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Abstract

‘e resolution of the � 2-orbifold ) 7• � , where� is a suitably chosen €nite group, admits a1-

parameter family of� 2-structures with small torsioni C, obtained by gluing in Eguchi-Hanson

spaces. It was shown in [Joy96b] thati Ccan be perturbed to a torsion-free� 2-structureei Cfor

small values ofC. Using norms adapted to the geometry of the manifold we give an alternative

proof of the existence ofei C. ‘is alternative proof produces the estimate
�
�
�
�ei C� i C

�
�
�
�
� 0 � 2C5•2.

‘is is an improvement over the previously known estimate
�
�
�
�ei C� i C

�
�
�
�
� 0 � 2C1•2. As part of

the proof, we show that Eguchi-Hanson space admits a unique (up to scaling) harmonic form

with decay, which is a result of independent interest.

More generally, there exists a construction of torsion-free� 2-structures on resolutions of a

more general class of� 2-orbifolds, given in [JK21]. We explain a construction of� 2-instantons

on these manifolds, which includes the case of� 2-instantons on resolutions of) 7• � as a special

case. ‘e ingredients needed are a� 2-instanton on the orbifold and a Fueter section over the

singular set of the orbifold. In the general case, we make the veryrestrictive assumption that

the Fueter section is pointwise rigid. In the special case of resolutions of) 7• � , the improved

estimate forei C � i C allows to remove this assumption. As an application, we construct one

new example of a� 2-instanton on the resolution of¹) 3 � K3º•Z2
2.
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1 Introduction

In [Ber55], Berger presented a list of groups which can possiblyoccur as the holonomy groups

of Riemannian manifolds. However, constructing manifolds which realise these holonomy

groups remained a wide-open problem for decades. A milestone in this direction was the for-

mulation and proof of the Calabi conjecture in [Cal54, Cal57] and[Yau77, Yau78] respectively.

Among other things, the proof of this conjecture gives a powerful characterisation of man-

ifolds admi‹ing a metric with holonomySU¹=º, giving rise to a wealth of examples of such

manifolds. For the exceptional holonomy group� 2, such a general characterisation remains

out of reach, and even the construction of examples persists to be a challenging task.

‘e €rst compact examples of Riemannian manifolds with holonomy equal to� 2 were con-

structed in [Joy96b] by resolving an orbifold of the form) 7• � , where� is a €nite group of

isometries of) 7. In [JK21], this construction was extended to resolutions of orbifolds of the

form . • � , where. is a manifold with holonomy contained in� 2, but not necessarily ƒat, and

� is a €nite group of� 2-involutions. In [Joy96b] and [JK21] this was done by constructing � 2-

structures with small torsion, and subsequently perturbing them to torsion-free� 2-structures.

‘is perturbation made use of a general existence result for torsion-free� 2-structures that

holds on all7-manifolds. An immediate question is: how far away is the torsion-free � 2-

structure from the� 2-structure with small torsion? ‘is is important in applications, such as

the construction of associative submanifolds and� 2-instantons. In Section 3 we give a par-

tial answer to this question by proving an improved estimatefor the di‚erence between the

torsion-free� 2-structure and the one with small torsion for the� 2-manifolds from [Joy96b].

‘e main result of this section is ‘eorem 3.84:

‹eorem. ChooseU 2 ¹0•1º and V 2 ¹� 1•0º both close to0. Let# C be the resolution of) 7• �

from Eq.(3.31)andi C 2 
 3¹# Cº the� 2-structure with small torsion from Eq.(3.33). Œere exists

2 ¡ 0independent ofCsuch that the following is true: forCsmall enough, there exists[ C 2 
 2¹# Cº

such thatei = i C¸ d[ C is a torsion-free� 2-structure, and[ Csatis€es

�
�
�
�[ C

�
�
�
�
� 2•U•2

V;C
� 2C7•2� V”

10



In particular,

�
�
�
�ei � i C

�
�
�
�
! 1 � 2C5•2 and

�
�
�
�ei � i C

�
�
�
�
� 0•U•2 � 2C5•2� U•2 as well as

�
�
�
�ei � i C

�
�
�
�
� 1•U•2 � 2C3•2� U•2”

Here, the normjj � j j� 2•U•2
V;C

is a weighted H•older norm. ‘e norms in the last line of the theorem

are ordinary, unweighted norms. ‘e group� is a €nite group acting through� 2-involutions

on ) 7. In [Joy96b, Joy00] the estimatejjei � i jj! 1 � 2C1•2 was shown. In this sense, the

estimates from ‘eorem 3.84 are an improvement. ‘e theorem hinges on an estimate for the

inverse of the Laplacian acting on2-forms on the resolution of) 7• � . ‘e crucial idea necessary

for obtaining this estimate is to split2-forms into a part that is harmonic on the4-dimensional

€bres orthogonal to the singular set of) 7• � , and a rest. ‘e 4-dimensional €bres are subsets

of Eguchi-Hanson space- EH, and the proof of ‘eorem 3.84 uses detailed knowledge of the

harmonic forms on- EH. ‘e space - EH admits a harmonic2-form a1 that can be wri‹en down

explicitly and comes from rescaling the metric. In ‘eorem 3.26, we denote the Laplacian on

- EH acting on?-forms by� ?•6¹1º , and we prove thata1 is essentially the only form with decay:

‹eorem. For_ 2 ¹� 4•0º, the! 2
2•_-kernels of� ?•6¹1º acting on?-forms of di‚erent degrees are

the same as the! 2-kernels, namely:

Ker¹� 6¹1º : ! 2
2•_¹� 2¹- EHºº ! ! 2

0•_� 2¹� 2¹- EHººº = ha1i •

Ker¹� 6¹1º : ! 2
2•_¹� ? ¹- EHºº ! ! 2

0•_� 2¹� ? ¹- EHººº = 0 for ? < 2”

Here! 2
2•_¹� ? ¹- EHºº denote the usual weighted Sobolev spaces on asymptotically conical man-

ifolds. ‘ey consist of, roughly speaking,! 2-sections with2 weak derivatives that decay like

A_ asA! 1 , whereAis a radius function.

Using the idea from [Joy96b], some millions of� 2-manifolds can be constructed, see [Joy00,

p.322]. However, using Be‹i numbers alone, only around100of them can be distinguished.

‘is prompts the question: how many of these� 2-structures are deformation equivalent?

An idea that may potentially help to answer this question comes from gauge theory: in the

seminal article [Don83], the moduli space of anti-self-dual connections was used to de€ne in-
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variants of smooth4-manifolds. Following this, a rich theory of gauge theoretical invariants

and their relations to other manifold invariants in4 dimensions was developed. ‘e article

[DT98] then recognised some of the4-dimensional phenomena in dimension7, for example

the existence of a functional whose critical points are instantons. With great optimism, one

may hope to recreate the four-dimensional success story in dimension7, and use the moduli

space of� 2-instantons to de€ne deformation invariants of� 2-manifolds. ‘ere are analytic

di•culties present in dimension7 that were not there in dimension4, and therefore the study

of � 2-instantons has mainly focused on the construction of examples. ‘e examples that have

appeared in the literature so far are [Wal13a, SEW15, Wal16, MNSE21, LO20, LO18]. In Sec-

tion 4 we add to this as follows: we prove a gluing theorem that can be used to construct� 2-

instantons on the� 2-manifolds from [JK21]. Such a manifold is a resolution of a� 2-orbifold,

obtained by taking the quotient of a� 2-manifold. by a� 2-involution ]. ‘e resolution # is

obtained by gluing Eguchi-Hanson spaces over the singular setof . •h]i . Given a� 2-instanton

\ on . •h]i one may be able to construct from it a� 2-instanton on# . To do this, one needs a

connection over the glued in part. One way to get such a connection is by taking a suitable

family of anti-self-dual instantons over Eguchi-Hanson space, sayB. Our main result is that

one can glue together\ andBto a genuine� 2-instanton if Bconsists of a rigid instanton in

each €bre and they satisfy a simple compatibility condition (cf. ‘eorem 4.130):

‹eorem. Assume now that the sectionBis given by a rigid ASD-instanton in every pointG2 ! ,

and assume that the connection\ used to de€ne the approximate� 2-instanton� C from Proposi-

tion 4.27 is in€nitesimally rigid.

Œere exists2 ¡ 0 such that for smallCthere exists0C = ¹0C• bCº 2 � 1•U¹
 0 � 
 1¹Ad � Cºº such

that e� C := � C¸ 0C is a� 2-instanton. Furthermore,0Csatis€es
�
�
�
�0C

�
�
�
�
� 1•U

� 1•X;C
� 2C1•18.

Here,U 2 ¹0•1º must be a small number andjj � j j� 1•U
� 1•X;C

denotes a weighted H•older norm. We

use this theorem to construct a new� 2-instanton on the resolution of¹) 3 � K3º•Z2
2.

‘anks to the improved estimate for the di‚erence ei � i C on resolutions of) 7• � from the

aforementioned ‘eorem 3.84 we have an even stronger gluing theorem on these manifolds.

In this case, we need not require that the sectionBis given by rigid instantons, only that it is

a rigid solution of the Fueter equation (cf. ‘eorem 4.131):

12



‹eorem. Let# ! . 0 be the resolution of the orbifold. 0 = ) 7• � from before. Assume that the

connection\ used to de€ne the approximate� 2-instanton� Cfrom Proposition 4.27 is in€nitesim-

ally rigid and thatBis an in€nitesimally rigid Fueter section.

Œere exists2 ¡ 0 such that for smallCthere exists an0C = ¹0C• bCº 2 � 1•U¹
 0 � 
 1¹Ad � Cºº such

that e� C := � C¸ 0C is a� 2-instanton. Furthermore,0Csatis€es
�
�
�
�0C

�
�
�
�
XC

� 2C2� 2U.

Here,j j � j jXC
denotes a complicated composite norm. ‘e basic idea of this normis the same as

in the previous chapter: it consists of a part that is harmonic in the Eguchi-Hanson directions

in the gluing region and a rest, and the two parts are scaled di‚erently.

Unfortunately, no genuine examples of these more general ingredients are known. ‘at is:

all known rigid Fueter sections are actually sections of rigid instantons. ‘erefore, we were

unable to use this theorem to produce new examples so far.
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2 Ba‡ground

2.1 Riemannian Holonomy Groups

Let ¹"•6 º be a smooth,=-dimensional Riemannian manifold and denote its Levi-Civita con-

nection byr .

De€nition2.1. Given a piecewise smooth curveW: »0•1¼ ! " from W¹0º = Gto W¹1º = ~,

denote the parallel transport induced byr alongWby PW : ) G" ! ) ~" . For? 2 " we then

de€ne theholonomy group of6 at ? as

Hol¹6• ?º = fPW : Wsmooth loop based at?g � End¹) ?" º”

‘e following are standard properties of holonomy groups, see e.g.[KN63, Chapters II and

IV]:

Lemma 2.2. 1. Œe groupsHol¹6• ?º andHol¹6• @º are isomorphic groups for all?• @2 " .

2. For all? we have thatHol¹6• ?º preserves the metric on) ?" , i.e.Hol¹6• ?º � $ ¹) ?" º.

Because of the this, we can €x a point? 2 " and an isometry) ?" ' R= and speak ofHol¹6• ?º

as a subgroup of$ ¹=º and call it theholonomy group of¹"•6 º, denoted byHol¹6º.

Figure 1: Parallel transport on the sphere( 2 � R3 endowed with the round metric. ‘e tangent
vector+ is transported along the yellow curve, resulting in the vectorPW¹+ º. ‘e holonomy
group of( 2 endowed with the round metric isSO¹2º.

Not every Lie group can appear as the holonomy group of a Riemannian manifold. A list of

possible holonomy groups was given by Berger:

14



‹eorem 2.3 ([Ber55]). Suppose¹"•6 º is a simply-connected manifold of dimension= that is

irreducible and nonsymmetric. Œen exactly one of the following holds:

1. Hol¹6º = SO¹=º,

2. = = 2< with < � 2, andHol¹6º = U¹< º � SO¹2< º,

3. = = 2< with < � 2, andHol¹6º = SU¹< º � SO¹2< º,

4. = = 4< with < � 2, andHol¹6º = Sp¹< º � ($ ¹4< º,

5. = = 4< with < � 2, andHol¹6º = Sp¹< º Sp¹1º � ($ ¹4< º,

6. = = 7 andHol¹6º = � 2 � SO¹7º,

7. = = 8 andHol¹6º = Spin¹7º � SO¹8º.

‘e list originally also included the group Spin¹9º, but it was shown in [Ale68] and inde-

pendently in [BG72] to only occur in symmetric spaces. Berger didnot prove that all these

groups occur as holonomy groups of Riemannian manifolds, and ittook a long time to €nd

example manifolds for each group. In the cases� 2 andSpin¹7º, metrics with these holonomy

groups were shown to exist on non-complete Riemannian manifolds in [Bry87]. ‘e next step

was the construction of complete noncompact examples in [BS89]. Finally, compact manifolds

with these holonomy groups were constructed in [Joy96b, Joy96a]. In the rest of this section,

we will introduce the holonomy groupsSp¹< º and� 2 in detail. A thorough discussion of all

holonomy groups can be found in [Sal89].

2.2 Hyperk•ahler Geometry and the Eguˆi-Hanson Space

We now turn to the holonomy groupSp¹< º, the holonomy group of Hyperk•ahler manifolds.

Because of our later applications, we will be particularly interested in dimension four, that is

the groupSp¹1º.

To this end, consider the blowup ofC2•f� 1g, which is again a complex surface. More than that,

it admits a Hyperk•ahler structure that is asymptotically locally Euclidean (ALE), see [Joy00,
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Section 7.2] and [Dan99] for surveys listing these and more properties. In this section, we will

de€ne ALE Hyperk•ahler manifolds, write down an explicit formula for the Hyperk•ahler metric

on the blowup ofC2•f� 1g(cf. Proposition 2.5), and show that it satis€es the ALE Hyperk•ahler

property (cf. Proposition 2.10).

We begin with the de€nition of Hyperk•ahler manifolds.

De€nition2.4. De€ne the quaternionsH to be the associative, nonabelian real algebra

H = fG0 ¸ G18¸ G29¸ G3: : G9 2 Rg ' R4•

endowed with the unique multiplication satisfying

89= � 98= :• 9: = � : 9 = 8• :8= � 8: = 9• 82 = 92 = : 2 = � 1”

Let H< have coordinates¹@1• ” ” ” • @< º, with @; = G;
0 ¸ G;

18¸ G;
29¸ G;

3: 2 H andG;
B 2 R. De€ne a

metric and2-forms onH< by

6 =
<Õ

;=1

3Õ

B=0

¹dG;
Bº

2• l 1 =
<Õ

;=1

dG;
0 ^ dG;

1 ¸ dG;
2 ^ dG;

3•

l 2 =
<Õ

;=1

dG;
0 ^ dG;

2 ¸ dG;
3 ^ dG;

1• l 3 =
<Õ

;=1

dG;
0 ^ dG;

3 ¸ dG;
1 ^ dG;

2”

De€ne complex structures�• � •  on H< to be le‰ multiplication with8• 9• :respectively. ‘e

subgroup ofGL¹4<• Rº preserving6• l 1• l 2• l 3 is Sp¹< º. It also preserves�• � •  .

A 4< -dimensional Riemannian manifold¹"•6 º is calledHyperk•ahler if Hol¹6º � Sp¹< º.

‘us, on a Hyperk •ahler manifold we have the data of a metric and three compatible complex

structures and symplectic forms. Conversely, a metric together with three parallel symplectic

structures that are compatible in this sense de€nes a Hyperk•ahler structure on a manifold.

We will now de€ne the Eguchi-Hanson space and the Eguchi-Hanson metrics, which are a

1-dimensional family of Hyperk•ahler metrics, controlled by a parameter: 2 R � 0. For: ¡ 0

we get a metric on a smooth4-manifold (this is point one of the following proposition), and

for : = 0 we get the standard metric onH•f� 1gor equivalentlyC2•f� 1g (this is point two of
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the following proposition).

Proposition 2.5.LetAbe a coordinate on theR � 0-factor ofR � 0 � SO¹3º. Let

[ 1 = 2

©
­
­
­
­
­
«

0 0 0

0 0 1

0 � 1 0

ª
®
®
®
®
®
¬

• [ 2 = 2

©
­
­
­
­
­
«

0 0 � 1

0 0 0

1 0 0

ª
®
®
®
®
®
¬

• [ 3 = 2

©
­
­
­
­
­
«

0 � 1 0

1 0 0

0 0 0

ª
®
®
®
®
®
¬

2 so¹3º

and denote the dual basis extended to le‡-invariant1-forms onSO¹3º by the same symbols. For

: � 0, let 5: : R¡ 0 � SO¹3º ! R¡ 0 be de€ned by5: ¹Aº = ¹: ¸ A2º1•4 and set

dC= 5� 1
: ¹Aº dA• 41¹Aº = A 5� 1

: ¹Aº[ 1• 42¹Aº = 5: ¹Aº[ 2• 43¹Aº = 5: ¹Aº[ 3”

De€nel ¹: º
1 • l ¹: º

2 • l ¹: º
3 2 
 2¹R¡ 0 � SO¹3ºº to be

l ¹: º
1 = dC^ 41 ¸ 42 ^ 43• l ¹: º

2 = dC^ 42 ¸ 43 ^ 41• l ¹: º
3 = dC^ 43 ¸ 41 ^ 42• (2.6)

and denote by6¹: º the metric onR¡ 0 � SO¹3º that makes¹dC• 41• 42• 43º an orthonormal basis.

1. If: ¡ 0, consider the copy ofSO¹2º in SO¹3º de€ned byf exp¹B� [ 1º : B2 Rg, de€ning a

right action ofSO¹2º onSO¹3º. Denote by+ ' R2 the standard representation ofSO¹2º.

De€ne	 : SO¹3º � R¡ 0 ! SO¹3º � + as	 ¹6•Aº = ¹6•¹A•0ºº. Denote

- EH = SO¹3º � SO¹2º + ”

Œen	 induces a smooth injective map	̂ : SO¹3º � R¡ 0 ! - EH that is a di‚eomorphism

onto its image, and the formŝ	 � ¹l ¹: º
8 º can be extended to smooth 2-forms on all of- EH.

Furthermore,̂	 � ¹6¹: ºº can also be extended to a metric on all of- EH, and¹- EH•	̂ � ¹6¹: ººº

is a Hyperk•ahler manifold.

2. If: = 0: parametrise the quaternions asG0 ¸ G18¸ G29¸ G3: with G0• G1• G2• G3 2 R, embed

( 3 � H as the unit sphere, and €x the identi€cationq : ( 3•f� 1g ! SO¹3º that mapsG

onto the map~ 7! G�~ � G� 1, where we use( 3•f� 1g � H•f� 1gand� denotes quaternionic
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multiplication, forG2 ( 3•f� 1g � H•f� 1g. Denote

� : SO¹3º � R¡ 0 ! H•f� 1g

¹G• Cº 7! C� q � 1¹Gº”

Œen� � l 8 = l ¹0º
8 for82 f1•2•3gand� � 6 = 6¹ ¹0º , where6• l 1• l 2• l 3 2 
 2¹Hº are de€ned

as in De€nition 2.4.

By slight abuse of notation, we will denote the extensions ofl ¹: º
8 for 8 2 f1•2•3g and6¹: º to

- EH in the case: ¡ 0 by the same symbol, suppressing the pushforward under	̂ .

Proof.For: ¡ 0: the fact thatl ¹: º
1 • l ¹: º

2 • l ¹: º
3 •6¹: º can be extended to all of- EH was proven,

for example, in [LM17, Section 2.4]. One checks using a direct computation that l ¹: º
8 for 8 2

f 1•2•3gis closed and [Hit87, Lemma 6.8] implies thatl ¹: º
8 is also parallel for82 f1•2•3g. Both

the symplectic forms and the metric are de€ned using the same orthonormal basis, which

proves that they are compatible. ‘e case: = 0 is a direct calculation. �

Remark2.7. A possible point of confusion is that the functionA: - EH ! R is approximately

the squared distance to the boltSO¹3º � ($ ¹2º f 0g of - EH, so it is not a radius function.

