.96)

In the following we use the norms from De€nition 3.40. So, the riima T does not mean
zero boundary condition, but means that the weight functionpgars with powers oD and
0, Uin the two summands of the de€nitiofj jj ou. We have the following analogue of Pro-

position 4.88:

Proposition 4.97.CEere are constan®s; Oandn i 0such that for smalCthe following holds:

forallmerny 2 101, 3 2 Cehand forall02 0  loige O

S ¢ 4.98
XC3C - (l) 1* r?l-c-lz-c-c-cco = ! ;1-X;C1+ni°f‘2°f‘e = ( )

a *nerp*rg .y ) °
F ;'XC%’l'C- Q U 1% a o é Q ;'-.>L2;Cl+nai.r~,2.rB 1~00 (499)

0 n1+Cep+Cen*CC

where means uniformly comparable @and

. %A?X if A 1-p'c
= =
;o XC

_§A?=XC< if Aj 1Pe

Furthermore, using the Hypefer isomorphis® ' - gyinduced byb, we can view the connec-

tionB' °over% as a connection ovegy. By Eqs(2.41and(2.43)this connection is asymptotic
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to a fat connection, say, on the orbifoldC?f 1gwith monodromy representatioh GEen

1
*nerpers *nerperg
! CQ @C~ ! ?C2 Oq.CN Q OU 1. a 100
2xc Tnime (4.100)
2ing, np, 1GNP 0 0 ®

14 a 1~
1XC N1

where?c2 : R® C%f 1g! C?f 1gdenotes the projection onto the second factor.

Proof. Equations (4.98) and (4.99) are proved as in Proposition 4.88.

We now prove Eq. (4.100). Adapting Eq. (4.94) to the &22 % : ngeCY AID® Y np»Qwe

get

1
0eirrp 0°frIp
@ B o smeBIM0

O'ZL-Jx;leDZO/O_ :n3°dA1D°Vn2°Q]° (4.101)

2% 0 2 11D206 g CYAIDPYinpe G0

Wehave ? _ 51B~° o  =0d ?..,° *°byEq.(2.43)andthe factthatwe Uée 2
0;0

in our de€nition of moduli space (cf. Proposition 2.45). ‘us, f@2 % with nseCY AGCY ',

i 1h, | i OP—CE% . o2
B 1o s 1o o Bl @ 2Gn (4.102)

C~

e

Combining Egs. (4.101) and (4.102) we get the desired Eq. (4n20) ot ;.. *~°- Equa-

tion (4.100) then follows like Eq. (4.91) by taking Taylor expansiof0, 6% andBaround~,
and this time comparin@®2 andé?: using Eq. (3.93) and Propositions 3.99, 4.34 and 4.41.

4.3.4 STauder Estimate

On. <hji we have the estimate

0 w 2 MO oy, O|1

from standard elliptic theory, e.g. [Bes87, Section H]. With soaudditional work, we get an

estimate for weighted norms oR® - g4 (see [Wall17, Proposition 8.15]), and can then glue
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these two estimates together to obtain:

Proposition 4.103Proposition 8.15 in [Wall7]XEere exist® i 0 such that for allC2 10»)°

the following estimate holds:

4.3.5 Estimate of O

(4.104)

‘e following proposition is the crucial ingredient in the constuction of solutions to the in-

stanton equation:

Proposition 4.105.CEere exists a constadt 0 independent dfsuch that folCsmall enough

andforallg2t 0  loigeAd @ the following estimate holds:

O, 2 '@ o . TD

2XC

Proof. Assume not, then there exi€g! 0andQgsuch that

0 1o
-8 !11%(33
im !'g0 ou =0
a1 - 2XQ
lim €g0 =0
g1 &= 11.><;Q3

It follows from Proposition 4.103 that

1:U 2"

1XC

(]JOO

LetG 2 #¢ such that

F 1xdG 0 1GP = 1"

(4.106)

(4.107)
(4.108)

(4.109)

(4.110)

(4.111)

Without loss of generality we can assume to be in one of three fwilog cases, and we will

arrive at a contradiction in each of them.
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Case 1\0g goes to zero near and on the neck", i.e. ifg 2 #¢ such thatAgtlg® ! O, then

Foaxcle 05 ! 0.

Without loss of generality, the sequené&® accumulates away frorh, i.e.limg; Ag'G° i O

(see Fig. 6).

Nt Y

Figure 6: Blowup analysis away from the associative is reduceth¢écanalysis of on. .

Without loss of generality assume th@&! G 2. <hji, where we used that. n!°hli  #g,

cf. De€nition 3.111. Now, using a diagonal argument and thelAf&scoli theorem, we €nd

1er 2

that a subsequence @f convergesto a limip 2 111, nloefisAd (°in oo -

Denote by
cy:. ! . ehli the quotient map, and denote b an arbitrary li%. of, i.e.c)'&° = G. By
passing to a subsequence we still he@e! & for some& 2. . Denote als® =¢;0 2

10 loipg o 4o

Equation (4.108) implies that this limit satis€Ee® = 0on. n!.We can exten® to all of.
as a distribution, and we €nd thatthen 8 = 0on. inthe sense of distributions. By elliptic

regularity, e.g. [Fol95, ‘eorem 6.33], we have th& is smooth.

Lastly, we note that Eq. (4.111) impBe&s ° < 0. By assumption is in€nitesimally rigid and

irreducible, which is a contradiction.

Case 2. \'e sequence does not go to zero neat ", i.e. there existsg 2 #g such that

G~ 9 1,butF 1xd~ 05~ 9 O.