It is a folklore result that the group of isometries of- EH that also preserve� ¹: º
1 is isomorphic

to U¹2º•f� 1g. ‘is can be seen rather explicitly using the description of the metric from

Proposition 2.5, and we give a proof of that in Proposition A.1.

‘e Hyperk •ahler structure on- EH also has the important property that it approximates the ƒat

Hyperk•ahler structure onR4 for large values ofA. ‘e following de€nition makes this notion

precise, and Proposition 2.10 proves that the Hyperk•ahler structure on- EH does indeed have

this property.

De€nition2.8 (De€nition 7.2.1 in [Joy00]). Let� be a €nite subgroup ofSp¹1º, and let¹ ^l 1• ^l 2• ^l 3•6̂º

be the Euclidean Hyperk•ahler structure onH, andf : H•� ! » 0•1º the radius function on

H•� . We say that a Hyperk•ahler 4-manifold ¹-• l 1• l 2• l 3•6º is asymptotically locally Euc-

lidean (ALE) asymptotic toH•� , if there exists a compact subset( � - and a mapc : - n( !
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H•� that is a di‚eomorphism between- n( andfG2 H•� : f ¹Gº ¡ ' g for some' ¡ 0, such

that

r̂ : ¹c � ¹6º � 6̂º = O¹f � 4� : º andr̂ : ¹c � ¹l 8º � ^l 8º = O¹f � 4� : º (2.9)

asf ! 1 , for 82 f1•2•3gand: � 0, wherer̂ is the Levi-Civita connection of̂6.

Proposition 2.10.

1. Œe2-sphere. := SO¹3º � SO¹2º f 0g � - EH has radius: 1•4.

2. Œere existsg¹: º
1 2 
 1¹- EH nSO¹3º � SO¹2º f 0gº such thatl ¹: º

1 � l ¹0º
1 = dg¹: º

1 and for any

; 2 Z

�
�
�r ;g¹1º

1

�
�
�
6¹0º

= O¹A� 3� ; º• (2.11)

wherer denotes the Levi-Civita connection of6¹0º . Furthermore,l ¹: º
2 � l ¹0º

2 = 0, and

l ¹: º
3 � l ¹0º

3 = 0. In particular,¹- EH• l ¹: º
1 • l ¹: º

2 • l ¹: º
3 •6¹: ºº is ALE asymptotic toH•f� 1g.

3. For:• : 0 ¡ 0 there exists a di‚eomorphismq:•: 0 : - EH ! - EH s.t.q �
:•: 0¹6¹: ºº = _26¹: 0º for

_4 = :
: 0, which restricts to the identity on. .

Proof.

1. ‘e curve W¹Bº = »expId¹B[2º•0¼is a geodesic in. � - EH with W¹0º = W¹2cº of length

2c: 1•4, so( 2 has radius: 1•4.

2. Explicitly,g¹: º
1 = ¹52

: � 52
0 º[ 1. ‘e ALE property is [Joy00, Example 7.2.2].

3. ‘e fact that 6¹: º and6¹: 0º are conformally equivalent is clear on abstract grounds, as

there exists a classi€cation of asymptotically locally Euclidean Hyperk•ahler metrics (this

argument is used in [Joy00, p. 154]). Explicitly,

q : SO¹3º � SO¹2º + ! SO¹3º � SO¹2º +

»D•¹A•0º¼ !
�
D•¹_2A•0º

� (2.12)
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satis€es the claim in the proposition.

�

Remark2.13. By de€nition,- EH is an associated bundle overSO¹3º•SO¹2º = ( 2. In fact,- EH is

di‚eomorphic to the total space of) � ( 2, which itself is di‚eomorphic to) � CP1. It is a folklore

result that ¹- EH• � ¹: º
1 º is biholomorphic to) � CP1 for all : ¡ 0, which in turn is the blowup of

C2•f� 1g in the origin, see e.g. [Dan99, p. 17] for the statement. We thus have a blowup map

d : - EH ! C2•f� 1g.

‘ere is another description of the ALE metric on Eguchi-Hansonspace arising from two

di‚erent Hyperk •ahler quotient constructions: €rst,- EH is a special case of the Calabi-Yau

metrics on) � CP= explained in [GRG97]. Second,- EH is a special case of ALE manifolds

asymptotic to the metric onC2• � , where� � SU¹2º is a €nite subgroup, which is explained in

[Kro89a]. (‘e special case of Eguchi-Hanson space in this construction is described in [GN92,

Section 2].)

We brieƒy describe the construction from [GRG97], as it will beneeded in Section 2.4.2. Let

M = H2 with quaternionic coordinates@0, 0 2 f1•2g, and letU¹1º act onM via

@0 7! @048C• C2 ¹0•2c¼” (2.14)

A Hyperk•ahler moment map for this action is given by

` : M ! Im¹Hº ' R3 
 u¹1º

¹@1• @2º 7!
1
2

Õ

02f1•2g

@08@0”
(2.15)

Let Z = 8
2 2 Im¹Hº. ‘e group U¹1º acts freely on` � 1¹Zº and the general theory of Hy-

perk•ahler reduction gives rise to a Hyperk•ahler structure on the four-dimensional manifold

- 0 = ` � 1¹Zº•U¹1º, denoted byM••• U¹1º.

It will turn out that - 0 and- EH are isomorphic as Hyperk•ahler manifolds. We now identify

the group of holomorphic isometries of- 0, thereby recovering the result of Proposition A.1.

We viewSU¹2º embedded inH2� 2 as quaternion valued matrices with no9or : components.
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‘en SU¹2º acts onM by right multiplication. ‘is action restricts to ` � 1¹Zº and commutes

with the action ofU¹1º. ‘e action is not e‚ective, as � 1 2 SU¹2º acts trivially, but the induced

action of the quotient groupSU¹2º•f� 1g ' SO¹3º is e‚ective. Next, letSO¹2º act onM from

the le‰ via

@0 7! 48C� @0• C2 ¹0•2c¼”

Again, the action restricts tò � 1¹Zº and commutes with the action ofU¹1º, but is not e‚ective

as� 1 2 SO¹2º acts trivially. ‘e actions of SO¹2º•f� 1gandSU¹2º•f� 1gcommute, as the €rst

group is acting from the le‰, the second is acting from the right. We thus get that the group

SO¹2º•f� 1g � SU¹2º•f� 1gacts through isometries on- 0. Last, one readily con€rms that the

map

* ¹1º•f� 1g � SU¹2º•f� 1g ! U¹2º•f� 1g

»_¼•»� ¼ 7! »_� ¼

is a group isomorphism. Its inverse is given by»� ¼ 7! ¹»
p

det� ¼•»� •
p

det� ¼ºwhich is not

well-de€ned as a mapU¹1º � SU¹2º ! U¹2º but is well-de€ned a‰er dividing outf� 1g. One

may also recover the full isometry group of the Eguchi-Hanson space by noticing that there

is an additional isometry induced by the map onM that swaps coordinates, i.e.M ! M ,

¹@1•@2º 7! ¹ @2•@1º.

As a smooth manifold,- 0 ' ) � CP1, so- EH and- 0 are di‚eomorphic by Remark 2.13. ‘e

Hyperk•ahler metric on- 0 is asymptotically locally Euclidean by [CGLP01, Section 2.4]. By

[Joy96b, Example 7.2.2],- 0 is isomorphic as a Hyperk•ahler manifold to¹- EH•6¹: ºº for some

: ¡ 0. ‘e curve W: »0•2c¼ ! - 0 given by

¹1•0º � exp
©
­
­
«

C�
©
­
­
«

0 � 1

1 0

ª
®
®
¬

ª
®
®
¬

parametrises a perimeter of the minimal2-sphere¹1•0º � SO¹3º in - 0. It has length2c , so- 0

is isomorphic to the Hyperk•ahler manifold¹- EH•6¹1ºº by the €rst point of Proposition 2.10.

We sum up the results:
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Proposition 2.16.Under theU¹1º-action onM := H2 from Eq.(2.14)we have thatM••• U¹1º '

¹- EH•6¹1ºº as Hyperk•ahler manifolds.

2.3 � 2-structures

2.3.1 Torsion of� 2-structures on7-manifolds

We now introduce� 2-structures and their torsion, following the treatment in [Joy00].

De€nition2.17 (De€nition 10.1.1 in [Joy00]). Let ¹G1• ” ” ” • G7º be coordinates onR7. Write dG89”””;

for the exterior formdG8 ^ dG9 ^ � � � ^ dG; . De€nei 0 2 
 3¹R7º by

i 0 = dG123¸ dG145¸ dG167¸ dG246 � dG257� dG347 � dG356” (2.18)

‘e subgroup of GL¹7•Rº preservingi 0 is the exceptional Lie group� 2. It also €xes the

Euclidean metric60 = dG2
1 ¸ � � � ¸ dG2

7, the orientation onR7, and� i 0 2 
 4¹R7º.

De€nition2.19. ‘e skew-symmetric bilinear map � : R7 ! R7 de€ned by

i 0¹D• E•Fº = 60¹D� E•Fº

for D• E•F2 R7 is called thecross product induced byi .

‹eorem 2.20 (‘eorem 8.5 in [SW17]). Let k = � i 0. Œen� � ¹R7º� splits into irreducible

representations of� 2 as follows:

� 1+ � = � 1
7•

� 2+ � = � 2
7 � � 2

14•

� 3+ � = � 3
1 � � 3

7 � � 3
27
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and correspondingly for� : ¹R7º� ' � 7� : ¹R7º� with : = 4•5•6. Here,dim� :
3 = 3 and

� 2
7 := fU : �¹ U^ i 0º = 2Ug = f8¹Dºi 0 : D 2 R7g ' � 1

7•

� 2
14 := fU : �¹ U^ i 0º = � Ug = fU : U^ k = 0g ' g2•

� 3
1 := hi 0i •

� 3
7 := f8¹Dºk : D 2 R7g ' � 1

7• and

� 3
27 := fU : U^ i 0 = 0 andU^ k = 0g ' Sym0¹R7º

De€nition2.21. Let " be an oriented7-manifold. A principal subbundle& of the bundle of

oriented frames with structure group� 2 is called a� 2-structure. Viewing& as a set of linear

maps from tangent spaces of" to R7, there exists a uniquei 2 
 3¹" º such that& identi€es

i with i 0 2 
 3¹R7º at every point.

Such� 2-structures are in1-1 correspondence with3-forms on" for which there exists an

oriented isomorphism mapping them toi 0 at every point. We will therefore also refer to such

3-forms as� 2-structures.

Let " be a manifold with� 2-structurei . We callr i the torsionof a� 2-structurei 2 
 3¹" º.

Here,r denotes the Levi-Civita induced byi in the following sense: we have� 2 � SO¹7º, so

i de€nes a Riemannian metric6 on " , which in turn de€nes a Levi-Civita connection. As a

shorthand, we also use the following notation: write� ¹i º = � i , where \� " denotes the Hodge

star de€ned by6. Using this, the following theorem gives a characterisation of torsion-free

� 2-manifolds:

‹eorem 2.22 (Propositions 10.1.3 and 10.1.5 in [Joy00]). Let" be an oriented7-manifold with

� 2-structurei with induced metric6. Œe following are equivalent:

(i) Hol¹6º � � 2,

(ii) r i = 0 on" , wherer is the Levi-Civita connection of6, and

(iii) di = 0 andd� ¹i º = 0 on" .

If these hold then6 is Ricci-ƒat.

23



‘e goal of Section 3 will be to construct� 2-structures that induce metrics with holonomy

equalto � 2. A torsion-free� 2-structure alone only guarantees holonomycontainedin � 2, but

in the compact se‹ing a characterisation of manifolds with holonomy equal to� 2 is available:

‹eorem 2.23 (Proposition 10.2.2 and ‘eorem 10.4.4 in [Joy00]). Let" be a compact oriented

manifold with torsion-free� 2-structurei and induced metric6. ŒenHol¹6º = � 2 if and only

if c1¹" º is €nite. In this case the moduli space of metrics with holonomy � 2 on" , up to di‚eo-

morphisms isotopic to the identity, is a smooth manifold of dimension13¹" º.

Note that this theorem makes no statement about the existence of a torsion-free� 2-structure in

the €rst place. Finding a characterisation of manifolds which admit a torsion-free� 2-structure

and even the construction of examples remain challenging problems in the €eld.

Later on, we will investigate perturbations of� 2-structures and analyse how that changes

their torsion. To this end, we will use the following estimates for the map� de€ned before:

Proposition 2.24(Proposition 10.3.5 in [Joy00] and eqn. (21) of part I in [Joy96b]). Œere exists

n ¡ 0 and2 ¡ 0 such that whenever" is a7-manifold with� 2-structurei satisfyingdi = 0,

then the following is true. Supposej 2 � 1 ¹� 3) � " º and jj j � n. Œeni ¸ j is a� 2-structure,

and

� ¹i ¸ j º = � i � ) ¹ j º � � ¹ j º• (2.25)

where \� " denotes the Hodge star with respect to the metric induced byi , ) : 
 3¹" º ! 
 4¹" º

is a linear map (depending oni ), and� is a smooth function from the closed ball of radiusn in

� 3) � " to � 4) � " with � ¹0º = 0. Furthermore,

j� ¹ j º j � 2 jj j2 •

jd¹� ¹ j ºº j � 2
�
jj j2 jd� i j ¸ jr j j jj j

	
•

»d¹� ¹ j ºº¼U � 2
�
»j ¼U j jj j j! 1 j jd� i jj! 1 ¸ j j j j j2! 1 »d� i ¼U ¸ »r j ¼U j jj j j! 1 ¸ j jr j j j! 1 »j ¼U

	
•
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as well as

jr¹ � ¹ j ºº j � 2
�
j j j2 jr i j ¸ jr j j jj j

	
•

»r¹ � ¹ j ºº¼� 0•U � 2
�
»j ¼U j jj j j! 1 j jr i j j! 1 ¸ j j j j j2! 1 »ri ¼U ¸ »r j ¼U j jj j j! 1 ¸ j jr j j j! 1 »j ¼U

	
”

Here,j�j denotes the norm induced byi , r denotes the Levi-Civita connection of the metric induced

by i , and»�¼� 0•U denotes the unweighted H•older semi-norm induced by this metric.

Finally, the landmark result on the existence of torsion-free� 2-structures is the following

theorem. It €rst appeared in [Joy96b, part I, ‘eorem A], and we present a rewri‹en version

in analogy with [JK21, ‘eorem 2.7]:

‹eorem 2.26. LetU•  1•  2•  3 be any positive constants. Œen there existn 2 ¹0•1¼and 4 ¡ 0,

such that whenever0 Ÿ C� n, the following holds.

Let " be a compact oriented7-manifold, with� 2-structurei with induced metric6 satisfying

di = 0. Suppose there is a closed3-formk on" such thatd� i = d� k and

(i) j jk j j� 0 �  1CU, j jk jj! 2 �  1C7• 2̧ U, andjjk jj! 14 �  1C� 1• 2̧ U.

(ii) Œe injectivity radiusinj of6 satis€esinj �  2C.

(iii) Œe Riemann curvature tensorRmof6 satis€esjjRmjj� 0 �  3C� 2.

Œen there exists a smooth, torsion-free� 2-structureei on " such thatjjei � i jj� 0 �  4CU and

»ei ¼= »i ¼in � 3¹"• Rº. Here all norms are computed using the original metric6.

‘e main purpose of Section 3 will be to prove an improved existence theorem, specialised to

the resolution of) 7• � . ‘is will be achieved in ‘eorem 3.82.
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2.3.2 � 2-manifolds and Hyperk•ahler4-manifolds

OnH with coordinates¹~0•~1•~2•~3º we have the three symplectic formsl 1• l 2• l 3 from De€n-

ition 2.4 given as

l 0 = d~0 ^ d~1 ¸ d~2 ^ d~3• l 1 = d~0 ^ d~2 � d~1 ^ d~3• l 2 = d~0 ^ d~3 ¸ d~1 ^ d~2”

IdentifyR7 with coordinates¹G1• ” ” ” • G7º with R3� H with coordinates¹¹G1• G2• G3º•¹~1•~2•~3•~4ºº.

‘en we have for i 0•� i 0 from De€nition 2.17:

i 0 = dG123 �
3Õ

8=1

dG8 ^ l 8• � i 0 = volH �
Õ

¹8•9•:º=¹1•2•3º
and cyclic permutation

l 8 ^ dG9: ” (2.27)

‘is linear algebra statement easily extends to product manifolds inthe following sense: if

- is a Hyperk•ahler 4-manifold, andR3 is endowed with the Euclidean metric, thenR3 � -

has a� 2-structure. ‘e � 2-structure is given by the same formula as in the ƒat case, namely

Eq. (2.27), a‰er replacing¹l 1• l 2• l 3º with the triple of parallel symplectic forms de€ning the

Hyperk•ahler structure on- . ‘is product� 2-structurewill be glued into� 2-orbifolds in the

following sections.

2.4 Gauge ‹eory in Dimension 4

In this part we brieƒy review the theory of ASD instantons on compact4-manifolds as well as

the (non-compact) ALE spaces. We follow the treatment of [DK90]for the compact case, and

the treatment of [Nak90] for ALE spaces.

Let ¹- 4•6º be an oriented Riemannian4-manifold. Let
 2¹- º = 
 ¸ ¹- º � 
 � ¹- º be the decom-

position of 
 2¹- º into positive and negative eigenspaces of the Hodge� -operator. A connec-

tion � on a principal� -bundle%is then called ananti-self-dual instanton(or ASD instanton)

if its curvature� � satis€es� � � = � � � , where� � is viewed as an element in
 2¹-• Ad � º, and

� acts on the2-form part while leaving theAd %part unchanged.
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2.4.1 On Compact Manifolds

Now, let. be a compact4-manifold.

De€nition2.28. Fix some smooth connection� 0 on %and assume there exists a faithful rep-

resentation+ of � . Write � = %� � + and for €xed; 2 N, ; � 3, we then de€ne:

� ;
asd := f � 0 ¸ 0 : 0 2 ! 2

; ¹� 1¹Ad%º• � 0 ¸ 0 is anti-self-dualºg•

� ; ¸ 1 := fB2 ! 2
;¸ 1¹� 0¹End¹� ººº : B¹~º 2 � for all ~ 2 . g•

" ¹;º := � ;
asd•� ; ¸ 1”

Here,� ; ¸ 1 can be identi€ed with gauge transformations of the bundle%, and through this acts

on � ;
asdvia pullback. ‘en, " := " ¹3º is called themoduli space of ASD instantons.

Remark2.29. By the Sobolev Embedding ‘eorem, equivalence classes in" ¹3º have continu-

ous representatives. Elements in� ;
asd need not have continuous representatives for; � 2,

which is the reason for the choice; � 3 here. On the other hand, Proposition 2.30 states,

roughly speaking, that the exact value of; does not ma‹er, as long as it is at least3.

It is now that we make use of the compactness assumption. If. is compact, then the de€nition

of " actually turns out to be independent of the chosen regularity; in the following sense:

Proposition 2.30(Proposition 4.2.16 in [DK90]). Œe natural inclusion of" ¹; ¸ 1º in " ¹;º is a

homeomorphism for; � 3.

Because of this proposition, we may think of the moduli space tobe made up ofsmoothASD

instantons andsmoothgauge transformations. De€ne the operator

X� : 
 1¹.• Ad%º ! 
 0¹.• Ad %º � 
 2
¸ ¹.• Ad%º

0 7! ¹ d�
� 0•d¸

� 0º•
(2.31)

whered¸
� 0 : 
 1¹.• Ad %º ! 
 2

¸ ¹.• Ad%º denotes the composition of the di‚erentiald� and the

projection of the2-form part onto
 ¸ ¹. º. ‘is operator governs the in€nitesimal deformations

of ASD instantons, as stated in the following proposition:
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Proposition 2.32(Proposition 4.2.23 in [DK90]). For any connection� on%let

� � := fD 2 � : D¹� º = � g”

If � is an ASD instanton, then a neighbourhood of»� ¼in " is modelled on a neighbourhood of0

of the quotient5� 1¹0º• � � where

5 : KerX� ! CoKer ḑ�

is a � � -equivariant map.