Without loss of generality assume that this is the sequed@&®, i.e. limg; glﬁ@ngo Y1

(see Fig. 7).
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N R3£ X

Zj

Figure 7: Blowup analysis near the associative is, by meanhefmapB®, reduced to the
analysis of the pull-back of the ASD instanton de€ned® 1~ °°to R® - gy

ForOg=1heQP 21 0 loigeAd & let

PP P~p
%G Gqpoo 300G Gino »
=8 f 1G0;G kh of 1G°:G 08
Proposition 4.88 then gives
o! 9 i I 1(3,00 = !
18 13t,JX1* 1{0pc§.1.pcgo Zand all{n 2. EH5Blf & 18 0'2fo 0’
Without loss of generality we can assunfeG® ! ~ 2 !|. By a diagonal argument and

the Arzeb{Ascoli theorem, we havd,! 1 21t 0  101R3 _ - .Ad? 5B 1~00jp
=8 = EH

1er2
loc

22 Ker! 5gif 1~ o 11 e BB 1~ 000, Equation (4.109) implies that= 0 like in Case 1 in

, satisfying! > 5B - 0l = 0. Proposition 4.85 implies thadt = ?. 2 for some

the proof of Proposition 3.65.

‘is contradicts Eq. (4.111) as follows: denote Bly® R3 - g4 the sequence corresponding
P, P
to !GP under the mapal.gfléo.

Igis 0, and the- gy-coordinates are bounded by the assumption thiatgy glAélGB" Y1.

‘en !¢ is a bounded sequence, as tRé-coordinate of all

‘us we can assume without loss of generality thatg! | 2 R2 - gy, and €nd that

Fi ol X711 0= Bllilm Ficle * gt &

by Proposition 4.88, which is a contradiction 1o = 0.

Case 3.\'e sequence does not go to zero on the neck’, i.e. there exisi2 #g such that

A~! 0,GMg~!1 ,butF 1xd~° 0y "9 O.
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Assume without loss of generality that this is the sequer&®, i.e.limg; Cs‘lpgle’ =1 and
limg1 Ag'G® = 0(see Fig. 8).

N R3£ R*

Figure 8: Blowup analysis in the neck region is reduced to thelgsia of the fat »-instanton
de€ned on the pull-back of the framing at in€nity de€ned Bf 1~ °°to R® R*%.

Let
* n? suchthan,” | Oandn®+AglGP ! 1
* ny suchthamn,”+A5G® ! Oandn+G!1
To ease notation, we writep instead omf andng instead ofn;EP in what follows. As before,
write Og=the Q21 0  loigeAd @ and set
1.=1 0 — 'pG’nz’rB]_bso. ’pG'nZ'rBlO 0
=8~ 28.]8 = q’l.f 1G0G @.f 1GG 8

P
and denote byl ¢° the sequence iR® C?f 1gcorresponding toGP under the mayi, 1%;?23.

Equation (4.111) implies
L) FH i 2e (4.112)
Proposition 4.97 and Eq. (4.110) imply that

FaBa™™ . . 2e (4.113)
1e C-lg-C-lg-CC

Proposition 4.97 and Eqg. (4.108) imply that

Fixdo _ B0 ., ! Oas8!l ~ (4.114)
0 1'pC-I2-C'I3-CC
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We will now conclude the argument as in case 2. ‘e only di,erence is tit, as it stands, the
pointsl gtend to in€nity. Because of this, we cannot directly concludetthdimit of 15 would
be non-zero. ‘at is why we rescale byijl gj €rst. By passing to a subsequence we can assume

without loss of generality to be in case 3.1 or 3.2 as below:

Case 3.1jl g 1-pG. In this case let
o= B8P = jla' Tl Zeild **jld° 1s (4.115)

Equation (4.112) implig1l gejl g°) A *t gojl gj° = & g*j1 g°) i 2, and Eq. (4.113) implies that
onthe sets 3101 @ » 4106 e Gj°n 4100 npej Gj°%which exhausR3 t C2f 1gnf0g°,

we have:

%@_&Al X itA 11°C jlg°

2" (4.116)
Se g A 17T jige

(J)-'Ul 310.1.p@ » 410pejGgjon 4100rge GjO V4P

Here is how to arrive at the exponents of the weight functionrf% in the areaf!DeE 2

R3 C2%f 1g: AP 1:Pe jlsg°g

BALXCl g™ =1 jId° | JlXA“‘C‘
=1jlge ZaAlXC‘

and ZA- *C was bounded by Eqg. (4.113). ‘e exponents of the weight functiom the area
fiDeE2 R3 C2f 1g: AP | 1:Pe jlgi°gand also for thel-form part & are computed
analogously and precisely give Eq. (4.116). Now, because of Etp)4ve can use the Arael
Ascoli theorem and a diagonal sequence argument to extract @ limon R3 1 C2%f 1gnfoge.
We denote the pullback under the quotient m&y * C>nf0ge ! R3 t C2%f 1gnifog°by
the same symbol and end up with a tensbr on R® 1 C? n fOg°. Again, by passing to a
subsequence we can assume without loss of generality that eéraone of the following two

cases:

Case 3.1.f:GjI8j I Oas8!1
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In this case, the areBD2 R3  C?%f 1g: AP j 1P jlgi°gdisappears a8! 1 , and from
Eq. (4.116) we get the estimate

1A X 2" (4.117)

- é’U°21R3 1 R4nng°°

‘e element 1 de€nes a distribution on all oR3 C2 and is smooth by elliptic regularity, e.g.
[Fol95, ‘eorem 6.33]. As in the proof of Proposition 3.65, we get &h-bound forl . ‘us,

by Corollary 3.39, we get thdt is independent of théR3-direction. Because of Eq. (4.84) we
have thatl is the pullback of a harmonic form of mixed degree (in degréesd1) on C2. So,

1 is harmonic and bounded 06?2 by Eq. (4.117), therefore vanishes by Liouville's theorem.