We will also make use of the following Weitzenb•ock formula for the operatorX� :

Proposition 2.33(Equation 6.2.5 in [FU91]). Let%be a principal bundle over. , and� a connec-

tion on%andeX� = d�
� �

p
2 ḑ� : 
 1¹.• Ad %º ! 
 0¹.• Ad%º � 
 2

¸ ¹.• Ad%º. Œen

eX�
�

eX� 0 = r �
� r � 0 ¸ f Ric• 0g ¸ f � �

� • 0g•

where� �
� denotes the projection of the2-form part of� � onto
 � ¹. º, andf� •�gdenote universal

bilinear forms.

We then have the following index formula forX� :

Proposition 2.34(Equation 4.2.22 in [DK90]). Let %be a bundle with structure groupSO¹3º

over. , and� an ASD instanton. Œen

indX� = � 2?1¹� º � 3¹1 � 11¹. º ¸ 1¸ ¹. ºº”

One last result to mention is the classi€cation ofSO¹3º-bundles andSU¹2º-bundles. It will be

mentioned in passing in Sections 2.5 and 4.6 but is not used in an essential way anywhere.

‹eorem 2.35 (‘eorem 1 in [DW59] and ‘eorem E.8 in [FU91]). Let%•&beSO¹3º-bundles

over a compact4-manifold. . Œen%and& are isomorphic if and only if?1¹%º = ?1¹&º and

F 2¹%º = F 2¹&º.
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‹eorem 2.36 (‘eorem E.5 in [FU91]). Let%•&beSU¹2º-bundles over a compact4-manifold

. . Œen%and& are isomorphic if and only if22¹%º = 22¹&º.

2.4.2 On ALE Manifolds

Let � � SU¹2º be a €nite subgroup and let- be an ALE4-manifold asymptotic toC2• � . Even

though- is non-compact, some of the results from gauge theory on compact manifolds carry

over to this se‹ing. First, we explain a correspondence between gauge equivalence classes

of connections on- and on its one point compacti€cation̂- = - [ f1g . ‘e following

proposition explains the orbifold structure on̂- :

Proposition 2.37(p.687 in [Kro89b] and Proposition 2.36 in [Wal13b]). Let ¹-•6 º be an ALE

manifold asymptotic toC2• � by means of a mapc : - ! C2• � in the sense of De€nition 2.8,

and let ^- = - [ f1g be the one point compacti€cation of- .

1. Œe topological spacê- is an orbifold and there exist a neighbourhood+ of 1 and an

orbifold chart5 : � 4• � ! + , where� 4 is the unit ball inR4.

2. Œe orbifold^- carries an orbifold metriĉ6 of regularity� 3•U for anyU 2 ¹0•1º such that

the restriction of̂6 to - � ^- is conformally equivalent to6.

Proof sketch.

1. Fix an orientation reversing linear isometryf of R4. Let � act on� 4 � R4 by ¹6• Gº 7!

f � 1¹6 � f ¹Gºº and de€ne

5 : � 4• � ! ^-

G7!

8>>>><

>>>>
:

1 if G= 0

c � 1¹f ¹Gº•jGj2º otherwise.

(2.38)
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2. ‘e metric 6̂ := ¹1 ¸ j c j2º� 26 on - is shown in [Kro89b, p.687] to extend tô- as an

orbifold metric with regularity� 3•U and is by de€nition conformally equivalent to6.

�

Let � be a compact connected Lie group with a faithful representation � ! GL¹+ º. Let %̂

be an orbifold� -bundle over ^- and denote its restriction to- by %, i.e. %= %̂j- . ‘at is, %̂

restricted to+ ' � 4• � from Proposition 2.37 is the trivial bundle� 4 � � together with a €xed

li‰ of the action of� on � 4 to � 4 � � . Over the point0 2 � 4, this de€nes a homomorphism

d : � ! � . ‘e following proposition states that this homomorphism essentially characterises

the orbifold bundle over� 4 completely.

Proposition 2.39.Œere exists a trivialisation̂ : %̂j� 4 ! � 4 � � such that� acts through le‡

multiplication byd:

W� ^ � 1¹1•6º = ^ � 1¹W� 1• d¹Wº6º forW2 � •¹1•6º 2 � 4 � � ” (2.40)

Proof. ‘e li‰ of the action of � to � 4� � can be viewed as an elementF 2 � 1 ¹� 4•Hom¹� • � ºº

viaW� ¹1•6º = ¹W�1• F¹1º¹Wº �6º. ‘e space � 4 is connected, so by Corollary A.12 the conjugacy

class ofF does not change over� 4. ‘at is, there exists f 2 � 1 ¹� 4• � º such that;f Af � 1F 2

� 1 ¹� 4•Hom¹� • � ºº is constant and;f Af � 1F ¹0º = d. ‘us f de€nes a trivialisation of� 4 � � in

which � acts through le‰ multiplication viad. �

Because of Proposition 2.39 we can €x a trivialisation of%̂over� 4 such that� acts through le‰

multiplication by d. ‘en denote by � 0 any extension of the product connection with respect

to this trivialisation to all of %̂. Di‚erent choices of extension will give rise to the very same

spaces in Eq. (2.43). We identify»'• 1º � ( 3• � ' - n  for some' ¡ 0 big enough and a

compact set � - . ‘en the monodromy representation of� 0 restricted tofCg � ( 3• � , say

� : c1¹fCg � ( 3• � º ! � , satis€es

� = d (2.41)
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under the canonical identi€cation� ' c1¹fCg � ( 3• � º. Extend the projection onto the €rst

component- n  ' » '• 1º � ( 3 ! » '• 1º to a smooth positive functionAon all of - . For a

non-negative integer;, a weightX 2 R, and? � 1 de€ne the weighted Sobolev norm on the

: -forms with values in the adjoint bundle with compact support
 :
0 ¹Ad%º via

j jUjj! ?
;•X

=
;Õ

9=0

� ¹

-
jr 9

� 0
Uj?A�¹ X� 9º?� 4 d+

� 1•?

• (2.42)

and denote by! ?
;•X¹� : ¹Ad%ºº the completion of
 :

0 ¹Ad%º with respect to the normjjUjj! ?
;•X

.

As before, set� = %� � + and for; � 3 de€ne

� ;•X = f � 0 ¸ U : U 2 ! 2
;•X¹� 1¹Ad%ººg•

� ; ¸ 1•X̧ 1
0 = fB2 ! 2

;¸ 1•loc¹� 0¹End¹� ºº : B¹Gº 2 � for all G2 �• j jB� Idj j! 2
; ¸ 1•X̧ 1

Ÿ 1g•

� d = fB2 � : BdB� 1 = dg•

� ; ¸ 1•X̧ 1 = fB2 ! 2
;¸ 1•loc¹� 0¹End¹� ºº : B¹Gº 2 � for all G2 �•

jjB� B1 j j! 2
; ¸ 1•X̧ 1

Ÿ 1 for someB1 2 � dg”

(2.43)

In the de€nition of� ; ¸ 1•X̧ 1 we regardedB1 2 � d as an element in� 1 ¹� 0¹End¹� ºº as follows:

consider%̂over � 4 de€ned by the orbifold chart around1 . Using the trivialisation from Pro-

position 2.39, this canonically de€nes a gauge transformation over � 4. (It is the same to say

that we obtain a gauge transformation by parallel transport with respect to� 0.) ‘is gauge

transformation is� -equivariant by de€nition of� d and Proposition 2.39. We then extend it

arbitrarily on the rest of ^- to an element in� 1 ¹� 0¹End¹� ºº. ‘e choice of the extension does

not ma‹er for the condition jjB� B1 j j! 2
; ¸ 1•X̧ 1

Ÿ 1 .

‘e gauge groups � ; ¸ 1•X̧ 1
0 and� ; ¸ 1•X̧ 1 both act on� ;•X, and the quotient spaces� ;•X•� ; ¸ 1•X̧ 1

0

and� ;•X•� ; ¸ 1•X̧ 1 are called the moduli space of framed connections and the moduli space of

unframed connections, respectively. We can restrict to anti-self-dual connections:

� ;•X
asd = f � 2 � ;•X : � is anti-self-dualg

and obtain themoduli space of framed ASD connections" ;•X := � ;•X
asd•� ; ¸ 1•X̧ 1

0 and themoduli
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space of ASD connections� ;•X
asd•� ; ¸ 1•X̧ 1.

‘e four quotient spaces � ;•X•� ; ¸ 1•X̧ 1
0 , � ;•X•� ; ¸ 1•X̧ 1, " ;•X, and� ;•X

asd•� ; ¸ 1•X̧ 1 are topological

spaces. For" ;•X we will observe explicitly (cf. ‘eorem 2.49) that it is metrisable and there-

fore Hausdor‚, and the same argument works for the other threequotient spaces, cf. [DK90,

Lemma 4.2.4].

Moving on to the orbifold, we de€ne:

De€nition2.44. For; � 3 let

� ;•orb
asd = f � 0 ¸ U : U 2 ! 2

; ¹� 1¹Ad%̂ººg•

� ; ¸ 1•orb = fB2 ! 2
;¸ 1¹� 0¹End+ ºº : B¹Gº 2 � for all G2 ^-•B¹1º 2 � dg•

� ; ¸ 1•orb
0 = fB2 � ; ¸ 1•orb : B¹1º = Idg”

‘en � ; ¸ 1•orb and� ; ¸ 1•orb
0 both act on� ;•orb

asd and we can form the quotient spaces� ;•orb
asd •� ; ¸ 1•orb

and" ;•orb = � ;•orb
asd •� ; ¸ 1•orb

0 . Here," ;•orb is called themoduli space of framed ASD connections

on ^- .

We also have the following analogue of Proposition 2.30.

Proposition 2.45.For3 � ;1 Ÿ ;2, the inclusion maps

" ;1•orb ›! " ;2•orb• " ;1•� 2 ›! " ;2•� 2

are homeomorphisms.

‘e proof of Proposition 2.45 works the same as in the compact case, i.e. the proof of Propos-

ition 2.30 given in [DK90, Proposition 4.2.16]. ‘e only di‚erence is that in the non-compact

case, i.e. for the claim" ;1•� 2 ›! " ;2•� 2, one has to take the weighted Sobolev norms from

Eq. (2.42). ‘ese have their own versions of the Sobolev embedding theorem and, if the weight

is non-positive, the multiplication theorem for Sobolev normsalso holds. ‘ese properties of

weighted Sobolev norms are proved in [Pac13, Corollary 6.8].

Proposition 2.46.For any� 2 � ;•� 2
asd there exists a connection̂� 2 � ¹%̂º satisfying ^� j% = � .
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Proof.Corollary A.17 gives a bundle%0 over ^- with connection� 0 together with an injective

bundle homomorphismb : %! %0. A‰er €xing a trivialisation of̂%around1 , this canonically

de€nes an isomorphism of orbifold� -bundles� : %̂ ! %0, and ^� := � � ¹� 0º satis€es ^� j% =

� . �

De€nition2.47. De€ne the map

	 : " 3•� 2 ! " 3•orb

as follows: for»� 0 ¸ 0¼ 2" 3•� 2 let ^� 2 � ¹%̂º be the induced connection from Proposition 2.46

and set	 ¹»� 0 ¸ 0¼º:= »^� ¼.

Proposition 2.48.Œe function	 from De€nition 2.47 is bijective.

Proof. 	 is injective: let »� 0 ¸ 0¼•»� 0 ¸ e0¼ 2" 3•� 2 such that	 ¹»� 0 ¸ 0¼º= »^� ¼as well as

	 ¹»� 0 ¸ e0¼º= »^� 0¼. If »^� ¼= »^� 0¼, then ^� 0 = B^� for someB 2 � 4•orb
0 . We haveB¹1º = Id,

so ¹B� Idº = O¹jGjº and r :
� 0

¹B� Idº = O¹1º for : 2 f1•2•3•4g. Here,r :
� 0

includes terms

containing the Levi-Civita connection for the orbifold metric6̂ on -̂ for : ¡ 1, andjGj denotes

the distance from1 2 ^- in this metric. In particular,r :
� 0

¹B� Idº = O¹jGj1� : º. We have

�
�
�r :

� 0
¹B� Idº

�
�
�
6

= ¹1¸ A2º� :
�
�
�r :

� 0
¹B� Idº

�
�
�
6̂

= O¹A� 2: jGj1� : º = O¹A� 1� : º•

where6 denotes the ALE metric, in the €rst step we used the de€nition of6̂ from the proof

of Proposition 2.37 and the fact that we are measuring a tensor with : covariant indices and

0 contravariant indices. ‘us, B2 � 4•� 1
0 . ‘erefore, »� 0 ¸ 0¼= »� 0 ¸ e0¼as elements in" 3•� 2,

which shows the claim.

	 is surjective: Let »� 0 ¸ 0¼ 2" 3•orb, i.e. � 0 ¸ 0 2 � 3•orb
asd . Similar to the previous point we

€nd that r :
� 0

0 = O¹A� 2� : º. By construction	 ¹»¹� 0 ¸ 0º j- ¼º= »� 0 ¸ 0¼, which proves the

claim. �

Because of Proposition 2.45 we will drop the regularity and decay from the notation of our

moduli spaces most of the time. ‘at is, we will o‰en write" for " ;•X with any ; � 3 and

X= � 2. Likewise for� •� •� 0•� orb• " orb•� orb, and� orb
0 .
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‘e important results about the local structure of" are the following:

‹eorem 2.49 (‘eorem 2.4 and Proposition 5.1 in [Nak90]). " is a nonsingular smooth man-

ifold and for»� ¼ 2" its tangent space is isomorphic to

� 1
�• � 2 := fU 2 ! 2

;•� 2¹� 1¹Ad%ºº : X� ¹Uº = 0g”

For the linear operatorX� we have the following analytic result:

Proposition 2.50(Proposition 5.10 in [Wal13a]). Let� 2 � ¹� º be a €nite energy ASD instanton

on� . Œen the following holds:

1. If0 2 KerX� decays to zero at in€nity, i.e.,limA!1 supd¹Gº=A j0j ¹Gº = 0, thenr :
� 0 =

O¹jc j� 3� : º for all : � 0.

2. If ¹b• l º 2 KerX�
� decays to zero at in€nity, then¹b• l º = 0.

‘e Hyperk •ahler triple of- acts on the1-form part of 
 1¹Ad%º. It is checked in [Ito88, Section

4] together with [Ito85, Proposition 2.4] that this action restricts to � 1
�• � 2 for all »� ¼ 2" . We

thus have a triple of complex structures on" . ‘e following theorem states that this de€nes

a Hyperk•ahler structure with respect to the standard metric on" :

‹eorem 2.51 (‘eorem 2.6 and Proposition 5.1 in [Nak90]). Œe metric6" de€ned by

6" ¹U• Vº =
¹

-
6¹U• Vº vol- for U• V2 � 1

�• � 2

and the Hyperk•ahler triple de€ned by acting with the Hyperk•ahler triple of- on the1-form part

of 
 1¹Ad%º is well-de€ned on" and de€nes a Hyperk•ahler structure on" .

‹eorem 2.52 (‘eorem 2.47 in [Wal13b]). Letd : � ! � be a homomorphism,� 0 a connection

on a bundle%that is ƒat at in€nity as in Proposition 2.39 whose holonomy representation is equal

to d in the sense of Eq.(2.41). LetX 2 ¹� 3•� 1º and� = � 0 ¸ U for someU 2 ! 2
1•X¹� 1¹Ad%ºº.
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Œen the! 2 index ofX� , de€ned as

dimf0 2 ! 2¹� 1¹Ad%ºº \ � 1 ¹� 1¹Ad%ºº : X� ¹0º = 0g

� dimf0 2 ! 2¹� 0 � � 2
¸ ¹Ad%ºº \ � 1 ¹� 0 � � 2

¸ ¹Ad%ºº : X�
� ¹0º = 0g•

is given by

indX� = � 2
¹

-
?1¹Ad%º ¸

2
j� j

Õ

62� nf4g

j g¹6º � dimg
2 � tr 6

” (2.53)

Here?1¹Ad%º is the Chern-Weil representative of the €rst Pontrjagin class of%and j g is the

character of6 acting ong, the Lie algebra associated with� , viad, andtr 6 is the trace of6 acting

ong. Moreover, if� is an ASD instanton, thenindX� = dim KerX� = dim" .

Here come two examples of anti-self-dual instantons on ALE spaces. First, recall the construc-

tion of - EH as a Hyperk•ahler quotient and the Hyperk•ahler moment map̀ from Eq. (2.15).

Using this notation, we have the following result from [GN92].

Proposition 2.54(Section 2 in [GN92]). ŒeU¹1º-bundleR := ` � 1¹8•2º ! - EH = ` � 1¹8•2º•U¹1º

admits a non-ƒat €nite energy ASD instanton� asymptotic to the representationd : Z2 ! U¹1º

determined byd¹� 1º = � 1 in the sense of Eq.(2.41).

An additional property ofR that we will need later is the following:

Proposition 2.55.Œere exists a li‡ of the action of the holomorphic isometry groupU¹2º•f� 1g

of - EH to R.

Proof.We have seen in the construction of- EH as a Hyperk•ahler quotient before Proposi-

tion 2.16 that the holomorphic isometry groupU¹2º•f� 1gis realised as an action ofU¹2º•f� 1g

on ` � 1¹8•2º that commutes with the action ofU¹1º on ` � 1¹8•2º. ‘e action of U¹2º•f� 1g on

` � 1¹8•2º is the desired li‰ of the action ofU¹2º•f� 1gon - EH. �

Remark2.56. We can apply ‘eorem 2.52 to theU¹1º-bundle over- EH de€ned before to €nd

that it is rigid. AsAd R has rank1, we have that?1¹Ad Rº = 22¹Ad RCº = 0, and plugging this

into the index formula from ‘eorem 2.52 proves the claim.
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Remark2.57. On simply connected compact manifolds it is the case that anyU¹1º-bundle

admits an ASD-instanton that is unique up to the action of the gauge group. ‘is is a con-

sequence of the Hodge theorem. On non-compact manifolds a variation of the Hodge theorem

for ! 2-forms holds, see [Loc87, Example 0.15], and can be used to give an alternative proof of

Remark 2.56 without the use of the index formula.

Here is a non-rigid example:

Example2.58 (Chapter II in [Ati78]). Consider the BPST instantons from [BPST75] onR4. On

the trivial SU¹2º-bundle%overR4 de€ne a connection via

� =
1

1 ¸ j Gj2
¹\ 18¸ \ 29¸ \ 3: º

where8• 9• :is the standard basis for the space of unit quaternionssp¹1º ' su¹2º and

\ 1 = G1 dG2 � G2 dG1 � G3 dG4 ¸ G4 dG3•

\ 2 = G1 dG3 � G3 dG1 � G4 dG2 ¸ G2 dG4•

\ 3 = G1 dG4 � G4 dG1 � G2 dG3 ¸ G3 dG2”

‘en � has curvature

� � =
�

1
1¸ j Gj2

� 2

¹d\ 18¸ d\ 29¸ d\ 3: º

and a computations shows that� is an ASD-instanton. ‘e Killing form on sp¹1º is given by

hD1•D2i = � 8 Re¹D1D2º for D1•D2 2 sp¹1º

which gives

¹

R4
?1¹Ad%º = �

1
8c 2

¹

R4
h� � • � � i volR4

= �
24
c 2

¹

R4

�
1

1 ¸ j Gj2

� 4

volR4

= � 48
¹ 1

0

�
1

1 ¸ A2

� 4

dA

= � 4”
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‘us, by ‘eorem 2.52, � lives in an8-dimensional moduli space of framed ASD-instantons.