‘at contradicts Eq. (4.112).
Case 3.1.2[:)Gjlgj I ~2101° as8!'1

In this case, a%oer passing to a subsequence, Eg. (4.116) giestrtiate

é;péx if A 1en
2" (4.118)

51 ALXf A} e
ST gY1R31 c2nfoge

Here is how to obtain this estimate: the assumptigr@lgj I ~implies thathjlgj i 2 at
least up to a subsequence. ‘us, we hav& jlg Y 2, and Eq. (4.116) becomes
% < P
g if A 117 C jlg°
Se X ifA] 17T jiIg”

211

é‘Ul 310.1.p@ » 410psjGgjon 4100rge GjO 4P

Here, taking the limit8! 1 gives Eq. (4.118). In this case, we arrive at a contradiction as i

case 3.1.1.

Case 3.2l g i 1-pG. In this case let

;= %80 = Clgh "t jlg Ze Cjl g™ jlg® 1s (4.119)
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‘is gives us the following analogue of Eq. (4.116):

é@_geé XCXjlg 2 ifA 1P jlgP

?@_ﬁ»x if Aj 1-1pf: jlg®” b

é-‘U 1 3106e

2" (4.120)

© » H0mGion 410me G

We can extractalimiil asincase 3.1and are, without loss of generality, in one of theviang

two cases:

Case 3.2.19@ jlgi!l as8!1 . Inthiscase we have the estimate

1 ALK 2 (4.121)

- é’u'21R3 1 R4nf09°°
and arrive at a contradiction as in case 3.1.1.

Case 3.2.29@ jlgg! ™ 2101° as8! 1 . Inthis case we have exactly Eq. (4.118) and can

conclude the proof as in case 3.1.2.

4.3.6 Cross-term Estimates

In the beginning of Section 4.3 we explained the idea for the probthe linear estimate.
Namely, we want to separately consider two parts of the lineatiga of the instanton equa-
tion: the €rst part near the resolution locus of the associatly which is approximately equal
to the linearisation of the Fueter equation. ‘e second part ithe linearised operator modulo

deformations of the Fueter section. ‘ese parts were estimaté Sections 4.3.2 and 4.3.5.

However, it is not true that the linearised instanton operatoeatly decomposes as a sum of
these two operators. We can take a deformation of the Fuetetisa, apply! cto it, and then
project it onto the part that doesmot come from a deformation of the Fueter section. In an
ideal world,! cnear the resolution locus of the associative is exactly equahmlinearisation

of the Fueter equation and the result@s In reality, we do not have that the result 3 but we
have that it is small. ‘at is Eq. (4.123). ‘ere is also, roughly spedkg, the converse of this,

which is Eq. (4.124).
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‘is proposition is the analogue of Proposition 3.77 from the &mate of the Laplacian on
the Generalised Kummer Construction. A crucial di,erence teien the present case, i.e.
Proposition 4.122, and Proposition 3.77 is that we now get a worgss-term estimate for
cd d ¢ For the Laplacian, we had a factor of rougt; while now we have a factor of roughly
1. ‘e reason for this is that ccand are very close to commuting. ‘e reason they do not
exactly commute is because of a cut-o, that happens far awagnfr! . For the linearised
instanton operatot ¢ the situation is di,erent: the connection cwas de€ned to look liké
already very close td. ‘us, cd canddgFccare far from being equal, which manifests itself

in this worse estimate.

Like the results from Section 4.3.2, this proposition has beervgdoin a slightly di,erent
sexing in [Wall7]. Again, the proof given therein carries avi® our situation if we only have

thatl€% k Zis small, whichis true on resolutions §f’ by Proposition 4.37 and ‘eorem 3.84.

Proposition 4.122Proposition 8.29 in [Wal17])et# cbe the resolution pfe from Section 3.2.

(Eere exists a constahi 0such that for aliC2 10) ° we have
it ddHi ey 2€ VijiEj w (4.123)
as well as

cddd o 2CY [D w7 (4.124)

10C

4.3.7 Proof of Proposition 4.77

Proof. Assume that the claim does not hold, and I[gt! 0,042 * ©  01#eAd £ such

that Oy, =1,but !, ! 0.

We €rst prove that

G? [ 1}-’x-cg! o (4.125)
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We have that
0, 1 ! 0
[ GYs 11L-J><;Cg Qs[ GYs OzL-qu;

ol cO0 Ta! ol O
[c!claOs W CG al c0g o

! I 6CaO, Te! ol cO,
[e'd oy . la'eCals oy . Calalals oy
.. .. —_— U
[a!d@ oy .liliiov [¢!aTels oy . C Y cglelal; ou

°2 U 2U
2 [g'dD O'Zl‘JX;CB> 2822 cds wu, 6 [QQB B

2 [¢!dD o L01¢¢21 U o138 .X2
2X@

where we used Proposition 4.105 in the €rst step; we usgd [g = 1in the second and
third steps; Propositions 4.21 and 4.65 in the fourth step; amp®&sition 4.122 together with
iidj oy 22 in the €%oh step. Multiplying the last line wit[gx'z, the last two summands
tend to zero as they are bounded by positive power€de €rst summand tends to zero by

the assumption! g ! 0.