‘is moduli space is given by the following connections: for any~ 2 R4 and _ 2 R¸ we

get another ASD instanton by translating by~ and dilating with_. One checks that di‚erent

choices of~ and_ give rise to connections which are not gauge equivalent. ‘e connection

� is irreducible, so its orbit under the action of� •� 0 = � d = � is isomorphic to� d•� ¹� º =

SU¹2º•f� 1g = SO¹3º by [Nak90, p. 275]. ‘e framed moduli space" is thus di‚eomorphic to

R4 � R¸ � SO¹3º.

Before ending the section we will state two results about universal bundles that will be needed

later. ‘e proof of the following proposition is based on the proof of [DK90, Proposition 5.2.17].

Proposition 2.59.Œere exist

ˆ a � -bundleeP over" � ^- with a natural action of� d ' � •� 0 oneP covering the action of

� d on" ,

ˆ a connectioneA 2 � ¹ePº that is invariant under the action of� d ' � •� 0, and

ˆ for each choice ofq 2 Iso� ¹�• %1 º a canonical isomorphism of� -bundles with� le‡ action

q : ePj" �f1g ! � � "

satisfying:

ˆ for any element»� ¼ 2" there exists an isomorphismePj f»� ¼ g�^- ' %̂such that under this

isomorphismeAj f»� ¼ g�- and� agree up to the action of� 0.

ˆ if we decompose the curvature ofeA over" � - according to the bi-grading on� � ) � ¹" � - º

induced by) � ¹" � - º = c �
1)

� " � c �
2)

� - , then its components satisfy the following:

{ � 1•1
eA

2 � ¹Hom¹c �
1)

� "• c �
2)

� - 
 Ad %ºº at ¹»� ¼• Gº is the evaluation of0 2 ) »� ¼" at

G,

{ � 0•2
eA

2 � ¹c �
2� � ¹- º� 
 Ad%º, where� � is de€ned using the ALE metric on- ,

ˆ q � � product= eAj" �f1g , where� product2 � ¹� � " º denotes the product connection.
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‘e proof makes use of the following lemma. Here, the data� , ^� , .̂ can be taken to be in€nite-

dimensional, which is the version of the statement that we use later.

Lemma 2.60(Equation 5.2.16 in [DK90]). Let . and .̂ be smooth manifolds,̂� ! .̂ vector

bundle, and suppose a group� acts smoothly on̂� , covering a free action on̂. . Let� = ^� • � !

. = .̂ • � be the quotient. Œe data of

(i) a connection̂r in ^� which is invariant under� ,

(ii) a connection in the� -bundle? : .̂ ! . , determined by a horizontal distribution�

de€ne a connectionr on� via

¹r * Bº^ = r̂ ^* B̂• (2.61)

in which Bis a section of� corresponding to a local invariant sectionB̂ : .̂ ! �̂ and *̂ is a

horizontal li‡ of* with respect to� . Œis de€nition is independent of the choice of li‡ and the

curvature ofr satis€es

� ¹rº ¹ * •+ º^ = � ¹r̂º ¹ *̂ • +̂ º � � � ¹ � ¹* •+ ºº• (2.62)

where* •+ 2 ) »~¼. , *̂ • +̂ 2 ) »~¼̂. are horizontal li‡s with respect to� , � : .̂ � � Lie¹� º ! End ^�

is a linear map, and� is the curvature of� .

Proof of Proposition 2.59.Let � be the vector bundle associated tô%by means of a faithful

representation of� . ‘en we will apply Lemma 2.60 in the case.̂ = � orb
asd � ^- , � = � orb

0 . Let

^� = c �
2� , wherec2 : � orb

asd � ^- ! ^- is the projection onto the second factor. ‘e orbifold

gauge group� orb
0 then acts through pullback on̂� .

^� carries a tautological connection̂r characterised by the properties that̂rj � orb
asd� f Gg is trivial
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andr̂j f � g� ^- = � under the canonical isomorphism̂� j f � g� ^- ' � . ‘e connection r̂ satis€es

� ¹r̂º ¹ D• Eº = � ¹� º ¹D• Eº•

� ¹r̂º ¹ 0• Eº = h0• Ei •

� ¹r̂º ¹ 0•1º = 0

(2.63)

for D• E2 ) G ^- and0•12 ) � � asd.

We will now de€ne horizontal subspaces in the bundle� orb
asd ! " = � orb

asd•� orb
0 . As a €rst

step, we de€ne the horizontal subspaces� for the principal bundle� asd ! " = � asd•� 0 as

� � = f0 2 ) � � asd = 
 1¹-• Ad %º : d�
� 0 = 0g” (2.64)

Here, the adjointd�
� is taken with respect to the ALE metric on- .

‘e � � are� 0-invariant, i.e. forB2 � 0 we have thatd' B¹� � º = � B� � . To see this, let0 2 � �

andD 2 
 0¹-• Ad%º. Under the identi€cation of: -forms taking values in the adjoint bundle

with horizontal equivariant forms on%, we can view0 as an element in
 1¹%•gº andDas an

element in
 0¹%•gº. Elements in� are in1-to-1 correspondence with� -equivariant smooth

maps%! � , and we denote byf B : %! � the map corresponding toB. ‘en

hd�
B� � ¹d' B¹0ºº•Di = hd' B¹0º•dB� � Di

= hAd¹f � 1
B º0•dDi ¸ h Ad¹f � 1

B º0•»Ad¹f � 1
B º�•D¼i

= h0•d¹Ad¹f BºDºi ¸ h0•Ad¹f Bº»Ad¹f � 1
B º�•D¼i

= h0•d� ¹Ad¹f BºDºi

= hd�
� 0•Ad¹f BºDi = 0•

where we used that the Killing form isAd-invariant in the third step, and we used the assump-

tion 0 2 � � in the last step. As this holds for allD 2 
 0¹-• Ad%º, we have thatd' B¹0º 2 � B� � .

‘e fact that they are horizontal, i.e. a complement to the vertical space generated by the ac-

tion of � 0 on � asd, is ‘eorem 2.49. We are now ready to write down the horizontal subspaces
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� 0 for the principal bundle� orb
asd ! " = � orb

asd•� orb
0 . Let

� 0
� = f0 2 ) � � asd = 
 1¹-̂• Ad%̂º : d�

� j-
¹0j- º = 0g• (2.65)

where again the Hodge star is taken with respect to the ALE metric. ‘e subspaces � 0 are

right-invariant with the same proof as for� . To see that they are horizontal, note that they

are not vertical, and satisfy

rank� 0 = rank� = dim ¹" º = dim
�
" orb

�
”

‘e €rst step follows from the de€nitions of � and � 0, the second step is the fact that� is

horizontal, and the third step is Proposition 2.48. ‘is shows that � 0de€nes a principal bundle

connection.

By pullback,� induces a connection on the principal bundle� orb
asd� - ! � orb

asd•� orb
0 � - which

is trivial in the - -direction. ‘erefore, its curvature � satis€es

� ¹D• Eº = 0•

� ¹0• Eº = 0
(2.66)

for D• E2 ) G- and0 2 ) � � orb
asd.

Lemma 2.60 then gives a connectionr on � := ^� •� orb
0 . And Eqs. (2.62), (2.63) and (2.66) give

for the curvature ofr at the point ¹»� ¼• Gº 2 " � - :

� ¹r̂º ¹ D• Eº = � ¹� º ¹D• Eº•

� ¹r̂º ¹ 0• Eº = h0• Ei
(2.67)

for D• E2 ) G- and0 2 ) »� ¼" orb ' KerX� � 
 1¹Ad%̂º. Denote byeP a � -reduction of the

bundle of frames of� and byeA the connection oneP induced byr . ‘e curvature of eA still

satis€es the analogue of Eq. (2.67).

Last, anyq 2 Iso� ¹�• %1 º pulls back to an isomorphism of vector bundles with� -le‰ action
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q0 : ^� j� orb
asd� f1g ' � � � orb

asd. By de€nition ofr̂ , we have that

¹q0º� ¹r productº = r̂j � orb
asd� f1g ” (2.68)

Using thatq0 is � 0-equivariant and changing to the bundle of frames, we get an isomorph-

ism q : Pj" orb� f1g ! � � " orb of the quotient. Lastly, because of Eq. (2.68), we have that

q � � product = eAj" �f1g . �

By Proposition A.1, the group of holomorphic isometries acting on - EH is U¹2º•f� 1g. ‘is

induces a non-e‚ective action ofU¹2º on ^- EH by demanding that each group element €xes

1 2 ^- EH. ‘en U¹2º acts from the le‰ on" (and equally" orb) as follows:U¹2º is connected,

so ¹D� 1º� � and � are homotopic bundles and in particular isomorphic. Di‚erent choices of

isomorphism give rise to gauge equivalent connections, so»¹D� 1º� � ¼ 2" is well-de€ned.

Later on (cf. De€nition 4.9) we will need the following assumption:

Assumption2.69. ‘e action of U¹2º on " � ^- EH can be li‰ed to an action oneP that preserves

eA.

In the examples constructed in Section 4.6 this assumption will be satis€ed because of the

following proposition:

Proposition 2.70.LeteP ! " � ^- EH be the tautological bundle with tautological connectioneA

from Proposition 2.59.

If the action ofU¹2º on ^- EH can be li‡ed to an action on̂%, then the action ofU¹2º on" � ^- EH

can be li‡ed to an action oneP. If it exists, this li‡ can be chosen to preserveeA.

Proof.First, assume that the action ofU¹2º on -̂ EH can be li‰ed to an action on̂%. ‘is is

equivalent to saying that for all6 2 � there exists a bundle isomorphismb6 : %̂! %̂covering

6 : ^- EH ! ^- EH. Recall thateP ' c �
2%̂•� orb

0 , wherec2 : � orb
asd � ^- EH ! ^- EH is the projection

onto the second factor. Let¹»� ¼• Gº 2 " � ^- EH and»D¼ 2eP¹ »� ¼•Gº whereD 2
�
c �

2%̂
�

¹�•G º
' %̂G.

We de€nê 6 : eP ! eP covering6 : " � ^- EH ! " � ^- EH via ^6»D¼:= »b6¹Dº¼. To check that

this is well-de€ned, letB2 � orb
0 , and observe that̂6»BD¼= »¹b6Bb� 1

6 º ¹b6Dº¼= »b6D¼.
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It remains to show that this li‰ preserveseA. First observe that the map

^̂6 : c �
2%! c �

2%

�
c �

2%
�

¹�•G º 3 D7! b6¹Dº 2
�
c �

2%
�

¹b�
6� 1�•6Gº

preserves the tautological connection̂� , which is the principal bundle connection onc �
2%

inducing r̂ on the associated vector bundle, because

¹ ^̂�
6

^� º jf � g� - EH = ^̂�
6¹ ^� j f b�

6� 1� g� - EHº = b�
6b�

6� 1� = �”

‘e action of U¹2º on � orb
asd also preserves the horizontal subspaces� 0 from Eq. (2.65). By

de€nition of � 0 it su•ces to check that the action ofU¹2º on � asd preserves the horizontal

subspaces� from Eq. (2.64). To this end, let0 2 � � , i.e.3�
� 0 = 0. ‘en

d�
b6� 1�

�
b�

6� 10
�

= � db6� 1� �
�
b�

6� 10
�

= � db6� 1�

�
b�

6� 1¹� 0º
�

= � b�
6� 1 ¹d� ¹� 0ºº = b�

6� 1¹3�
� 0º = 0•

where in the second and fourth step we used that6� 1 : - EH ! - EH is an isometry, and in

the third step we used that exterior di‚erential and pullback commute. ‘e connection eA was

de€ned using the data of̂� and� by means of Lemma 2.60. ‘e action ofU¹2º preserves^�

and� and therefore preserveseA. �

2.5 Gauge ‹eory on Complex Vector Bundles

2.5.1 Hermite-Einstein Connections and Stable Bundles

‘roughout the section, let � be a complex vector bundle over a complex manifold" .

De€nition2.71. A bundle atlas of� with holomorphic transition functions is called aholo-

morphic structure on� .

We will o‰en useE to denote a complex vector bundle together with its holomorphic structure,

and� to denote the underlying complex vector bundle.

De€nition2.72. A mapm� : 
 0¹"• � º ! 
 0•1¹"• � º that is C-linear, satis€es the Leibniz rule
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m� ¹5 Bº = m¹5º 
 B¸ 5m� ¹Bº for 5 2 � 1 ¹Cº andB 2 � ¹� º, and satis€esm
2
� = 0 is called a

Dolbeault Operator.

Given a holomorphic structure, we get a Dolbeault operator by taking the canonicalmin the

trivialisations of the bundle atlas. ‘e fact that transition functions are holomorphic guaran-

tees that the resulting operator is well-de€ned on all of" , not just on one trivialisation. We

have the following result that describes the relation between Dolbeault operators and connec-

tions:

De€nition2.73. For a Hermitian metric on� , denote by� 1•1 the set of unitary connections

with curvature of type¹1•1º. Here, curvature of type¹1•1º means that in the decomposition

of the curvature� � according to type, i.e.� � = � 2•0
� ¸ � 1•1

� ¸ � 0•2
� , we have that� 2•0

� = � 0•2
� = 0.

Denote bym� = proj
 0•1 � 3� the Dolbeault operator induced by� .

Proposition 2.74(Proposition 4.2.14 in [Huy05]). Let E be a holomorphic structure on� , €x

a Hermitian metric on� and letmE be a Dolbeault operator onE. Œen there exists a unique

� 2 � 1•1 such thatm� = mE.

‘e uniquely determined connection from Proposition 2.74 is calledtheChern connection. One

can also go the converse way: every� 2 � 1•1 is the Chern connection with respect to some

holomorphic structure:

Proposition 2.75(‘eorem 5.1 in [AHS78]). Fix a Hermitian metric on� . For� 2 � 1•1, there

exists a natural holomorphic structureE� on� which induces a Dolbeault operatorm� satisfying

that � is the unique unitary connection such thatm� = m� .

Now, a complex bundle� will admit several holomorphic structures, some of them isomorphic.

‘ese isomorphic holomorphic structures will give rise todi‚erent unitary connections. Iso-

morphism on holomorphic structures corresponds to the following equivalence on unitary

connections:

De€nition2.76. Denote by� 2 the group of all smooth complex automorphisms of� covering

the identity, called thecomplex gauge group of� .

‘e group � 2 acts onm-operators by conjugation, which induces an action on� 1•1 as follows:
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let � 2 � 1•1 and letm� be the associatedm-operator (cf. Proposition 2.75). ‘en6¹� º 2 � 1•1 is

de€ned to be the Chern connection with respect to them-operator6m� 6� 1 = m� � ¹ m� 6º6� 1.

Proposition 2.77(Section 6.1.1 in [DK90]). For� 2 � 1•1 denote byE� the holomorphic structure

given by Proposition 2.75. Œen, the map

� 1•1 ! f holomorphic structures on� g

� 7! E �

descends to a bijective map� 1•1•� 2 ! f holomorphic structures on� g•' , whereE ' E 0 if there

exists a holomorphic map5 : E ! E 0 covering the identity such that5 is an isomorphism of

complex vector spaces in every €bre.

In this sense, studying holomorphic structures on a vector bundleis essentially the same as

€xing a hermitian metric and then studying unitary connections on that bundle. Later on, we

will be interested in unitary connections with the following special curvature property:

De€nition2.78 (Hermite-Einstein connection). Let- be a K•ahler manifold of complex dimen-

sion= with K•ahler forml 2 
 2¹- º. Let � be a Hermitian vector bundle and� be a unitary

connection on� . ‘en � is called aHermite-Einstein connection(or Hermitian-Yang-Mills con-

nection) if it satis€es the system of equations

� 0•2
� = 0 and� � � l = _ Id (2.79)

for some constant_ 2 C. Here,� � � l 2 � ¹End¹� ºº is de€ned via� � ^ l =� 1 = ¹� � � l ºl =. In

particular, if= = 2, 2 � � � � l = h� � • l i .

All Chern connections satisfy the €rst of these conditions, i.e. � 0•2
� = 0, but they may not satisfy

the condition� � � l = _ Id. ‘e following de€nition and theorem give a criterion for when

a holomorphic bundle over a K•ahler manifold of complex dimension two admits a hermitian

metric so that its Chern connection is a Hermite-Einstein connection.

De€nition2.80 (Chern class of a coherent sheaf, [EH16]). Let � be a coherent sheaf over an
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=-dimensional projective variety- and let

0 ! � : ! � : � 1 ! � � � ! � 1 ! � 0 ! � ! 0

be a locally free resolution. ‘en the total Chern class of� is de€ned as

2¹� º =
:Ö

8=0

2¹� 8º ¹� 1º8
2 
 � ¹- º”

For this de€nition to make sense we need that all coherent sheaves� admit a locally free

resolution, and that2¹� º does not depend of the choice of resolution. Both is proved in

[Ful98, Section B.8].

De€nition2.81. Let � be a coherent sheaf over an=-dimensional projective variety- with

K•ahler forml . ‘en, the slopeof � is de€ned to be

` ¹� º :=

¯
- 21¹� º ^ l =� 1

rank¹� º
”

De€nition2.82 (Stable bundle). LetE be a holomorphic vector bundle over a projective variety

- . ‘en E is calledstable, if for any coherent subsheaf� � O¹ � º with 0 Ÿ rank� Ÿ rankE

the inequality

` ¹� º Ÿ ` ¹Eº

holds.

‹eorem 2.83 (‘eorem 1 in [Don85]) . A stable holomorphic vector bundle over a compact two-

dimensional K•ahler manifold admits a unique Hermitian metric so that its Chern connection is a

Hermite-Einstein connection.

As an example, consider the tangent bundle� = ) CP2 of CP2. ‘e complex projective space

CP2 is a K•ahler manifold, so it has a complex structure� . As for any other complex manifold,
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we have an isomorphism of complex vector bundles

b : � ! ) 1•0CP2

E7!
1
2

¹E� 8 �¹Eºº”

) 1•0CP2 is a holomorphic vector bundle, andb endows� with a holomorphic structure via

pullback. We denote� together with this holomorphic structure byE. We then have:

Lemma 2.84(Lemma 9.1.8 in [DK90]). E is stable.

‘us, from ‘eorem 2.83 we know that E admits some Hermitian metric so that its Chern con-

nection is a Hermitian-Yang-Mills connection. We can exactly identify this Hermitian metric,

too:

Proposition 2.85.Œe Chern connection of the hermitian form induced by the Fubini-Study metric

6FSonCP= is a Hermite-Einstein connection.

Also, the Levi-Civita connection of the Fubini-Study metricis a Hermite-Einstein connection.

Proof.Denote the Chern connection byr . ‘en � 0•2
� = 0, just because it is a Chern connection.

It remains to check the second part of Eq. (2.79). One checks through direct computation that

6FS is an Einstein metric satisfying

Ric= ¹2= ¸ 2º6FS (2.86)

(see [Pet16, Section 4.5.3]). ‘e spaceCP= is K•ahler, and on any K•ahler manifold we have that

Ric= 8� h� r • l i (2.87)

viewed as endomorphisms of the tangent bundle (see [Huy05, Proposition 4.A.11]). ‘e metric

induces the identity endomorphism on the tangent bundle, so Eqs. (2.86) and (2.87) imply

� r � l = _ Id with _ = � 8¹2= ¸ 2º.

On a K•ahler manifold, Levi-Civita connection and Chern connection agree, which proves the

claim for the Levi-Civita connection. �

46



2.5.2 Rank2 Vector Bundles

To every Hermitian vector bundle of rank2 we can associate anSO¹3º-bundle, which is ex-

plained in Proposition 2.90. We then revisit the tangent bundle onCP2 considered in the

previous section and study its associatedSO¹3º-bundle.

De€nition2.88. ‘e group PU¹=º := U¹=º•� ¹U¹=ºº is called projective unitary group.