It remains to prove that

Q CQQB 1sU I O” (4126)

We have that

dm @ cgl; w lim G Cg!gleCels ou
8“1m@ cdd ouv, ddD ou

. U ”
8||1m@ cdd o, 2C [D w

10C

where we used Proposition 4.81 in the €rst st€jg,, [ = 1in the second step, Proposi-
tion 4.122 in the third step. Here, the second summand tends tto g Eq. (4.125), and the
€rst summand tends to zero by the assumption0, vo! O Altogether, Og x.! O which

is a contradiction.
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4.4 %oadratic Estimate

We state an estimate for the quadratic for&-from Eq. (4.61), where we denote its associated
bilinear form by the same symbol. ‘is statement is taken from [\&17] and the proof can be

directly adapted to our slightly di,erent se<ing.

Proposition 4.12{Proposition 9.1 in [Wall7])XEere exists a constadt 0 such that foIC2
10=1° we have
e (O
(&0 0° oy
ZCU [(Ql ou [CQZ ou -, [CQl ou CCQQ [o2] (4-128)
1sX.C 1sX,.C 1sX,.C
. €y ou [d_)z L €Ch; ou €y ou
and
Cc&c0;°0° oy
2¢cY [(Ql U [CQZ ou [ch ou cd, ou (4.129)
1sX.C 1sX.C 1sX.C

. €O o [y OlUX.C>CCC<_)1 ou €y ou "

4.5 Deforming to Genuine Solutions

In this subsection we will complete the construction ob-instantons and show that in two
favourable situations the ,-instanton\ and the Fueter sectioBcan be glued together to a

o-instanton on# ¢ ‘e favourable situations are:

1. ‘e Fueter section is a section of rigid ASD-instantons (cEorem 4.130). ‘is implies,
in particular, that the Fueter section is in€nitesimally rigith this case the mapcfrom
De€nition 4.62 is just the zero map, which leads to becer estingadéthe quadratic part

&cof the instanton equation.

2. We are in the special situation of Eq. (4.58), where we resbilie orbifold) "s .

‘e main reason we are con€ned to these two favourable scenasiis the following: in Corol-
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laries 4.54 and 4.57 we proved a pregluing estimate with a goodep@fiC*18in the general
case and a good power &f in the case o) s , roughly speaking. In Proposition 4.127 we

stated an estimate for the quadratic part of the instanton oger which in particular implies

2 ‘2 i}
&c'0°0° , C VX 0« 05

To apply the inverse function theorem, we would need the bad povZ? Y **2 from this

estimate to be absorbed by the good power from the pregluingneste, but the pregluing
estimate is only good enough to do this in the case of the orbifold . If the Fueter section
is actually the constant section of a rigid ASD-instanton, thee have a be<er estimate for

the quadratic part of the instanton equation.

<eorem 4.130. Assume now that the sectiBis given by a rigid ASD-instanton in every point
G2 !, and assume that the connectionsed to de€ne the approximatginstanton ¢from

Proposition 4.27 is in€nitesimally rigid.

Eere exist® | 0such that for smalCthere exist§. = 0k 2 ¥ 0 11Ad ©Posuch

that €c:= ¢, Ocisa p-instanton. Furthermor@ satis€es0. s  2&18
1X,C

eorem 4.131. Let# ! . Obe the resolution of the orbifal® =) 7e from before. Assume
that the connectioh used to de€ne the approximatg-instanton ¢ from Proposition 4.27 is

in€nitesimally rigid and thaBis an in€nitesimally rigid Fueter section.

Eere exist® j 0such that for smalCthere exists a@.= 10k 2 *1 0 11Ad ©°such

that €c:= ¢, Ocisa z-instanton. Furthermorgsatis€es 0 4 _ 2€ Y,

‘e proof of the theorems will use the following lemma:

Lemma 4.13ZLemma 7.2.23 in [DK9Q])Let- be a Banach space and)let - ! - bea

smooth map with 10° = 0. Suppose there is a constapt 0 such that

DG )~ii 2yiGj.ji~iieie ~i”
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Eenif~ 2 - satis€egj~jj 15, there exists a uniqu@2 - with jjGj g solving

(Ee unique solution satis€g§ij 2jj~jj.

Proof of Eeorem 4.130.the case thaBis a section of rigid ASD instantons, we have that the

projection mapccis zero. ‘erefore, Propositions 4.103 and 4.105 give

0 v 210 o 7 (4.133)
1XC 2XC
‘is means that
et U171 O 101#cAd ®o 1 U171 O 101#cAd o

is injective. Becauskcis formally self-adjoint, it is also bijective. Denote its inverdy! 1.

Furthermore, usingc= 0, and thereford ¢ = Id, Proposition 4.127 gives

&20°0° ov  2CY 0 ov 0y ou (4.134)

1-XC 1-XC

Sef)c:=&c !l We then have

)1 )l v = &My L el Ty MY o

X,C 2X,C
pondi s D T D NYR s DA [ B
=1 =2 Yixe =1 =2 Tixc
2cY 1t o 0 o
=1 =2 Tixe =1 =2 Tixe

2¢cY 1, 1, o 1, ou 1, ou v

axc 1 axc’ T 2XC
where we used Eq. (4.134) in the €rst inequality and Eq. (4.433& ilast inequality.

For4cwe have

jidi oy 2€
by Corollary 4.54. For smal} we have thaG*18 Y CU-*2 ! due to our choices ot and X
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in De€nition 4.19. ‘us, by applying Lemma 4.132 to the maig we get a solutioriL. to the

equationl;, ) 312 = A4cfor smallG satisfying the estimatel. oy  2&18,
20C

Le<ng O = !Clllcc’, this means preciselyc!0? , &0 = 45 s0€c= ¢, Ocisa »-

instanton, andd.satis€es 0. v  2&!8by Eq. (4.133), which proves the claim.
1:X.C

Proof of Eeorem 4.13%s in the proof of ‘eorem 4.130, se) c:= &c ! Cl. ‘en

)AL )AL |

— 1 1 1 1
= &M 1, P Ll 10! lzovc

= X2 [ &1 111 I 1120! lll’! 1120 ou

- 2XC

,Cect 1y et 1 e

2CY %2 [d My 1% ou  [d ML 10 o

1-XC

s [d 1111 lzo ou Cd 1111 5 lzo oU
cd M1, 10 [d 111, 10
s 1 =2 ou =1, =2 0V

cd M1, L0 4 cd M1, 10 o

5

s 2c” [d 1111 L% ou [d 1111>120 ou

1:X:C 1-X,C

. [d 1111 1,° o . cd llll, 1,° o

B

1 1
cd ", L° o [d ;. L° Ollfx;c
,Ced ML 12 o od M1, L0 o
ZCU 2 %2 CX [CI 1111 lzo oU [CI 1111> 120 oU
1XC 1XC
LGP0 MLy 1% eu oed My, LY oy
>é.X-2 cd llll L° o [d llll, 1° ou
1XC
,é cd lll]_ 1° w cd lllla 1° o
o B T P B O L

2CY 2 *2ji1y Lojiyiila, Laiiye

2CY 2 X2jjly Lajjy, flajive., i dadive "
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Here we used Proposition 4.127 in the third step, and Propasii.77 in the second to last

step.

We have
iAdiy. 2€Y%
by Corollary 4.57. Applying Lemma 4.132 as in the proof of ‘eorem @A 5Bows the claim.
4.6 Anexample Coming from a Stable Bundle
4.6.1 Review of the Resolution df) 3 K3e
Recall the ,-manifold constructed in [JK21, Section 7.3]: consider theisext
= folgelpe I ZP?: 1§, 1S, 15=0g CP?

and letc : - | CP? be the double cover oEP? branched over . ‘en - is a complex K3
surface with a Hyperlehler triple of Kahler formsl <l «| | cf. [Huyl6, Example 1.3]. Gn
we can de€ne the following two maps: €rst, the méjx - ! - which swaps the two sheets
of the branched cover. Second, there are two li%ds - of the complex conjugation map
f :CP21 CP2 One of these two li%os acts freely on the other one does not. Denote the
li%o that does not act freely on by V: - | -, which has€x!\° = ¢ 1tRP% ' (2 ‘e

Hyperkahler triplel «| I can be chosen to satisfy

Ul =1 o Ul =1 -« ul

VI = | o VI =] vi =17
LetUe Vact on) via

UG GG =G Gr GPVGrGG= GG G
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Denote =HJeV.‘en Ue\V)3 - I )3 - preserve the product -structurei on) 3 -
de€ned by equation Eq. (2.27). Furthermdetl® = 4 (1 ©° €xiw=4 (1 (2, where
the (%-factors are the double cover @xif © = RP2 CP2 ‘erefore, | = €xP[ €xi\P°
admits a nowhere vanishing harmonizform, namely the parallel-form in the ( *-direction
of each component. ‘us, this orbifold is of the type considerdd Section 3 and its resolution
#cl1 )3 -2« admits al-parameter family of »-structures with small torsion, inducing

metrics6g which can be perturbed to torsion-freey-structures inducing metricc

4.6.2 A Connection on the Orbifoldt) 3 K3° coming from a Stable Bundle

We will now make use of theSO*3-bundle over CP? from Section 2.5.2. To this end, we
€rst recall its de€nition. ‘e tangent bundle of CP? is a complex vector bundle of rank
2, which induces arSO'3°-bundle by Proposition 2.90. ‘e Levi-Civita connection on

is a Hermite-Einstein connection by Proposition 2.85 and ingkian ASD instanton on by
Proposition 2.90, denoted by. We denote the standardshler structure onCP? by * «6 =
6re | °, wherebesis the Fubini-Study metric. ‘e pullbackc is then an ASD instanton on
the bundlec overt-¢c 6°, but it need not be ASD with respect to the Calabi-Yau metric
on- . We will show in Corollary 4.136 that  also carries an instanton with respect to the

Calabi-Yau metric.

Proposition 4.13%Lemma 9.1.9 in [DK9Q]XEe bundlec s stable with respect ta
Corollary 4.136.e bundle s stable with respect to the Calabi-Yahter forml

Proof of Corollary 4.13Benote byl* = ¢ | the pullback of the Hhler form for the Fubini-

Study metric onCP?to - . By Yau's proof of the Calabi conjecture we have that= 1", 8amq

forsomeq :- ! R.Inparticular] andI*are in the same de Rham cohomology class.

By Proposition 4.136, is stable with respecttb . ‘e K ahler form enters into the de€nition
of stability only through the de€nition of slope. But slopes do ndtange when switching
betweenl andI® as they are in the same cohomology class. ‘us is also stable with

respect td
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We also have the following:

Corollary 4.137(p. 348 in [DK90]) Denote by : | CP?theSO-3°-bundle oveCP? from
Section 2.5.2. Let. - ! CP2 be the branched double cover from Section 4.6.1 with Calabi-Y

metricB Een the bundle

"=¢c =f1GeP2- ¢ I =cl@g (4.138)

admits an in€nitesimally rigid and unobstructed ASD insian” with respect t6:

Proof.‘e bundle c¢ is stable with respect td , and therefore admits a unique Hermite-
Einstein connection by ‘eorem 2.83. ‘us, we get an S&3°-bundle " with ASD instanton "
by Proposition 2.90. Unobstructedness and in€nitesimal rigidif " are proved in [DK90, p.
348].