Lemma 2.89.Œere is an isomorphismPU¹2º ' SO¹3º of Lie groups.

Proof. ‘e group U¹2º acts through the adjoint action on the space of trace-free Hermitian

endomorphismsu0¹2º � u¹2º. ‘is action is isometric with respect to the metric given by the

negative of the Killing form ofu¹2º restricted tou0¹2º. ‘us, PU¹2º is a three-dimensional

connected Lie group acting e‚ectively and isometrically on a three-dimensional vector space,

and thereby isomorphic toSO¹3º. �

Proposition 2.90.Let � be a complex vector bundle of rank2 with hermitian metric� over- .

Denote its unitary frame bundle byU¹� º. Denote by_ : U¹2º ! PU¹2º ' SO¹3º the quotient

map and de€ne

%= U¹� º � _ SO¹3º”

Œen, the characteristic classes ofu0¹� º and� are related via

?1¹u0¹� ºº = 21¹� º2 � 422¹� º• F2¹u0¹� ºº = 21¹� º mod2” (2.91)

Every connectionr on� canonically induces a connection on%. Furthermore, the connection on

%is an ASD instanton ifr is a Hermite-Einstein connection.

Proof. ‘e bundle %is de€ned as a principal bundle extension, and any connection can be

canonically extended to any principal bundle extension. Assume that r is a Hermite-Einstein

connection on� and denote the induced connection on%by er . We have that»8� Id¼= »0¼

in the quotient spaceLie¹PU¹2ºº = u¹2º•Lie¹� ¹U¹2ºº, thereforeh� er • l i = 0 2 
 0¹-• Ad%º.

‘e ¹0•2º and ¹2•0º parts of the curvature satisfy� 0•2
r = � 2•0

r = 0, thus � 0•2
er

= � 2•0
er

= 0. ‘e

47



complexi€ed space of self-dual2-forms splits as¹
 2
¸ ºC = 
 2•0�h l i � 
 0•2, soer is anti-self-dual.

Equation (2.91) is [DK90, Eqn. 2.1.39]. �

As in Section 2.5.1, let� = ) CP2.

Proposition 2.92.Denote theSO¹3º-bundle associated to� by means of Proposition 2.90 by� and

denote byf : CP2 ! CP2 the complex conjugation onCP2. Œen� andf � � are not isomorphic,

while � andf � � are isomorphic.

‘e proof uses:

‹eorem 2.93 (‘eorem 14.10 in [MS74]). Œe total Chern class of) CP= is ¹1 ¸ 0º=¸ 1, where0

is a suitably chosen generator of� 2¹CP=•Zº.

Proof of Proposition 2.92.We get from ‘eorem 2.93 and Eq. (2.91):

21¹� º = 30• 22¹� º = 302• ?1¹� º = � 302• F2¹� º = 0 mod2•

where0 is a suitably chosen generator of� 2¹CP2•Zº. Complex projective2-spaceCP2 can

be given the structure of a CW-complex with a single2-cell

CP1 ' f» G0 : G1 : 0¼ 2CP2g � CP2

and no1-cells and no3-cells. ‘us, � 2¹CP2•Rº is generated by thisCP1. ‘e complex conjug-

ationf restricts toCP1 and reverses its orientation, so acts as� 1on � 2¹CP2•Zº, in particular

f � 0 = � 0. ‘erefore, 21¹f � � º < 21¹� º, which implies thatf � � and� are not isomorphic. On

the other hand,?1¹f � � º = ?1¹� º andF 2¹f � � º = F 2¹� º. So, by ‘eorem 2.35, we have that�

andf � � are isomorphic. �

Remark2.94. We will construct an explicit bundle isomorphism of� and f � � in Proposi-

tion 4.140. ‘us, we will obtain Proposition 2.92 without the use of ‘eorem 2.35.
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2.6 Gauge ‹eory on � 2-manifolds

De€nition2.95. Let ¹.• i º be a� 2-manifold,k = � i i , and� be a principal bundle over. . A

connection� 2 � ¹� º is called a� 2-instanton, if � � 2 � ¹� 2
14 
 Ad � º, i.e. (by ‘eorem 2.20)

� � ^ k = 0• (2.96)

where the wedge product is taken in the2-form part of � 2 
 Ad � .

Example2.97. Flat connections are� 2-instantons.

Example2.98. Let � be an ASD instanton on a bundle� over a Hyperk•ahler4-fold - . Denote

by?- : R3� - ! - the projection onto the second factor. ‘enR3� - carries the torsion-free

� 2-structurei from Eq. (2.27), and?�
- � is a� 2-instanton on the bundle?�

- � with respect to

this � 2-structure. To see this, letl 1• l 2• l 3 2 
 2¹- º denote a Hyperk•ahler triple on- . ‘ese

2-forms are self-dual, thus� being ASD is equivalent to� � ^ l 8 = 0 for 8 2 f1•2•3g. Recall

that for the product� 2-structure, we have that

� i = k =
1
2
l 2

1 � dG12 ^ l 3 � dG23 ^ l 1 � dG31 ^ l 2

and therefore

� ?�
- � ^ k = ?�

- ¹� � º ^ k = 0”

A � 2-instanton� satis€es�¹ � � ^ i º = � � � by ‘eorem 2.20. ‘us, if i is closed,

d�
� � � = � � d� ¹� � ^ i º = � � ¹ d� � � º ^ i

which vanishes due to the Bianchi identity. ‘is means that� is a critical point of the Yang-

Mills energy functional

YM : � ¹� º ! R

� 7!
¹

.
j� � j2 vol. ”
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But even more is true:

Proposition 2.99(Proposition 1.97 in [Wal13a]). Leti be a closed� 2-structure on. . Œen� 2-

instantons with respect toi are absolute minima of the Yang-Mills functional.

Later on, we will study the linearisation of the instanton equation. ‘e linearisation at a point

� 2 � ¹� º of Eq. (2.96) is

; : 
 1¹.• Ad � º ! 
 1¹.• Ad � º

0 7! �¹ k ^ d� 0º”
(2.100)

‘is is not Fredholm (if the structure group � is at least one-dimensional), because elements

D 2 � ¹� º of the gauge group satisfy� D� � = D� � � and therefore preserve the� 2-instanton

equation. ‘erefore, the in€nitesimal action of the gauge group is in the kernel of;. As elliptic

operators are Fredholm, that also implies; is not an elliptic operator.

As we have seen in Section 2.4 it is customary to add in theCoulomb gaugeconditiond�
� 0 = 0in

order to make the linearised instanton operator elliptic. But inour case,¹;•d�
� º : 
 1¹"• Ad � º !

¹
 1 � 
 0º ¹.• Ad � º cannot be elliptic either, because it is a map between vector bundles of dif-

ferent rank. ‘is problem is overcome in the following proposition:

Lemma 2.101(Proposition 1.98 in [Wal13b]). Let ¹.• i º be a compact� 2-manifold,k = � i i ,

and� be a principal bundle over. , and� 2 � ¹� º. Œen� is a� 2-instanton if and only if there

existsb 2 
 0¹.• Ad � º such that

�¹ � � ^ k º ¸ d� b = 0” (2.102)

So, for a €xed connection� 2 � ¹� º, b 2 
 0¹.• Ad � º, and0 2 
 1¹.• Ad � º we consider the

system

�¹ � � ¸ 0 ^ k º ¸ d� ¸ 0b = 0

d�
� 0 = 0”

(2.103)

Here, every solution¹b• 0º de€nes the� 2-instanton� ¸ 0 which is in Coulomb gauge with
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respect to� . ‘e linearisation of Eq. (2.103) is an elliptic operator:

Proposition 2.104.Œe linearisation of Eq.(2.103)is

! � : ¹
 0 � 
 1º ¹.• Ad � º ! ¹ 
 0 � 
 1º ¹.• Ad � º

©
­
­
«

b

0

ª
®
®
¬

7!
©
­
­
«

0 d�
�

d� �¹ k ^ d� º

ª
®
®
¬

©
­
­
«

b

0

ª
®
®
¬

(2.105)

which is a self-adjoint elliptic operator ifd� i = 0.

Proof.Denote; = �¹ k ^ d� º : 
 1¹.• Ad � º ! 
 1¹.• Ad � º and denote its dual by; � . For

0•12 
 1¹.• Ad � º we then have

h0• ;� 1i vol = k ^ d� 0 ^ 1 = h0•� 3� ¹k ^ 1ºi vol = h0•�¹ k ^ 3� 1ºi vol

where we usedd� i = 0 in the last step. ‘us, ; is self-adjoint which implies that! � is self-

adjoint.

‘e operator ! � is associated to the complex


 0¹.• Ad � º
d�! 
 1¹.• Ad � º

;
! 
 1¹.• Ad � º

d�
�! 
 0¹.• Ad � º” (2.106)

ForG 2 . and0 < b 2 ) G. ' R7 ' ¹ R7º� , the symbol of Eq. (2.106) applied tob is then the

sequence

0 ! � 0 
 g
¹ �º^b
�! � 1 
 g

�¹ k ^¹ �º^ bº
�! � 1 
 g

by¹ �º
�! � 0 
 g ! 0” (2.107)

It remains to check that this sequence is exact. ‘e4-formk and the Hodge star are preserved

by � 2 and� 2 acts transitively on( 6 � R7, so it su•ces to check that Eq. (2.107) is exact for

any (non-zero) choice ofb, sayb = ¹1•0•0•0•0•0•0º. ‘is is then an explicit calculation that

can be carried out using Eq. (2.18). �

Remark2.108. A coordinate-free proof for the ellipticity of the complex in Eq.(2.106) is given

in [RC98, Section 3, Lemma 4].
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3 Resolutions of� 2-orbifolds

We now turn to the construction of resolutions of� 2-orbifolds, where we glue together the

orbifold� 2-structure and the product� 2-structure onR3� - EH, where- EH denotes the Eguchi-

Hanson space as before. In particular, we will revisit the construction of [Joy96b]. Starting

with the torus) 7, we write down an €nite group� that acts on) 7 and preserves the ƒat� 2-

structure thereon. Following this, we construct smooth7-manifolds# Ccarrying a1-parameter

family of � 2-structuresi C, which are close to the ƒat� 2-structure, in a suitable sense. We then

give a new proof for the fact thati Ccan be perturbed to a torsion-free� 2-structure, and give

an estimate for the size of the perturbation. ‘is is stated inthe main result of this section,

‘eorem 3.84:

‹eorem. ChooseU 2 ¹0•1º and V 2 ¹� 1•0º both close to0. Let# C be the resolution of) 7• �

from Eq.(3.31)andi C 2 
 3¹# Cº the� 2-structure with small torsion from Eq.(3.33). Œere exists

2 ¡ 0independent ofCsuch that the following is true: forCsmall enough, there exists[ C 2 
 2¹# Cº

such thatei = i C¸ d[ C is a torsion-free� 2-structure, and[ Csatis€es

�
�
�
�[ C

�
�
�
�
� 2•U•2

V;C
� 2C7•2� V”

In particular,

�
�
�
�ei � i C

�
�
�
�
! 1 � 2C5•2 and

�
�
�
�ei � i C

�
�
�
�
� 0•U•2 � 2C5•2� U•2 as well as

�
�
�
�ei � i C

�
�
�
�
� 1•U•2 � 2C3•2� U•2”

As is common in gluing constructions in di‚erential geometry,we obtain this result by fol-

lowing the three step procedure of

1. Constructing an approximate solution (cf. Section 3.2.1)

2. Estimating the linearisation of the equation to be solved (cf. Section 3.2.3)

3. Perturbing the approximate solution to a genuine solution (cf. Section 3.2.4)

‘is method was €rst employed in [Tau82] for the construction of anti-self-dual connections

over 4-manifolds. A similar but slightly simpler proof of the same resultsis given in [DK90,
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Section 7.2]. An expository article about this principle, whichis in spirit close to the ma‹er of

this section, is [Don12].

3.1 Analysis on the Eguˆi-Hanson Space

3.1.1 Harmonic forms on¹C2 n f0gº•f� 1g

In this section, we will list homogeneous harmonic forms on¹C2 n f0gº•f� 1g with decay.

Because¹C2 n f0gº•f� 1g is the cone overSO¹3º, we will see that such forms correspond to

eigenforms onSO¹3º, and we will therefore review the spectral decomposition of the Laplacian

on ( 3 andSO¹3º.

We begin by de€ning cones and homogeneous forms on them.

De€nition3.1. For a Riemannian manifold¹� •6� º, the Riemannian manifold� ¹� º = � � R¡ 0

endowed with the metric6� = dA2 ¸ A26� is called theCone over� .

De€nition3.2. Let _ 2 R. ‘en W2 
 : ¹� ¹� ºº is calledhomogeneous of order_ if there exist

U 2 
 : � 1¹� º• V2 
 : ¹� º such that

W= A_¸ :
�
3A
A

^ U¸ V
�

”

Remark3.3. ForC2 R¡ 0 denote by¹�Cº : � ¹� º ! � ¹� º the dilation map given by¹�Cº¹A• fº =

¹CA• fº for ¹A• fº 2 � ¹� º. ‘en, if W2 
 : ¹� ¹� ºº is homogeneous of order_, we have¹�Cº� jWj6� =

C_ jWj6� .

Homogeneous harmonic forms do not exist for all orders and we make the following de€nition:

De€nition3.4. For a cone� = � ¹� º, denote by� :•� the Laplacian acting on: -forms on� . ‘e

set

D � :•� = f _ 2 R : 9W2 
 : ¹� º•W< 0• homogeneous of order_ with � :•� W= 0g

is called the set ofcritical rates of� :•� .

It will turn out that critical rates are intimately related to harmonic forms on Eguchi-Hanson
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space. ‘is is the content of the next section and we will see theset D � :•� appear again

there. ‘e purpose of this section is to describeD � 1•� ¹SO¹3º º andD � 2•� ¹SO¹3º º , which is achieved

in Proposition 3.10. We prepare the proposition by pu‹ing some results for harmonic forms

on Riemannian cones in place:

Lemma 3.5(Lemma A.1 in [FHN20]). LetW= A_¸ :
�

3A
A ^ U¸ V

�
be a: -form on� ¹� º homogen-

eous of order_. For every functionD= D¹Aº we have� ¹DWº = A_¸ : � 2
�

3A
A ^ � ¸ �

�
, where

� = D
�
4U� ¹ _ ¸ : � 2º¹_ ¸ = � : ºU� 23� V

�
� A¤D¹2_ ¸ = � 1º U� A2¥D U•

� = D
�
4V� ¹ _ ¸ = � : � 2º¹_ ¸ : ºV� 23U

�
� A¤D¹2_ ¸ = � 1º V� A2¥D V”

‹eorem 3.6 (‘eorem A.2 in [FHN20]) . LetW= A_¸ :
�

3A
A ^ U¸ V

�
be a harmonic: -form on

� ¹� º homogeneous of order_. ŒenWdecomposes into the sum of homogeneous harmonic forms

W= W1 ¸ W2 ¸ W3 ¸ W4 whereW8 = A_¸ :
�

3A
A ^ U8 ¸ V8

�
satis€es the following conditions.

(i) V1 = 0 andU1 satis€es3U1 = 0 and� U1 = ¹_ ¸ : � 2º¹_ ¸ = � : ºU1.

(ii) ¹U2• V2º 2 
 : � 1
2>4G02C� 
 :

4G02Csatis€es the €rst-order system

3U2 = ¹_ ¸ : ºV2• 3� V2 = ¹_ ¸ = � : ºU2”

In particular, if ¹U2• V2º < 0 then_ ¸ : < 0 < _ ¸ = � : and the pair¹U2• V2º is uniquely

determined by either of the two factors, which is a coexact/exact eigenform of the Laplacian

with eigenvalue¹_ ¸ : º ¹_ ¸ = � : º.

(iii) ¹U3• V3º 2 
 : � 1
2>4G02C� 
 :

4G02Csatis€es the €rst-order system

3U3 ¸ ¹ _ ¸ = � : � 2ºV3 = 0 = 3� V3 ¸ ¹ _ ¸ : � 2ºU3”

In particular, if ¹U3• V3º < 0 then_ ¸ : � 2 < 0 < _ ¸ = � : � 2 and the pair¹U3• V3º is

uniquely determined by either of the two factors, which is a coexact/exact eigenform of the

Laplacian with eigenvalue¹_ ¸ : � 2º¹_ ¸ = � : � 2º.

(iv) U4 = 0 andV4 satis€es3� V4 = 0 and� V4 = ¹_ ¸ = � : � 2º¹_ ¸ : ºV4.
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Œe decompositionW= W1 ¸ W2 ¸ W3 ¸ W4 is unique, except when_ = � =� 2
2 ; in that case forms of

type (ii) and (iii) coincide, and there is a unique decompositionW= W1 ¸ W2 ¸ W4.

‘e previous proposition relates harmonic forms on the cone� ¹SO¹3ºº to eigenforms of the

Laplacian onSO¹3º. ‘e group SO¹4º acts via pullback on complex-valued di‚erential forms

on( 3, and it turns out that the decomposition of this action into irreducible components gives

the spectral decomposition for the Laplacian on( 3. ‘is is made precise in the following two

theorems, and as( 3 is a double cover ofSO¹3º, we will get the spectral decomposition of the

Laplacian onSO¹3º from them.

‹eorem 3.7 (‘eorem B in [Fol89]) . Œe complex-valued! 2-functions and1-forms on( 3 de-

compose into the following irreducibleSO¹4º-invariant subspaces:


 0¹( 3•Cº =
1Ê

< =1

� 0•< •


 1¹( 3•Cº =
1Ê

< =1

�
� 1•< � � �

1•< � 	 1•<
�
”

Here,� 0•< , � 1•< •� �
1•< •	 1•< are de€ned as follows: denote by9: ( 3 ! R4 the inclusion map and

de€neI 1 = G1 ¸ 8G2, I 2 = G3 ¸ 8G4, andmA=
Í 4

9=1G9mG9. Œen let

� 0•< = 9� � 0•< ¸ 1• where� 0•< is the smallestSO¹4º-inv. space containingI < � 1
1 •

� 1•< = 9� � 1•< • where� 1•< is the smallestSO¹4º-inv. space containingI < � 1
1 mAy¹dI 1 ^ dI 2º”

� �
1•< = 9� � �

1•< • where� �
1•< is the smallestSO¹4º-inv. space containingI < � 1

1 mAy¹dI 1 ^ dI 2º”

	 1•< = 9� � 1•< • where� 1•< is the smallestSO¹4º-inv. space containingI < � 1
1 dI 1”

‹eorem 3.8 (‘eorem C in [Fol89]) . Let� 0•< •� 1•< •� �
1•< •	 1•< as in Œeorem 3.8. Œen� 0•< •� 1•< �

� �
1•< , and	 1•< are eigenspaces for the Laplacian with eigenvalues< ¹< ¸ 2º, ¹< ¸ 1º2, and< ¹< ¸ 2º

respectively.

Corollary 3.9. Let( 3 be endowed with the round metric andSO¹3º = ( 3•f� 1gbe endowed with

the quotient metric.

1. Œen, the spectrum of the Laplacian� 0•SO¹3º acting on real-valued! 2-functions onSO¹3º
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is:

Spec¹� 0•SO¹3ºº = f : ¹: ¸ 2º : : 2 Z � 0• : eveng = f 0•8•24• ” ” ”g”

2. Œe smallest eigenvalue of the Laplacian� 1•SO¹3º acting on real-valued1-forms with coef-

€cients in! 2 onSO¹3º is 4 and has multiplicity6.

Proof of Corollary 3.9.

1. ‘is follows from ‘eorems 3.7 and 3.8 and the fact that functionsin the space� 0•<

de€ned in ‘eorem 3.7 are invariant under the antipodal map¹� 1º : ( 3 ! ( 3 if and

only if < is even.

2. By ‘eorem 3.8, the smallest eigenvalue of the Laplacian acting on complex-valued1-

forms on( 3 is 3. We see from the explicit description of the eigenspace that the eigen-

forms are not invariant under the antipodal map. ‘us, the eigenvalue3does not occur

on SO¹3º.

‘e next smallest eigenvalue is4. It is realised, and it remains to check the dimension

of its eigenspace: for the complex vector spaces de€ned in ‘eorem 3.7 we have� 1•1 '
�
� 2

¸
� C and� �

1•1 '
�
� 2

�
� C, the complexi€cation of (anti-)self-dual constant forms onR4.

Here is how to see that� 1•1 '
�
� 2

¸
� C, the other isomorphism is analogous. We have

dI 1 ^ dI 2 = dG13 � dG24 ¸ 8dG23 ¸ 8dG14 =: l”

‘e element 6 =

©
­
­
­
­
­
­
­
­
«

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

ª
®
®
®
®
®
®
®
®
¬

2 SO¹4º sends this to� dG13 ¸ dG24 ¸ 8dG23 ¸ 8dG14, so

the smallestSO¹4º-invariant space containingl must also contain the self-dual form

dG13 � dG24 = 1
2¹l � 6l º. Because� 2

¸ is irreducible, thisSO¹4º-invariant space must

contain all of ¹� 2
¸ ºC. Contracting with the radial vector €eldmAand restricting to( 3

areSO¹4º-equivariant operations, one checks that the result is non-zero, and therefore
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� 1•1 '
�
� 2

¸
� C.

Altogether, � 1•1 and � �
1•1 are representations ofSO¹4º of complex dimension3. ‘ey

consist of1-forms on( 3 that are invariant under the antipodal map, which proves the

claim.

�

We can now combine the results about harmonic forms on� ¹SO¹3ºº with the spectral decom-

position of the Laplacian onSO¹3º to €nd the critical rates for the Laplacian on� ¹SO¹3ºº:

Proposition 3.10.

1. Œere are no harmonic1-forms on¹C2 n f0gº•f� 1g which are homogeneous of order_ for

_ 2 »� 2•0º. In other wordsD � 1•¹C2nf0gº•f� 1g
\ »� 2•0º = ; .

2. Œere is a six-dimensional space of harmonic2-forms on¹C2n f0gº•f� 1gwhich are homo-

geneous of order� 2.

Œere are no harmonic2-forms on¹C2 n f0gº•f� 1g which are homogeneous of order_ for

_ 2 ¹� 2•0º.

Proof. It follows from point two in Proposition 2.5 that� ¹SO¹3ºº and ¹C2 n f0gº•f� 1g are

isometric as Riemannian manifolds and we prove the statementson � ¹SO¹3ºº.

1. Let_ 2 »� 2•0º and assume there exists a harmonic homogeneous1-form of order_ on

� ¹SO¹3ºº. We show that the1-form must vanish by showing that forms satisfying any

of the cases (i), (ii), (iii), and (iv) from ‘eorem 3.6 are zero. Using the notation from the

theorem, we get the following:

(i) In this case,� U1 = ¹_ � 1º¹_ ¸ 3ºU1. For_ 2 »� 2•0º, the factor¹_ � 1º¹_ ¸ 3º is

negative, so our assumption implies thatU1 is a closed0-form that is an eigenform

of � SO¹3º for a negative eigenvalue, which impliesU1 = 0 by Corollary 3.9.

(ii) In this case,V2 is an exact1-form with � SO¹3ºV2 = ¹_ ¸ 1º¹_ ¸ 3ºV2. We have

¹_ ¸ 1º¹_ ¸ 3º Ÿ 8 for _ 2 »� 2•0º, and thereforeV2 = 0 as in case (i).
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(iii) In this case,V3 is an exact1-form with � SO¹3ºV3 = ¹_ ¸ 1º¹_ � 3ºV3, andV3 = 0

follows as before.

(iv) In this case,V4 is a co-closed1-form with � SO¹3ºV3 = ¹_ ¸ 1º2V3. For_ 2 »� 2•0º,

we have¹_ ¸ 1º2 Ÿ 3, and because of Corollary 3.9 this impliesV4 = 0.

2. Let_ 2 »� 2•0º. Going through the cases (i), (ii), (iii), and (iv) from ‘eorem 3.6, we will

€nd that there are six linearly independent harmonic homogeneous2-forms of order� 2

in case (iii), but no other harmonic homogeneous forms. Using the notation from the

theorem, we get the following:

(i) In this case, we get a1-form that is an eigenform of the Laplacian onSO¹3º for the

eigenvalue_¹_ ¸ 2º Ÿ 0, which must be0 by Corollary 3.9.

(ii) In this case, we get a1-form that is an eigenform of the Laplacian onSO¹3º for the

eigenvalue¹_ ¸ 2º2 Ÿ 4, which must be0 by Corollary 3.9.

(iii) In this case, we get a1-form that is an eigenform of the Laplacian onSO¹3º for

the eigenvalue_2. ‘ere are six of these by Corollary 3.9 for_ = � 2 and none for

_ 2 ¹� 2•0º. In the case of_ = � 2 all six eigenforms give rise to harmonic2-forms

of order_ = � 2 on � ¹SO¹3ºº.

(iv) In this case, we get a2-form V4 that is an eigenform of the Laplacian onSO¹3º

for the eigenvalue¹_ ¸ 2º2 Ÿ 4. ‘e Hodge dual � V4 is then a1-form that is an

eigenform for the same eigenvalue, which must be0 by Corollary 3.9.

�

For an application later we will not only need to know how many harmonic homogeneous

forms there are, but also how many harmonic homogeneous formswith log¹Aº coe•cients

there are. O‰en, these two notions coincide, and the following proposition asserts that this is

also the case in our se‹ing.

De€nition3.11. Let � be a connected Riemannian manifold and� = � ¹� º its cone. For_ 2 R,
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de€ne

K¹ _º� ?•� ¹� º =

8>><

>>
:

W=
Í <

9=0¹logAº9W9 for < � 0,W9 2 
 ? ¹� ¹� ºº, such that

� ?•� ¹� ºW= 0, where eachW9 is homogeneous of order_

9>>=

>>
;

”

Proposition 3.12.LetW=
Í <

9=0¹logAº9W9 2 K¹� 2º� 2•� ¹� º , thenW9 = 0 for 9¡ 0.

Proof.Write W9 = A_¸ :
�

3A
A ^ U9 ¸ V9

�
. ‘en, by Lemma 3.5, for 9 � 1,

� ¹log¹Aº9W9º = A� 2
�
dA
A

^ � ¸ �
�

• where

� = log¹Aº9¹� U9 � 2 d� V9º
|                       {z                       }

=0

¸ 29log¹Aº9� 1U9 � 9¹9� 1º log¹Aº9� 2U9• (3.13)

� = log¹Aº9¹� V9 � 2 dU9º
|                      {z                      }

=0

¸ 29log¹Aº9� 1V9 � 9¹9� 1º log¹Aº9� 2V9” (3.14)

Here, the terms� U9 � 2 d� V9 and � V9 � 2 dU9 vanish, becauseU9 is coexact and satis€es

2V9 = dU9, andV9 is exact and satis€esd� V9 = 2U9 according to the discussion of point 2 of

Proposition 3.10. ‘e term � Wis a polynomial inlog¹Aº, and the condition� W= 0 prescribes

that all coe•cients of that polynomial vanish. Assume that< ¡ 0 and check the coe•cient

of log¹Aº< � 1: Eq. (3.13) implies thatU< = 0 and Eq. (3.14) implies thatV< = 0, i.e. W< = 0.

Repeating the argument, we €nd thatW< � 1 = 0,W< � 2 = 0, . . . ,W2 = 0,W1 = 0, which is what we

wanted to show. �

3.1.2 Harmonic forms on Eguˆi-Hanson Space

In the previous section we looked at certain harmonic forms on¹C2 n f0gº•f� 1g. ‘e Eguchi-

Hanson space- EH is asymptotic to the cone¹C2nf0gº•f� 1g, and we can say a great deal about

harmonic forms on- EH just from knowing the harmonic forms on¹C2 n f0gº•f� 1g. ‘is is a

consequence of the work of Lockhart and McOwen (cf. [LM85, Loc87]) and will be the content

of this section.

We will want statements about harmonic forms in certain weighted H•older spaces. ‘ese

spaces are de€ned in the following:
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De€nition3.15. De€ne the weight functions

F : - EH ! R � 0 F : - EH � - EH ! R � 0

G7! 1 ¸ j d¹Gºj• ¹G•~º 7! minfF ¹Gº•F¹~ºg”

Let* � - EH. ForU 2 ¹0•1º, V 2 R, : 2 N, and5 2 
 : ¹- EHº de€ne theweighted H•older norm

of 5 via

»5¼� 0•U
V ¹* º := sup

G•~2*
36 ¹1º ¹G•~º � F ¹G•~º

F ¹G•~ºU� V
j5¹Gº � 5¹~ºj6¹1º

36¹1º ¹G•~ºU •

j j5j j! 1
V ¹* º :=

�
�
�
�
�
�F � V

C 5
�
�
�
�
�
�
! 1 ¹* º

•

j j5j j� :•U
V ¹* º :=

:Õ

9=0

�
�
�
�r 95

�
�
�
�
! 1

V� 9¹* º ¸
�
r 95

�
� 0•U

V� 9¹* º

‘e term 5¹Gº � 5¹~º in the €rst line denotes the di‚erence between5¹Gº and the parallel

transport of5¹~º to the €bre
 : ¹- EHº jG along one of the shortest geodesics connectingGand

~. When* is not speci€ed, take* = - EH.

‘roughout the article we will set V to be a negative number. Informally, an element in the

� :•U
V H•older space decays like36¹1º ¹�• d� 1¹0ººV, as36¹1º ¹�• d� 1¹0ºº ! 1 .

We will now make the meaning of- EH being asymptotic to a coneprecise.

De€nition3.16. Let � be a connected Riemannian manifold and� = � ¹� º be its cone with

cone metric6� . A Riemannian manifold¹"•6 " º is calledasymptotically conical with cone�

and ratea Ÿ 0 if there exists a compact subset! � " , a number' ¡ 0, and a di‚eomorphism

q : ¹'• 1º � � ! " n ! satisfying

jr : ¹q � ¹6" º � 6� º j6� = O¹r a� : º for all : � 0 asr ! 1 ”

Here,r denotes the Levi-Civita connection with respect to6� andr : ¹0•1º � � ! ¹ 0•1º is

the projection onto the €rst component.

Proposition 3.17.Œe Eguchi-Hanson space- EH endowed with the metric6¹1º is asymptotically
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conical with cone� = � ¹SO¹3ºº and ratea = � 4.

Proof. ‘is is the second point of Proposition 2.10. �

We then have the following results about harmonic forms in! 2 on Eguchi-Hanson space:

Lemma 3.18.

1. We have� 2
sing¹- EHº = � 2

deRham¹- EHº = R. For: ¡ 0 de€nea: 2 
 2¹- EHº to be

a: := 5: ¹Aº� 6AdA^ [ 1 � 5: ¹Aº� 2[ 2 ^ [ 3 (3.19)

and endow- EH with the metric6¹: º . Œena: 2 ! 2¹� 2¹- EHºº, � 6¹: ºa: = 0, »a: ¼generates

� 2
deRham¹- EHº, anda: is the unique element in! 2¹� 2¹- EHºº \ »a: ¼satisfying� 6¹: ºa: = 0.

Moreover,a1 2 � 2•U
� 4 ¹� 2¹- EHºº. Away from the exceptional orbitd� 1¹0º ' ( 2, we have that

a: = d_: , where_: = � 5: ¹Aº� 2[ 1”

2. Œe! 2-kernels of� 6¹: º acting on forms of di‚erent degrees are as follows:

Ker¹� 6¹: º : ! 2¹� 2¹- EHºº ! ! 2¹� 2¹- EHººº = ha: i •

Ker¹� 6¹: º : ! 2¹� ? ¹- EHºº ! ! 2¹� ? ¹- EHººº = 0 for ? < 2”

For: = 1 andV 2 »� 4•� 2º they coincide with the� 2•U
V -kernels.

Proof.

1. We have that- EH = ) � ( 2 as smooth manifolds, therefore� 2
sing¹- EHº = R. On smooth

manifolds� 2
sing¹- EHº = � 2

deRham¹- EHº by de Rham's ‘eorem.

One checks with a direct computation thata: from Eq. (3.19) is closed and anti-self-dual,

and therefore co-closed. ‘e equalitya: = d_: follows from a direct computation as

well.
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For : = 0, Eq. (3.19) still de€nes an elementa0 2 
 2¹C2•f� 1g n f0gº. One checks

through direct calculation thata0 2 � 2•U
� 4 ¹� 2¹C2•f� 1gºº. Using the fact that- EH is

asymptotically locally Euclidean (cf. Proposition 2.10), one gets the H•older estimate on

- EH. Furthermore,� 2•U
� 4 � ! 1

� 4 � ! 2• soa: is an element in! 2¹� 2¹C2•f� 1gºº.

By Poincar�e duality, we have� 2
cs¹- EHº = � 2

sing¹- EHº = R, where� 2
cs¹- EHº denotes

the de Rham cohomology with compact support. [Loc87, Example (0.15)] and [Loc87,

‘eorem (7.9)] give that the map

H 2¹- EHº := f b 2 ! 2¹� 2) � - EHº : db = d� b = 0g ! Im
�
� 2

cs¹- EHº ›! � 2
deRham¹- EHº

�

b 7! »b¼

is an isomorphism. ‘us »a: ¼generates� 2
deRham¹- EHº and a: 2 »a: ¼is the unique

element in! 2¹� 2¹- EHºº \ »a: ¼satisfyingda: = 0, d� a: = 0.

It remains to check thata: is also the unique element in! 2¹� 2¹- EHºº \ »a: ¼satisfying

� 6¹: ºa: = 0. ‘e equations � 6¹: ºa: = 0 and ¹d¸ d� ºa: = 0 are equivalent by the same

integration by parts argument as in the compact case, namely for " ¡ 0:

¹

fA� " g
h¹dd� ¸ d� dºa: •a: i dvol6¹: º

=
¹

fA� " g
h¹dd� ºa: • a: i dvol6¹: º ¸

¹

fA� " g
h¹d� dºa: • a: i dvol6¹: º

=
¹

fA� " g
hd� a: •d� a: i dvol6¹: º ¸

¹

fA� " g
d¹d� a: ^ � a: º

¸
¹

fA� " g
hda: •da: i dvol6¹: º ¸

¹

fA� " g
d¹a: ^ � da: º

=
¹

fA� " g
¹hd� a: •d� a: i ¸ h da: •da: iº dvol6¹: º

¸
¹

mfA� " g
¹d� a: ^ � a: ¸ a: ^ � da: º •

where we usedd¹d� a: ^ � a: º = dd� a: ^ � a: � d� a: ^ d� a: in the second step, and Stokes'

‘eorem in the last step. ‘e last term tends to 0 as" ! 1 , because of the decay of

elements in� 2•U
� 4;C¹� 2¹- EHºº. So,� 6¹: ºa: = 0 implies thatd� a: = 0, da: = 0, and the

converse implication is trivial.

2. ‘e €rst line is a restatement of the previous point. ‘e other li nes are [Loc87, Example
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(0.15)] with proof in [Loc87, ‘eorem (7.9)].

‘e ! 2-kernels coincide with the� 2•U
V -kernels, as� 2•U

V ¹� ? ¹- EHºº embeds into! 2¹� ? ¹- EHºº

for V Ÿ � 2 and the explicit description of the! 2-kernels shows that all kernel elements

are actually in� 2•U
V ¹� ? ¹- EHºº for V � � 4.

�

Remark3.20. Note thata: from the lemma cannot have compact support by the unique con-

tinuation property for elliptic equations. We only have that»a: ¼contains a form of compact

support.

‘e previous lemma makes statements about the! 2-kernels of the Laplacian on- EH acting on

?-forms. Using the results from the previous section about harmonic forms onC2•f� 1g, we

can rule out additional harmonic forms even in some of the weighted H•older spaces that do

not embed into! 2. ‘e key proposition that will be proved throughout the rest ofthis section

is the following:

Proposition 3.21.ForV 2 ¹� 4•0º, the kernels of the� 6¹1º acting on forms in� 2•U
V of di‚erent

degrees are as follows:

Ker¹� 6¹1º : � 2•U
V ¹� 2¹- EHºº ! � 0•U

V� 2¹� 2¹- EHººº = ha1i •

Ker¹� 6¹1º : � 2•U
V ¹� ? ¹- EHºº ! � 0•U

V� 2¹� ? ¹- EHººº = 0 for ? < 2”

‘e connection between the Laplacian on Eguchi-Hanson space and its cone is described in

the following results taken from [KL20, Section 4] which were developed in [LM85, Loc87].

‘e theory works for a much bigger class of operators, but we willonly reproduce it for the

Laplacian here.

De€nition3.22. Let " be asymptotically conical and let the notation be as in De€nition 3.16.

Denote byr : � ¹� º ! R � 0 the radius function, and use the same symbol to denote a map

from " to R¡ 0 that agrees withq� r onq¹'• 1º � " . Let� be a vector bundle with metric and

metric connectionr over " . ‘en, for 1 ¡ ? ¡ 1 , ; � 0, _ 2 R denote by! ?
;•_ the completion
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of � 1
cs¹� º with respect to the norm

jjWjj! ?
;•_

=

 
;Õ

9=0

¹

"
jr � _¸ 9r 9Wj?r � 4 vol"

! 1•?

”

‘e space ! ?
;•_ is called the! ?-Sobolev space with; derivatives and decay faster than_.

‹eorem 3.23 (‘eorem 4.10 in [KL20]) . For_ 2 R, denote by� ?•6¹1º : ! @
2•_¹� ? ¹- EHºº !

! @
0•_� 2¹� ? ¹- EHºº the Laplacian of the metric6¹1º acting on?-forms. Œen,Ker� ?•6¹1º is invariant

under changes of_, as long as we do not hit any critical rates. Œat is, if the interval »_• _0¼is

contained in the complement ofD � ?•¹C2nf0gº•f� 1g
, then

Ker
�
� ?•6¹1º : ! @

2•_¹� ? ¹- EHºº ! ! @
0•_� 2¹� ? ¹- EHºº

�

= Ker
�
� ?•6¹1º : ! @

2•_0¹�
? ¹- EHºº ! ! @

0•_0� 2¹� ? ¹- EHºº
�

”

Proposition 3.24(‘eorem 4.20 in [KL20]) . Let_1 Ÿ _2 such thatK¹ _8º� ?•� ¹� º = 0for82 f1•2g.

Œen, the maps

� ?•6¹1º•! 2
; ¸ 2•_1

: ! 2
;¸ 2•_1

¹� ? ¹- EHºº ! ! 2
;•_1� 2¹� ? ¹- EHºº

and� ?•6¹1º•! 2
; ¸ 2•_2

: ! 2
;¸ 2•_2

¹� ? ¹- EHºº ! ! 2
;•_2� 2¹� ? ¹- EHºº

are Fredholm and the di‚erence in their indices is given by

ind
�
� ?•6¹1º•! 2

; ¸ 2•_2

�
� ind

�
� ?•6¹1º•! 2

; ¸ 2•_1

�
=

Õ

_2D � ¹C2nf0gº•f� 1g
\¹ _1•_2º

dimK¹ _º� ?•¹C2nf0gº•f� 1g
(3.25)

Combining everything, we get the following characterisationof harmonic forms with decay:

‹eorem 3.26. For_ 2 ¹� 4•0º, the! 2
2•_-kernels of� ?•6¹1º acting on?-forms of di‚erent degrees

are the same as the! 2-kernels, namely:

Ker¹� 6¹1º : ! 2
2•_¹� 2¹- EHºº ! ! 2

0•_� 2¹� 2¹- EHººº = ha1i •

Ker¹� 6¹1º : ! 2
2•_¹� ? ¹- EHºº ! ! 2

0•_� 2¹� ? ¹- EHººº = 0 for ? < 2”
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Proof.0-forms and4-forms: it follows from the maximum principle that every harmonic func-

tion that decays at in€nity must vanish. ‘e Hodge star is an isomorphism between0-forms

and4-forms that commutes with the Laplacian, so the statement for0-forms implies that state-

ment for 4-forms.