Pulling back’ " under the projection onto the second factdt,: )3 - | - gives a
bundle with »-instanton by Example 2.98. Denote the bundle hyand the connection by
\. ‘e connection "“was in€nitesimally rigid, and the following proposition impliesat\ is

in€nitesimally rigid:

Proposition 4.139.Let be an ASD instanton on a bun@@ver a compact-fold. with de-
formation operatoX. Let? :)2 . | . be the projection onto the second factor. (Een the

o-instanton? is in€nitesimally rigid if and only if is in€nitesimally rigid and unobstructed.

Proof. ‘e pulled back connection ? isa »-instanton by Example 2.98.

We €rst prove that? is in€nitesimally rigid if is in€nitesimally rigid and unobstructed. We

will use Lemma 3.38 to derive an analog of Proposition 4.85 in thisact se<ing:

Suppose 2 1 0 1) 3 . Ad? 9F satis€esl, 0=0.‘en 0=1!, 1, 0 =1 ps,

°0 by Eq. (4.84), where s an elliptic operator of second order. Becausis compact,
it has bounded geometry, and is uniformly elliptic and its coescients and their €rst
derivatives are uniformly bounded. So, by Lemma 3®8, independent of the 3-direction.

By Proposition 4.83) is the pullback of an element ilKerX or the pullback of an element
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in KerX . By assumption, is in€nitesimally rigid (i.e. KerX = 0) and unobstructed (i.e.

KerX = 0), which proves the claim.

‘e converse direction follows directly from Proposition 4.83.

‘e gluing theorems ‘eorems 4.130 and 4.131 require a connectiom the orbifold,?) 3 - % .

‘e following proposition states that \ can be viewed as such a connection:

Proposition 4.140.Eere exist lifdh: ¢! oofUandVp: ¢! oofVsuch thaU(z, = ch) =
Id, U\ =V,\ =\, Wy being the identity ovegx*LP, and\p not being the identity ovegx*\P.

‘is relies on the following construction on - :

Proposition 4.141(Eere exists a li¥: *!  "ofVsuch that? = 1d,V "= " andVnot being

the identity oveEx\P,

Proof. Denote byf : CP2! CP?the conjugation map and =) CP? as before. We can then

view df as a complex linearmap! ~ coveringf . De€ne

(4.142)
E F7! dF dfEe

which is a complex linear map coverirfg: CP?! CP?2,

‘e manifold CP?2 is Kahler, so the Levi-Civita connection'® on is a Hermite-Einstein
connection. ‘e connection r ¢ on induces the product connection on ~, which is
again a Hermite-Einstein connection. We have thais an isometry, s is preserved by*

in the sense of* f r f=r

Let V be the 1i%o of* to ¢ c ,ie.V:c c ! ¢ c coveringV:- ! -

and satisfying?V = f? , where? : c c ! " is the obvious projection map. ‘en

fr =r impliesVicr °=cr

If ? 2 CP? andDye 3° is a unitary basis of -, thenidf 1D%df 1D,°°is a unitary basis of f 150,

and writing elements of the trace-free unitary endomorphisnariale ug'c ° in these bases,
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we see that acts as

®

1 0 1
« a «
®g ©
oot I®

8 0 8 0
« - « -
@ 02 @ 02
- g - &
0 8 0O 8

« - « -

‘us, Vinduces a map o' = SCO'uglc ©°° that is not the identity overEx!\° and preserves

the ASD connection”on “induced byc r according to Proposition 2.90.

Remark4.143'is only works because we have a li%o of complex conjugatiérn: CP?! CP?
to in Proposition 4.141. It follows from Proposition 2.92 that no li%. tf exists, so it is

important to change fromJ12°-bundles toSCG3°-bundles in this example.

Remarld.144Without the minus sign in Eq. (4.14ﬁwould notdescend to a map dCtuglc  °°.

‘atis because the map Id:uplc ©°! uglc ©Ois orientationreversing, becausglc °

has odd rank.

Proof of Proposition 4.148.bundle “from Eq. (4.138) is the pullback of a bundlrom CP?2

to - , thus we have the natural map

w: " A

1GeD7I 1V D

coveringU:- | -.‘ebundle qisthe pullback of"to) 3 -, and we can canonically
extend the mapd and the map\’) from Proposition 4.141 tog and €nd that they have the

required properties.

Because of Proposition 4.140, the connectigie€nes a connection on the orbifoli 3 K. .
‘e holonomy of \ around the four( ! 1)3 _oe €xedbyUis trivial, and the holonomy

around the four(! (?€xed byV has order2.

152



4.6.3 <e Resulting Connection on the Resolution ofl) 3 K30«

Corollary 4.145.For smalfG there exists an irreducible-instanton with structure groupCt3°

on the resolutio#cof?) 3 - % |

Proof.We make use of thé&kinvariant and V-invariant connection\ from Proposition 4.140

over?) 3 - oe

Next consider the product connectiong on the trivial SO-3°-bundle over Eguchi-Hanson
space- gy. ‘e holonomy representation at in€nity of the product connedbn is trivial, i.e.
do: ! SO, dp* 1°=1d,thus ¢4, = ,where 4, was de€ned in Eq. (2.43)¢ is in€n-
itesimally rigid, which can for example be seen from the dimensiormula in ‘eorem 2.52,

so for each copy of 1)3 _os €xedbyUwe have that

(" U Fr oojir e "

G7! »15¢P» oValfor 52 Frg, D2 1 (% arbitrary

is a well-de€ned map, parallel, and therefore a Fueter section.

Likewise, let o3 be the ASD instanton over gy from Proposition 2.54. ‘is is de€ned on a
Ut1°-bundle and we view it as a reducib®CG-3°-connection. ‘is has non-trivial holonomy

doi: ! SO atin€nity, thus g, (. Foreachcopy of* (2 €xed byVwe €nd that

2 H n
(1 (¢! Fr o(t (2 v gy

G7! »15¢P» o ¥a%0r 52 Frg,D2 1 (° arbitrary

is a Fueter section. By Proposition 4.140, the connedtiand the eight Fueter sections satisfy
the necessary compatibility condition from Proposition 4.27us, ‘eorem 4.130 applies and
gives a »-instanton €con#g ‘e connections €cconverge td on compact subsets dj 3

- % n€xt °asC! 0. ‘e connection \ has full holonomySO-3°, as otherwise the Fubini-
Study metric onCP? would need to have reduced holonomy. ‘us €c has full holonomy for

smallCand is therefore irreducible.
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A Appendix

A.1 <elsometry Group of Egu’i-Hanson Space

In Proposition 2.5 we de€ned the Eguchi-Hanson spagg and proved that it admits a Hy-
perkahler metric6.. -. ‘e following statement about the isometry group of- gy is a standard

fact, but we could not locate a proof of it in the literature, so \weovide it here:

Proposition A.1.Forany. j O,

1. the isometry group of the meBic. on- gyis isomorphic t&G+3* O,

2. the group of isometries preserving the complex structivresd byt i: “is isomorphic to
Ut2oef 1g,

3. the group of isometries preserving the three completusésiinduced Idyi: ° ;: °, and

[o]

I ;: respectively is isomorphicS@ 3.

Proof.‘'e space - gy containsSO3 (g 1» fOg as a unique minimal surface which must be
mapped to itself by anisometry. ‘us, an isometry must preseevthe distance to this minimal
surface, i.e. preserve thR g-factor of R ¢ sg» SO3. It thus sueces to €nd the iso-
metry group of SO3° endowed with the metrici411002 1421002 1431002 for someAj O,
where 4's £+ £ were de€ned in Proposition 2.5. As! 1 , this metric converges towards
the metric induced by the round metric oq®. ‘rough this, an isometry of - g induces an
isometry of R%f 1g, which has isometry groufsO*4%f 1g ' SO3° SO2. ‘is shows
that Isomt- gye6..° SO3F SOIP, where the €rstSO3° acts by le%. multiplication, and

the second acts by right multiplication on th8CG-3°-factor of - gp.

A calculation in coordinates showsomt- g 6. . = SO OO0 SO3FP SO3P, where

OXy SO
Q@let 02
7! - &

0

« -
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Regarding the second point, a computation shows that the sabg of isometries preserving
the complex structure induced bb/f ° and is exactlysO3® SO2. ‘is is isomorphic to

Ui20«f 1g, which is seen from the split short exact sequence
1! SU0f 1g' SO3P ! Ur20ef 1gFetU11°‘ so2! 1 (A.2)

‘e last point is again a computation in coordinates.

A.2 Measuring Vectors in Nearby Metrics

In Section 3 we de€ne several di,erent metrics on a manifold, foaeple6%, 6%, andéf .

‘ese metrics are all near to each other, in a suitable sense. Irc8en 4 we sometimes switch
between these metrics: an estimate with respecGZbgives rise to an estimate with respect
to 6%, provided the two metrics are near enough to each other. To becjse, we use the

following result:

Proposition A.3. Let+ be a vector space andéetndé be inner products on.

1. LeE2+ suchthatifg Xandjé 6js n, thenjgg X, Xn

2. Let 2+ suchthafl jg Xandje 6jg n, thenjl jg X, Xn

When integrating, we have the following estimate for switchgrfrom one volume form to

another:

Proposition A.4. Let" be an oriented manifold, a6, Riemannian metrics dn. (Een

1 1 1

5 volg 5 volg i5j jvolg volgj vol (A.5)

forall5:" | R with the property that all the integrals in E@.5)are de€ned.

A.3 Rigidity of Finite Subgroups

Let be acompact connected Lie group andbe a €nite group. In Section 2.4.2 we tooko

be a €nite subgroup o8U2°, thereby acting on 4. An orbifold -bundle over % isa -
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bundle%over “together with a li%o. of the action ofto % In Eq. (2.43) we extended elements
of to elements of the orbifold gauge group%,. We could do this, because we assumed
the li%o of to act in a standard way o4 see Eq. (2.40) for the precise statement. In other
words: we used that up to gauge equivalence, orbifold bundles ofer are determined by
the homomorphism ! %" induced by the li%o of to % ‘e proof of this fact was given

in Proposition 2.39, but used that the homomaorphisnh is rigid, in some sense. We make
this rigidity precise here and prove that every €nite group ancompact Lie group is rigid. ‘e

proof is taken from [Bad21], where also the generalisation to {wmmpact is explained.

De€nitionA.6. ‘eset Homt! ¢ ©° I 1 endowed with the restriction of the product topology
on I 1is called therepresentation variety
De€nitionA.7. Let be a -module. Amapdl 2 ! is calledcocyclef

I'WX=1¢ W 11X forallWeX ”

We denote the set of cocycles Byt « °©. Amapl 2 ! is calledcoboundanyif there
existsE2 such that

1W=E W Eforallw2 ”

We denote the set of coboundaries byt « © /11 « o ‘e €rst cohomology of with

coeecients in is

11.0:/11.0' 11 4 o

<eorem A.8 (Point 3 in [Wei64]) Fix a group homomorphisf: ! . (Ee group is
acting ong through the adjoint representation, and together ittis gives the structure of a
-module. If 11 «g° = 0, then there exists a neighbourhod Homt « © of Ain which each

element is conjugate #pi.e. for alB2 * there exist6 2 such that

B=is A1 A"
Here,geA1: ! denote let translation and right translation oprespectively.
De€nitionA.9. Fixc : ! Aut! ° Anaene action of on is a group homomorphism
g: ! A ! ° Wesaythaft is thelinear partof the asne action q if for all W2  there
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existsky 2 such that

qWP =cWP, 6 KgforallE2 ”

Lemma A.10Lemma 2.1 in [DX16])Ee mapc : ! Aut®! °endows with an -module
structure. We havelt « © = Qwith respect to this-module structure if and only if every asne

action with linear part has a €xed point.