1-forms and3-forms: the kernel of the Laplacian is zero for rate� 2 by the second point of

Lemma 3.18. By the €rst point of Proposition 3.10, there are no critical rates in the interval

»� 2•0º. So, ‘eorem 3.23 implies the claim for1-forms. As above, we get the statement for

3-forms by using the Hodge star.

2-forms: by Proposition 3.10 the only critical rate in»� 2•0º is � 2. ‘e kernel of the Laplacian on

2-forms stays the same for rates_ 2 ¹� 4•� 2º by Lemma 3.18. By ‘eorem 3.23, the dimension

of the kernel of the Laplacian acting on2-forms with decay_ 2 ¹� 4•0º may therefore only

change at_ = � 2. We know from Propositions 3.12 and 3.24 that the index increasesby six

when crossing the critical rate_ = � 2. We will now check that the dimension of the cokernel

decreases by6, which implies that the dimension of the kernel does not change.

‘e dual space of ! 2
0•_ is! 2

0•� 4� _. ‘erefore, the cokernel of � 6¹1º : ! 2
2•� 2¹� 2¹- EHºº ! ! 2

0•� 4¹� 2¹- EHºº

is isomorphic to the kernel of the adjoint operator� �
6¹1º

= � 6¹1º : ! 2
2•0¹� 2¹- EHºº ! ! 2

0•� 2¹� 2¹- EHºº.

Here we used that elements in the cokernel of� 6¹: º are smooth by elliptic regularity, so it does

not ma‹er how many derivatives we demand for sections acted on by the adjoint operator.

We now explicitly write down six linearly independent harmonic forms in! 2
2•0¹� 2¹- EHºº: three

of them are the (self-dual) K•ahler formsl ¹1º
1 , l ¹1º

2 , andl ¹1º
3 de€ned in Proposition 2.5.

Analogously, we can de€ne three harmonicanti-self-dualforms with respect to6¹: º for all : ¡

0. To this end, extend[ 1• [ 2• [ 3 2 so¹3º from Proposition 2.5 toright-invariant forms onSO¹3º,

denoted by[̂ 1, [̂ 2, [̂ 3. ‘ese forms satisfy d[̂ 1 = � [̂ 2 ^ [̂ 3 etc. In analogy to Proposition 2.5,

de€ne

4̂1¹Aº = A 5� 1
: ¹Aº[̂ 1• 4̂2¹Aº = 5: ¹Aº[̂ 2• 4̂3¹Aº = 5: ¹Aº[̂ 3
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and

^l ¹: º
1 = dC^ 4̂1 � 4̂2 ^ 4̂3• ^l ¹: º

2 = dC^ 4̂2 � 4̂3 ^ 4̂1• ^l ¹: º
3 = dC^ 4̂3 � 4̂1 ^ 4̂2”

One checks through computation that̂l ¹: º
8 are closed and anti-self-dual, and therefore har-

monic. A priori, they are de€ned onR¡ 0 � SO¹3º, and it remains to check that they extend

to all of - EH. We have^l ¹: º
2 = d¹A[̂ 2º and ^l ¹: º

3 = d¹A[̂ 3º, whereA[̂ 2 andA[̂ 3 are well-de€ned

1-forms on all of- EH, because they vanish asA! 0. ‘erefore, ^l ¹: º
2 and ^l ¹: º

3 are well-de€ned

on - EH.

We have that^l ¹: º
1 = A 5� 2

: ¹Aº dA^ [̂ 1 � 5� 2
: ¹Aº[̂ 2 ^ [̂ 3, where the €rst summand vanishes as

A ! 0, and the second summand is a multiple of the volume form onSO¹3º � SO¹2º f 0g ' ( 2

pulled back under the projection

SO¹3º � SO¹2º + ! SO¹3º � SO¹2º +

¹6• Gº 7! ¹ 6•0º”

‘us ^l ¹: º
1 is also de€ned on all of- EH. ‘e forms [ 1• [ 2• [ 3•[̂ 1•[̂ 2•[̂ 3 are linearly independent

which implies thatl ¹: º
1 • l ¹: º

2 • l ¹: º
3 • ^l ¹: º

1 • ^l ¹: º
2 • ^l ¹: º

3 are linearly independent.

Last, note that for each6 2 SO¹3º we can expresŝ[ 8¹6º as a linear combination of[ 8¹6º. Each[ 8

decays likeA1•2 asA! 1 , which shows that the^l ¹: º
8 have the same decay as the Hyperk•ahler

triple l ¹: º
8 , which is covariant constant. ‘us, we have thatl ¹1º

8 • ^l ¹1º
8 2 ! 2

2•0¹� 2¹- EHºº, but

8 ! 2
2•� n¹� 2¹- EHºº for all n ¡ 0 and82 f1•2•3g.

‘erefore, the dimension of the cokernel of� 6¹1º : ! 2
2•_¹� 2¹- EHºº ! ! 2

0•_� 2¹� 2¹- EHºº changes

by six when crossing the critical rate_ = � 2, and the dimension of the kernel stays the same.

�

Proposition 3.21 is now an immediate consequence of ‘eorem 3.26.

Proof of Proposition 3.21.Forn ¡ 0we have that� 2•U
V� n is embedded in! 2

2•V, so the claim follows

from ‘eorem 3.26. �
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3.2 Torsion-Free� 2-Structures on the Generalised Kummer Construction

In the two articles [Joy96b], Joyce constructed the €rst examples of manifolds with holonomy

equal to� 2. One starts with the ƒat7-torus, which admits a ƒat� 2-structure. A quotient of the

torus by maps preserving the� 2-structure still carries a ƒat� 2-structure, but hassingularities.

‘e maps are carefully chosen, so that the singularities are modelled on) 3 � C2•f� 1g. By the

results of Section 3.1,) 3� C2•f� 1ghas a family of resolutions) 3� - EH ! ) 3� C2•f� 1gof one

real parameter, where- EH denotes the Eguchi-Hanson space, and the parameter de€nes the

size of a minimal sphere in- EH. We can de€ne a smooth manifold by gluing these resolutions

over the singularities in the quotient of the torus.

‘e product manifold ) 3 � - EH carries the product� 2-structure from Eq. (2.27). ‘at means

we have two torsion-free� 2-structures on our glued manifold: one coming from ƒat) 7, and

the product� 2-structure near the resolution of the singularities. We will interpolate between

the two to get one globally de€ned� 2-structure. ‘is will no longer be torsion-free, but it will

have small enough torsion in the sense of ‘eorem 2.26. ‘is is the argument that was used

in [Joy96b] to prove the existence of a torsion-free� 2-structure, and the construction of this

� 2-structure with small torsion is the content of Section 3.2.1.

Sections 3.2.2 to 3.2.4 give an alternative proof of the existence ofa torsion-free� 2-structure

on this glued manifold.

3.2.1 Resolutions of) 7• �

We brieƒy review the generalised Kummer construction as explained in [Joy96b]. Let¹G1• ” ” ” • G7º

be coordinates on) 7 = R7•Z7, whereG8 2 R•Z, endowed with the ƒat� 2-structurei 0 from

De€nition 2.17. LetU• V•W: ) 7 ! ) 7 de€ned by

U : ¹G1• ” ” ” • G7º 7! ¹� G1•� G2•� G3•� G4• G5• G6• G7º•

V : ¹G1• ” ” ” • G7º 7!
�
� G1•

1
2

� G2• G3• G4•� G5•� G6• G7

�
•

W: ¹G1• ” ” ” • G7º 7!
�
1
2

� G1• G2•
1
2

� G3• G4•� G5• G6•� G7

�
”

(3.27)
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Denote� := hU• V•Wi . ‘e next lemmata collect some information about the orbifold) 7• � :

Lemma 3.28(Section 2.1 in part I, [Joy96b]). U• V•Wpreservei 0, we haveU2 = V2 = W2 = 1, and

U• V•Wcommute. We have that� ' Z3
2.

Lemma 3.29(Lemma 2.1.1 in part I, [Joy96b]). Œe elementsVW, WU, UV, andUVWof � have no

€xed points on) 7. Œe €xed points ofU in ) 7 are16copies of) 3, and the grouphV•Wi acts freely

on the set of16 3-tori €xed byU. Similarly, the €xed points ofV,Win ) 7 are each16copies of) 3,

and the groupshU•Wi andhU• Vi act freely on the sets of16 3-tori €xed byV•Wrespectively.

Lemma 3.30(Lemma 2.1.2 in part I, [Joy96b]). Œe singular set! of ) 7• � is a disjoint union of

12copies of) 3. Œere is an open subset* of) 7• � containing! , such that each of the12connected

components of* is isometric to) 3 �
�
� 4

Z•f� 1g
�
, where� 4

Z is the open ball of radiusZ in R4 for

some positive constantZ (Z = 1•9 will do).

We now de€ne a compact7-manifold" , which can be thought of as a resolution of the orbi-

fold ) 7• � , and a one-parameter family of closed� 2-structuresi C thereon. We can choose an

identi€cation* ' ! �
�
� 4

Z•f� 1g
�

such that we can write on*

i 0 = X1 ^ X2 ^ X3 �
3Õ

8=1

l 8 ^ X8• � i 0 =
1
2
l 1 ^ l 1 �

Õ

¹8•9•:º=¹1•2•3º
and cyclic permutation

l 8 ^ X9 ^ X: •

whereX1• X2• X3 are covariant constant orthonormal1-forms on! , andl 1• l 2• l 3 are the Hy-

perk•ahler triple from De€nition 2.4, cf. Section 2.3.2.

As before, denote by- EH the Eguchi-Hanson space and byd : - EH ! C2•f� 1g the blowup

map from Remark 2.13. De€ne�A := jdj : - EH ! R � 0. ForC2 ¹0•1º, let *̂ := *̂ C := ! � f G 2

- EH : �A¹Gº Ÿ ZC� 1g. De€ne

# C :=
�
¹) 7• � º n! t *̂

�
•� • (3.31)

where forG= ¹G� • GEº 2 * � ! � C2•f� 1g and~ = ¹~� •~Eº 2 *̂ � ! � - EH we haveG� ~ if

G� = ~� andC� d¹~Eº = GE. ‘e smooth manifold # Calso comes with a natural projection map
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c : # C ! ) 7• � induced byd, and we extend�Ato a map on all of# Cvia

�A: # C ! R � 0

G7!

8>>>><

>>>>
:

jd¹Gºj if G2 *̂ •

C� 1Z otherwise”

Write AC := C�Aand choose a non-decreasing functionj : »0• Z¼ ! »0•1¼such thatj ¹Bº = 0 for

B� Z•4 and j ¹Bº = 1 for B� Z•2, and set

el 8 := l ¹1º
8 � d

�
j ¹ACºg

¹1º
8

�
” (3.32)

‘e g¹1º
8 were de€ned in Proposition 2.10, and are the di‚erence between the ƒat Hyperk•ahler

triple on C2•f� 1gand the Hyperk•ahler triple ¹l ¹1º
1 • l ¹1º

2 • l ¹1º
3 º on - EH. On*̂ we haveel 8 = l 8

whereAC ¡ Z•2, andel 8 = l ¹1º
8 whereAC Ÿ Z•4. Now de€ne a3-form i C 2 
 3¹" º and a4-form

oC 2 
 4¹# Cº as follows: on¹) 7• � º n* � # C, seti C= i ando = � i . On*̂ � ! � - EH let

i C := X1 ^ X2 ^ X3 � C2
3Õ

8=1

el 8 ^ X8• (3.33)

oC := C41
2

el 1 ^ el 1 � C2
Õ

¹8•9•:º=¹1•2•3º
and cyclic permutation

el 8 ^ X9 ^ X: ” (3.34)

‘is de€nition mimics the product situation explained in Section 2.3.2. For smallC, the3-form

i C is a� 2-structure and therefore induces a metric6C. Both i C andoC are closed forms, so,

if � i C = oC, then i C would be a torsion-free� 2-structure by ‘eorem 2.22. However, this

does not hold, andi C is not a torsion-free� 2-structure. ‘e following 3-form k C is meant to

measure the torsion ofi C:

� k C = � ¹i Cº � oC” (3.35)

Its crucial properties are:

Lemma 3.36.Letk C 2 
 3¹" º as in Eq.(3.35). Œere exists a positive constant2 independent ofC
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such that

d� k C = d� i C•
�
�
�
�k C

�
�
�
�
� 1•U � 2C4•

where the H•older norm is de€ned with respect to the metric6C and its induced Levi-Civita con-

nection.

Proof. ‘e equality d� k C = d� i C follows from Eq. (3.35) and the fact thatoC is closed.

‘e operator � is parallel, so the covariant derivativer - and � commute for every vector

€eld - on # C, therefore it su•ces to estimate� k C rather thank C. Write i ¹Cº
- EH� ! := X1 ^ X2 ^

X3 � C2 Í 3
8=1 l ¹1º

8 ^ X8 for the product� 2-structure on- EH � ! and denote the induced metric,

which is the product metric, by6¹Cº
- EH� ! . Recall the linear map) and the non-linear map�

from Proposition 2.24 satisfying� ¹i ¸ bº = � i � ) ¹bº � � ¹bº for a � 2-structurei and a small

deformationb. Using this notation, we get:

� ¹i Cº � oC = �
�
i ¹Cº

- EH� ! � C2X1 ^ d
�
j ¹ACºg

¹1º
1

� �

� � 6¹Cº
- EH� !

i ¹Cº
- EH� ! ¸ C2X2 ^ X3 ^ d

�
j ¹ACºg

¹1º
1

�

= )
�
C2X1 ^ d

�
j ¹ACºg

¹1º
1

� �
� �

�
� C2X1 ^ d

�
j ¹ACºg

¹1º
1

� �

¸ C2X2 ^ X3 ^ d
�
j ¹ACºg

¹1º
1

�
”

Here we used the equalityl ¹: º
1 � l 1 = dg¹: º

1 from Proposition 2.10 in the €rst step and the

de€nition of) and� in the second step.

Note that � ¹i Cº � oC is supported onfG 2 " : ¹Z•4ºC� 1 Ÿ �A Ÿ ¹Z•2ºC� 1g. ‘erefore, by

Eq. (2.11),

�
�
�C2 d

�
j ¹ACºg

¹1º
1

� �
�
�
C26¹1º

�
�
�
�C2 ¹dj ¹ACººg¹1º

1

�
�
�
C26¹1º

¸
�
�
�C2j ¹ACº dg¹1º

1

�
�
�
C26¹1º

� 2C
�
�
�Cg¹1º

1

�
�
�
C26¹1º

¸ 2
�
�
�C2j ¹ACº dg¹1º

1

�
�
�
C26¹1º

= CO¹�A� 3º ¸ O¹ �A� 4º � 2C4”
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Using the estimates for) and� from Proposition 2.24 we get the claim. �

3.2.2 ‹e Laplacian on R3 � - EH

In the next section we will prove an estimate for the Laplacian on2-forms on# C. We will

use a blowup argument to essentially reduce the analysis on# C to the analysis on) 7• � and

R3� - EH. In this section we will cite a general result for uniformly elliptic operators on product

manifoldsR= � . from [Wal13b], where. is a Riemannian manifold, and use this to €nd that

harmonic2-forms onR3� - EH are wedge products of parallel forms onR3 and harmonic forms

on - EH.

De€nition3.37 (De€nition 2.75 in [Wal13b]). A Riemannian manifold. is said to be ofbounded

geometryif it is complete, its Riemann curvature tensor is bounded fromabove and its injectiv-

ity radius is bounded from below. A vector bundle over. is said to be ofbounded geometryif

it has trivialisations over balls of €xed radius such that the transition functions and all of their

derivatives are uniformly bounded. We say that a complete oriented Riemannian manifold

- hassubexponential volume growthif for eachG 2 - the functionA 7! vol¹� A¹Gºº grows

subexponentially, i.e.,vol¹� A¹Gºº = >¹exp¹2Aºº asA! 1 for every2 ¡ 0.

Lemma 3.38(Lemma 2.76 in [Wal13b]). Let � be a vector bundle of bounded geometry over

a Riemannian manifold. of bounded geometry and with subexponential volume growth,and

suppose that� : � 1 ¹.• � º ! � 1 ¹.• � º is a uniformly elliptic operator of second order whose

coe•cients and their €rst derivatives are uniformly bounded, that is non-negative, i.e.,h�0• 0 i � 0

for all 0 2 , 2•2¹.• � º, and formally self-adjoint. Let? : R= � . ! . be the projection onto the

second component and0 2 � 1 ¹R= � . • ? � � º such that

¹� R= ¸ ?� � º 0 = 0

andjj0j j! 1 is €nite, then0 is constant in theR=-direction, that is0¹G•~º = 0¹~º. Here,� R= acts on

a section0 2 � 1 ¹R= � . • ? � � º by using the identi€cation� 1 ¹R= � . • ? � � º = � 1 ¹R=• � 1 ¹.• � ºº.

Corollary 3.39. Let . be a manifold of bounded geometry and with subexponential volume
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growth. If0 2 
 2¹R3 � . º satis€esjj0j j! 1 Ÿ 1 and

� 6R3 � 6¹1º 0 = 0•

then0 is a sum of terms of the form01 ^ 02, where01 2 
 : ¹R3º is parallel, and02 2 
 ; ¹. º

satis€es� 6¹1º02 = 0.

Proof.We can view the vector bundle of2-forms overR3 � . as a pullback bundle pulled back

from . via

� 2¹R3 � . º ' ?�
�
� 2¹. º � � 1¹. º 
 � 1¹R3º � � 2¹R3º

�

where � : ¹R3º denotes the trivial vector bundle over. whose €bre at each point is� : ¹R3º.

Under this identi€cation,� R3� . = � R3 ¸ ?� ¹� . ¸ � º, where� is the canonical Laplacian on

trivial vector bundles.

So, if0 2 
 2¹R3 � . º with jj0j j! 1 Ÿ 1 and� 6R3 � 6¹1º 0 = 0, then0 is the pullback of a section

of � 2¹. º � � 1¹. º 
 � 1¹R3º � � 2¹R3º over. which is in the kernel of� . ¸ � by Lemma 3.38.

Elements in the kernel of� . ¸ � over. are of the form01^ 02, where01 2 
 : ¹R3º is harmonic,

and02 2 
 ; ¹. º satis€es� 6¹1º02 = 0. Bounded harmonic: -forms onR3 can be identi€ed with

tuples of harmonic functions onR3 which are constant by the maximum principle. ‘is means

that the bounded harmonic: -forms are parallel which proves the claim. �

3.2.3 ‹e Laplacian on # C

We now move on to the heart of the argument: an operator bound for the inverse of the

Laplacian on# C. ‘e Laplacian on 2-forms has a kernel of dimension12¹# Cº, so we can only

expect such a bound for forms which are not in the kernel. Standard elliptic theory would

give an estimate for forms orthogonal to the kernel. ‘is estimate would depend on the gluing

parameterC, but we want auniform estimate, i.e. an estimate independent ofC. Proving such

an estimate is the content of this section.
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Stating the estimate We €rst de€ne weighted H•older norms analogous to the previous sec-

tions. ‘ese norms have the following two important properties: far away from! , they are

uniformly equivalent to ordinary H•older norms, and near! they are uniformly equivalent to

the weighted H•older norms onR3 � - EH, a‰er applying a rescaling map.

De€nition3.40. ForC2 ¹0•1º de€ne the weight functions

FC : # C ! R¡ 0

G7! C¸ AC•
(3.41)

F R3� R4 : R3 � R4 ! R¡ 0

¹G•~º 7! j~j •

F R3� - EH : R3 � - EH ! R¡ 0

G7! 1 ¸ �A

and for : 2 N, U 2 ¹0•1º, V 2 R the weighted H•older normsjj�j j� :•U
V;C

on # C and jj�j j� :•U
V

on

R3 � R4 andR3 � - EH respectively as in De€nition 3.15.