Corollary A.11. CEe €nite group with any -module structure satis€es! « © =0,

Proof.Letq: ! A, ! °be an asne action. ‘en the element

o)
= qLEP 2
X2

satis€eq)V§1- © = - for allW2 . By Lemma A.10 this implies thatt « ° =0,

Corollary A.12. (Ee representation varieijom? ¢ ©° has €nitely many connected components.

For each connected componetitere exist&2 Hom! ¢ © such that

=*p=fs A1 AI62 ¢

Proof. Because is €nite and is compact we have thatlom! ¢ ©°is compact and therefore
has €nitely many connected components. Fix sofm& Hom! « ©° ‘en * A is compact

because itis the image of under the conjugation map. ‘us,* is closed. On the other hand,
* Ais open by ‘eorem A.8 together with Corollary A.11. ‘us, each conected component of

Hom! « ©js of the form* 5for someA2 Hom! « °©,

A.4 Removable Singularities

In De€nition 2.47 we de€ned a map from the moduli space of ASD conaestover the
Eguchi-Hanson spacegy into the moduli space of ASD connections over the one point com-
pacti€cation of- gy. ‘ere, we used that every €nite energy ASD connection that ide€ned
over the complement of a point can be extended over this pointis’ statement was proved

for Yang-Mills connections, not just ASD connections, in [UR]8'is is called the Remov-

157



able Singularities (EeorefBecause our map between moduli spaces should be a map between
framedmoduli spaces, we need a version of the Removable Singularitiesfrem that respects
framings. ‘is is Proposition A.14 and we then apply it to our spzal case of connections over

- gy in Corollary A.17.

<eorem A.13 (‘eorem 4.1 in [UhI82], ‘eorem D.1 in [FU91]). Let be a compact Lie group
and be a connection on the triviatbundle over *nf0g, 2 1t 4nf0g®  ©, whichisin
12 _and anti-self-dual with respect to a smooth metric brif

" ldoc

1

jt OjZVl.
4nfog

then there exists an injective bundle homomorphis#n 4 n f0g° 14 and a smooth
connection®2 1 4 osychthat %= over “nf0g
Theorem A.13 asserts existence of an extension 6yand the following proposition asserts

that this extension is essentially unique up to gauge:

Proposition A.14.Ee datab and °from (Eeorem A.13 are unique in the following sense: if

b*H0%: 1 4nfoge ! 4 and & 902 14 ogresychthatb® O=1pd@ 00=
thenthemap® 1b® 1:1 4nfoge 1t “4nf0g°® can be extended to a continuous map

4 1 4

Proof. We view the connections ® %%n the trivial bundle 4  as elementsin 11 4P,
and view the gauge transformatiol® : b® *asamap nfOg! , denoted by Without
loss of generality assume that®0° = °20° = 0, which can be arranged by composiig
with a suitable gauge transformationof*  .‘en  %=B C%on “nf0g, thus

0= Qe =|mBh@dBE
(€ 0]

and by taking norms we see thdimg odB'@ = 0. ‘is implies that limg oB'@ exists: if
the limit does not exist, then we have two sequenc@s@’ I Osuch thatlimg; BGP <

limgy BLC??’. Without loss of generality assume th@%’can be joined by a line. ‘e mean
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value theorem then gives a sequenge2 “nfOgsuch thatjdB\gj! 1 , which is a contra-

diction.

‘erefore limg oB@ exists and de€nes a continuous mBp *! , which in turn extends
p%0 1 p® 1

Viewing the mapb from ‘eorem A.13 asamapb: “4nf0g! |, the limitlimg ob*® does

not exist in general. But in important cases it does, accordiogte following proposition:

Proposition A.15.Under the conditions of Eeorem A.13, assume ikdtounded, viewed as an

elementin 1t 4nf0Ogge. Viewingpasamam: “nfOg! ,we have that the limit
lim b'@ 2
G0

exists.

Proof. Without loss of generality assume that®0° = 0. ‘en,

b “®@= 1@forallG2 *nfog’ (A.16)

Taking norms in Eq. (A.16) and usibg 2@ =b 1@ dbl@, %@ we see thatbis bounded

on “4nf0g, and we can conclude the proof as in the proof of Proposition A.14

‘is can be applied to the case of ASD instantons on ALE manifolds:

Corollary A.17. Let%be a -bundle over g4 and denote by 2¢ 2 the set of ASD-connections
on%as in Eq(2.43) Let ¢, 02 3% 2 then there exists an orbifoldbundle® over-"&y
together with a connectior? 2 194" and an injective bundle homomorphiem%! % such
thatb = , 0. Denotebyp: % | + the chart of'gyaroundl from Proposition 2.37.
Fixing a trivialisation ofoover+ n f1g induces a trivialisation ¢f¢ over+ and we can views

asamap- nflg! . Een the limiimg; b'@, wherel 2 -"g, exists.

Proof.‘'e assumption o, 02 as¢ 2 means thab = O!A 20, measured in the ALE metric.

By inspecting how the inversiorb acts onl-forms, we €nd thatd = O!1°, measured in the
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orbifold metric, and Proposition A.15 gives the claim.
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