We now de€ne a way to decompose elements0 2 
 2¹# Cº into a componentcC that looks

like a1 2 
 2¹- EHº from Eq. (3.19) on every €bref~g � - EH � ) 3 � - EH, and a remainder,

denoted bydC. ‘e reason for this is the following: the Laplacian onImcC is approximately

the Laplacian on! , and its inverse has operator norm of orderO¹1º uniformly in Cas a map

� 2•U
V;C¹� 2¹# Cºº ! � 0•U

V;C¹� 2¹# Cºº. Notice that the weight does not change when applying the

Laplacian. OnIm dC, it will turn out that the Laplacian has operator norm of orderO¹1º

uniformly in Cas a map� 2•U
V;C¹� 2¹# Cºº ! � 2•U

V� 2;C¹� 2¹# Cºº. Here the weight changed in the

same way as it did on the non-compact asymptotically conical space- EH, cf. Section 3.1.2. In

order to prove an estimate of the formjj0j j � 2 jj� 0jj we will de€ne norms that incorporate

these two di‚erent scaling behaviours in this section. ‘e idea is taken from [Wal17].

Let a 2 
 2¹- EHº be harmonic and with unit! 2-norm with respect to the norm6¹1º on - EH.

As a shorthand, writej C := j ¹2ACº. De€necC : 
 2¹# Cº ! 
 0¹! º via

¹cC0º¹~º := h0j f ~g� - EH• j Cai ! 2•C26- EH
for ~ 2 !• (3.42)
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wherea 2 
 2¹- EHº is a multiple ofa satisfyinghj Ca• jCai ! 2•C26- EH
= 1. ‘is is equivalent to

hj Ca• jCai ! 2•6- EH
= 1, i.e. in the metric6- EH rather thanC26- EH, because the! 2-norm on2-forms

is a conformal invariant. De€ne]C : 
 0¹! º ! 
 2¹# Cº via

¹]C6º := j C � ?�
! 6 � ?�

- EH
a• (3.43)

where6 2 
 0¹! º, and?! : ! � - EH ! ) 3, ?- EH : ! � - EH ! - EH are projection maps. As

wri‹en, ¹]C6º is an element in
 2¹! � - EHº, but becausesupp¹]C6º � *̂ , we can view it as an

element in
 2¹# Cº. ‘en

cC]C6 = 6 for all 6 2 
 0¹! º” (3.44)

Last, de€necC := ]CcC, as well asdC := 1 � cC.

Proposition 3.45.For all: 2 N andV ¡ � 4 there exists2 ¡ 0 independent ofCsuch that for all

6 2 
 0¹! º we have that

jj]C6jj� :•U
V;C

� 2C� 2� V j j6j j� :•U ” (3.46)

Proof.For the! 1 -norm we have that

�
�
�
�?�

! 6 � ?�
- EH

a
�
�
�
�
! 1

� 4;C•6# C
� 2

�
�
�
�?�

! 6 � ?�
- EH

a � ¹C¸ C�Aº4
�
�
�
�
! 1 •6R3 � C26- EH

� 2
�
�
�
�?�

! 6 � ?�
- EH

a � ¹1 ¸ �Aº4C4C� 2
�
�
�
�
! 1 •6R3 � 6- EH

� 2C2
�
�
�
�?�

! 6
�
�
�
�
! 1

where we used thata = O¹�A� 4º and therefore

�
�
�
�a � �A4

�
�
�
�
! 1 •6- EH

� 2• (3.47)

in the last step. ForV ¡ � 4 we have thatjjj Cj j! 1
4� V

� 2C� 4� V, which proves the claim for the

weighted! 1 -norm. ‘e proof for higher derivatives is analogous. �

Proposition 3.48.For all: 2 N• V Ÿ 0 there exists2 ¡ 0 independent ofCsuch that for all
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0 2 
 2¹# Cº we have that

j jcC0jj� :•U � C2̧ V� U� : j j0j j� :•U
V;C

” (3.49)

Proof.We €rst estimate the! 1 -part, i.e.j jcC0jj! 1 . To this end

jcC0¹Gºj �
¹

fG2- EH: �A¹Gº � C� 1Zg
j0jC26- EH

� jajC26- EH
volC26- EH

� C2 j j0jj! 1
V;C

¹

- EH

¹C¸ �ACºV � jaj6- EH
vol6- EH

� 2C2̧ V j j0j j! 1
V;C

¹

- EH

¹1 ¸ �AºV � ¹1 ¸ �Aº� 4 vol6- EH

� 2C2̧ V
¹ 1

0
¹1 ¸ �Aº� 4̧ V � �A3 d�A

|                       {z                       }
� 2

� 2C2̧ V j j0j j! 1
V;C

•

where in the second step we used the de€nition ofjj�j j! 1
V;C

and switched from measuring in

C26- EH to measuring in6- EH which introduces the factor ofC2; in the third step we usedjaj6- EH
�

2¹1¸ �Aº� 4; in the fourth step we used polar coordinates to switch from integrating over- EH to

integrating over»0•1º . ‘e estimates for the H •older norm, derivatives, and for other weights

are proved analogously. �

We are now ready to de€ne the composite norms which weigh thecC and dC components

di‚erently.

De€nition3.50. ForU 2 ¹0•1º andV 2 ¹� 1•0º let

j j0j jXC
:= j jdC0jj� 2•U

V;C
¸ C� 3•2 j jcC0jj� 2•U •

j j0j jYC
:= j jdC0jj� 0•U

V� 2;C
¸ C� 3•2 j jcC0jj� 0•U ”

In the following, we will always assume thatU and V are close to0. ‘e most restrictive

estimate in which this fact is used is Eq. (3.81). For concreteness, one may chooseU = 1•16

andV = � 1•16.
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De€nition3.51 (Approximate kernel). Let � 1• ” ” ” • �12 be the connected components of̂* and

let j � 8 be the characteristic function of the set� 8. ‘en de€ne the approximate kernel of� on

# C to be

K := f¹ 1 � j Cºc � 0 : 0 2 Ker� ) 7• � g � span
�
j C � ?�

- EH
a � j � 8

�

8=1•”””•12
•

wherec : # C ! ) 7• � is the projection map from the previous section.

Proposition 3.52.Œere exists2 independent ofCsuch that for all0 2 
 2¹# Cº, 0 ? K we have

jj0j jXC
� 2 jj� 0jjYC

” (3.53)

‘e proof of this proposition will extend over the rest of the section. ‘is linear estimate

perpendicular to the approximate kernel is one thing we need. ‘efollowing proposition

states that by restricting to the orthogonal complement ofK we are not forge‹ing about any

important 2-forms | the image of the Laplacian remains the same when restricted to this

orthogonal complement.

Proposition 3.54.Œe operator

� : K ? ! Im �

is surjective, whereIm � denotes the image of the Laplacian on all of
 2¹# Cº.

Proof.Step 1:Show that the! 2-orthogonal projection@: Ker� # C ! K is an isomorphism.

Assume there exists0 < 0 2 
 2¹# Cº with � 0 = 0such that@¹0º = 0, i.e.0 ? K . ‘en � 0 < 0by

Proposition 3.52, which is a contradiction. Now notedim¹Ker� # Cº = 10¹! º ¸ 12¹) 7• � º = 12̧ : ,

which is proved using the K•unneth formula (see [JK21, Proposition 6.1]). By construction,

dim¹Kº = 12¸ : , so@is a surjective linear map between vector spaces of the same dimension,

and therefore injective.

Step 2:CheckIm ¹� jK ? º = Im � .

It su•ces to check thatIm � � Im ¹� jK ? º. Let~ 2 Im � , and� G= ~. Denote the! 2-orthogonal
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projection ontoK by projK . Let

I := @� 1¹projK ¹� Gºº”

‘en � ¹G¸ I º = ~, andprojK ¹G¸ I º = 0 because ofprojK � @� 1 = Id, i.e. G¸ I ? K which

completes the proof. �

Comparison with the Laplacian on! ‘e embedding ]C : 
 0¹! º ! 
 2¹# Cº is de€ned using

a cut-o‚ of a 2 
 2¹- EHº. If not for this cut-o‚, we would have that� ]C = ]C� , where we

use the symbol� to denote the Laplacian on# C as well as the Laplacian on! . In our actual

situation, we still have that� and]Cnearly commute, and that is the content of the following

proposition.

Proposition 3.55.For anyV � 0 there exists2 ¡ 0 independent ofCsuch that for all6 2 
 0¹! º

we have

jj ¹� ]C� ]C� º6j j� 0•U
V� 2;C

� 2C2 j j6j j� 2•U ” (3.56)

Proof.De€ne the mape]C : 
 0¹! º ! 
 2¹) 3 � - EHº viae]C¹6º = ?�
! 6 � ?�

- EH
a, wherea 2 
 2¹- EHº

is harmonic and has unit! 2-norm with respect to6- EH. ‘en

¹� e]C� e]C� º6 = 0” (3.57)

We aim to estimate

¹� ]C� ]C� º6 = ¹� ]C� � e]Cº6
|          {z          }

=:�

¸ ¹ � e]C� e]C� º6
|          {z          }

=:��

¸ ¹e]C� � ]C� º6
|          {z          }

=:�� �

”

We begin by estimating I, where it will be convenient to estimate on two regions separately:


 1 := fG2 ! � - EH : �A¹Gº � C� 1Z•8g•


 2 := fG2 ! � - EH : C� 1Z•8g � �A¹Gº � C� 1Z•4g”
(3.58)
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‘en

j j� j j� 0•U
V� 2;C

� j j ¹ ]C � e]Cº6j j� 2•U
V;C

=
�
�
�
�?�

! 6 � ?�
- EH

¹a � aº
�
�
�
�
� 2•U

V;C

�
�
�
�
�?�

! 6 � ?�
- EH

¹a � aº
�
�
�
�
� 2•U

V;C¹
 1º
¸

�
�
�
�?�

! 6 � j C?�
- EH

¹a � aº
�
�
�
�
� 2•U

V;C¹
 2º

We will estimate the two summands separately. ‘e €rst summand isde€ned on the region


 1 = fG2 ! � - EH : �A¹Gº � C� 1Z•8gwhere neithera nor a is cut o‚. We have that

ja¹Gº � a¹GºjC26- EH
� 2C2 for G2 - EH with �A¹Gº � C� 1Z•8 (3.59)

for the following reason:ha•ai ! 2•C26- EH
= 1 by de€nition, thus

hj Ca• jCai ! 2•C26- EH
� h a•ai ! 2•C26- EH

�
¹

fG2- EH: �A¹Gº � ZC� 1•8g
jaj2C26- EH

volC26- EH

� 1 �
¹ 1

ZC� 1•8
¹1 ¸ Aº� 8A3 dA� 1 � 2C4”

If �A¹Gº � C� 1Z•8 we have thata¹Gº = a¹Gº•hj Ca• jCai ! 2•C26- EH
because the cut-o‚ is applied

where �A¹Gº ¡ C� 1Z•8. ‘is implies, at the point G,

ja � ajC26- EH
�

�
�
�
�
�
a

 

1 �
1

hj Ca• jCai ! 2•C26- EH

! �
�
�
�
�
C26- EH

�

�
�
�
�a �

C4

1 � C4

�
�
�
�
C26- EH

� C� 2
�
�
�
�a �

C4

1 � C4

�
�
�
�
6- EH

� 2C2”

Using this for our estimate of the €rst summand of I, we obtain:

�
�
�
�?�

! 6 � ?�
- EH

¹a � aº
�
�
�
�
� 2•U

V;C¹
 1º
� C2

�
�
�
�?�

! 6
�
�
�
�
� 2•U

V;C
� 2C2 j j6j j� 2•U ”
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For the second summand we get:

�
�
�
�?�

! 6 � j C?�
- EH

¹a � aº
�
�
�
�
� 2•U

V;C¹
 2º

�
�
�
�
�?�

) 36
�
�
�
�
� 2•U

0;C

�
�
�
�j C?�

- EH
¹a � aº

�
�
�
�
� 2•U

V;C¹
 2º

�
�
�
�
�?�

) 36
�
�
�
�
� 2•U

0;C
j jj Cj j� 2•U

0;C
� j j1j j� 2•U

V¸ 4;C¹
 2º

�
j jaj j� 2•U

� 4;C¹
 2º ¸ j j aj j� 2•U
� 4;C¹
 2º

�

� 2C2 j j6j j� 2•U •

where in the last step we usedjj1j j� 2•U
V¸ 4•0;C¹
 2º � 2, which holds because far away from! , the

weight functionF V¸ 4•0;C is uniformly bounded. We also used

jajC26- EH
= C� 2jaj6- EH

� 2C� 2¹1 ¸ �Aº� 4 � 2C2¹C¸ C�Aº� 4 � 2C2 on 
 2” (3.60)

Together with Eq. (3.59) this shows thatjajC26- EH
� 2C2 on 
 2.

Altogether jj� j j� 0•U
V� 2;C

� 2C2 j j6j j� 2•U. Furthermore,� � = 0 because of Eq. (3.57). Lastly, III is

estimated like I, which shows the claim. �

‘e goal of this section is to prove an estimate for the operator norm of the inverse of the

Laplacian with respect to the normsjj�j jXC
and jj�j jYC

. ‘e purpose of these norms is to essen-

tially split the problem into an estimate onImcC and remainder. ‘e following proposition

contains the estimate onImcC.

Proposition 3.61.Œere exists2 ¡ 0 independent ofCsuch that forCsmall enough and for all

6 2 
 0¹! º satisfying6 ? Ker� ! we have that

j j6j j� 2•U � 2 jjcC� ]C6jj� 0•U ” (3.62)
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Proof.We have

jj6j j� 2•U � 2 j j� 6j j� 0•U

= 2jjcC]C� 6j j� 0•U

� 2 j jcC� ]C6jj� 0•U ¸ 2 j jcC� ]C6 � cC]C� 6j j� 0•U

� 2 j jcC� ]C6jj� 0•U ¸ 2C2� U j j6j j� 2•U •

where we used elliptic regularity for the operator� on ! in the €rst step, and Propositions 3.48

and 3.55 in the last step. At this point, the last summand2C2� U j j6j j� 2•U can be absorbed into

the le‰ hand side forCsmall enough. �

‹e model operator on R3 � - EH

De€nition3.63. For 9 2 f1• ” ” ” •12g let � 0
9 be a connected component of̂* , but made slightly

smaller, explicitly

� 0
9 := � 9 \ f¹ G� • GEº 2 ! � - EH : �A¹GEº � C� 1Z•4g”

ForV 2 R let

B9•V•C: 
 2¹# Cº ! 
 2¹R3 � f G2 - EH : �A¹Gº � C� 1Z•4gº

0 7! C� V� 2¹? � ¹� Cº•Idº�
�
0j� 0

9

�
•

where? : R3 ! ) 3 denotes the quotient map.

‘en:

Lemma 3.64.For92 f1• ” ” ” •12g, V 2 R we have that for all0 2 
 2¹R3 � - EHº we have

�
�
�
�B9•V•C0

�
�
�
�
� :•U

V
= jj0jj� :•U

V;C ¹� 0
9º • and

�
B9•V� 2•C� # C0 � � 6R3 � 6¹1ºB9•V•C0

�
j� 0

9
= 0”

Here� 6R3 � 6¹1º denotes the Laplacian onR3 � - EH with respect to the metric6R3 � 6¹1º .
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Proof. ‘e map ¹¹�Cº � ?•Idº : � 0
9 ! R3 � f G 2 - EH : �A¹Gº � C� 1Z•4g pulls back the metric

C2¹6R3 � 6¹1ºº to the metric induced byi C. ‘e extra factor C� V� 2 cancels out the factorC2 when

changing the metric fromC2¹6R3 � 6¹1ºº to 6R3 � 6¹1º on 2-forms and cancels out the factorCV

coming from the de€nition ofjj�j j� :•U
V;C

. �

Estimate ofdC0 In Proposition 3.61 we essentially proved an estimate for the inverse of the

Laplacian onImcC. In order to get an estimate with respect tojj�j jXC
and jj�j jYC

we need to

estimate the inverse of the Laplacian onIm dC. Recall the projectioncC onto the €brewise

harmonic part from Eq. (3.42) and its complementdC. ‘e two operators satisfy cCdC = 0, so

the following proposition implies an estimate for the inverse of the Laplacian for elements

0 2 Im dC � 
 2¹# Cº.

Proposition 3.65.Write K 0 := f¹ 1 � j Cº0 : 0 2 Ker� ) 7• � g � 
 2¹# Cº. Œen there exists2 ¡ 0

independent ofCsuch that for0 2 
 2¹# Cº satisfying0 ? K 0 we have

jj0j j� 2•U
V;C

� 2
�
j j� 0j j� 0•U

V� 2;C
¸ j j cC0jj! 1

V;C

�
” (3.66)

Proof. ‘e Schauder estimate

jj0jj� 2•U
V;C

� 2
�
j j� 0j j� 0•U

V� 2;C
¸ j j 0j j! 1

V;C

�
(3.67)

can be derived as in [Wal17, Proposition 8.15]. It then su•ces to show that there exists2 such

that

j j0j j! 1
V;C

� 2
�
j j� 0j j� 0•U

V� 2;C
¸ j j cC0jj! 1

V;C

�
” (3.68)

Assume Eq. (3.68) is false, then there existC8 ! 0,08 2 
 2¹# C8º satisfying08 ? K 0, andG8 2 # C8

such that

j j0j j� 2•U
V;C8

� 2•
�
�F V;C8¹G8º08¹G8º

�
� = 1• and jj� 08j j� 0•U

V� 2;C8
! 0•

�
�
�
�cC808

�
�
�
�
! 1

V;C8
! 0” (3.69)

Here, we gotj j0j j� 2•U
V;C8

� 2 from Eq. (3.67). Without loss of generality we can assume to be in
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one of three following cases, and we will arrive at a contradiction in each of them.

Case 1:the sequenceG8 concentrates on one ALE space, i.e.C� 1
8 AC8¹G8º ! 2 Ÿ 1 (see Fig. 2).

+

N t

xx ii

R3 £ X

zzii

Figure 2: Blowup analysis near the associative is reduced to the analysis of the Laplacian on
R3 � - EH.

By passing to a subsequence and translating in theR3-direction if necessary, we can assume

that G8 concentrates near one €xed connected component of! . Let � 9 � ! � - EH be the

connected component̂* containing an accumulation point of the sequenceG8. De€nee08 :=

B9•V•C08 2 
 2¹R3 � f G2 - EH : �A¹Gº � C� 1
8 Z•4gºand leteG8 be a li‰ from� 9 to R3 � - EH. ‘e new

2-form e08 then satis€es

jje08j j� 2•U
V

� 2•¹1 ¸ �A¹eG8ºº� V je08¹eG8º j � 2•and jj� e08j j� 0•U
V� 2

! 0•

which follows from Lemma 3.64. Now the weight function no longer hasC8 in it and distances

and tensors are measured using the metric6R3 � 6¹1º .

By the assumption of case 1, we have�A¹eG8º ! 2 Ÿ 1 . By passing to a subsequence we can

assume thateG8 converges, so writeG� := lim8!1 eG8 2 R3 � - EH. Using the Arzel�a-Ascoli

theorem and a diagonal argument, we can extract a limit0� 2 
 2¹R3 � - EHº of the sequence

e08 satisfying:

jj0� j j! 1
V

� 2• and (3.70)

� 6R3 � 6¹1º 0� = 0• and (3.71)

¹1 ¸ �A¹G� ºº� V j0� ¹G� º j ¡ 2” (3.72)

By Corollary 3.39 (applied to the caseR3 � - EH), we have that0� is independent of theR3-
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direction. By Proposition 3.21, the only harmonic forms on- EH that decay like�AV are multiples

of a1. ‘us 0� is the pullback of a multiple ofa1 under the projection?- EH : R3 � - EH ! - EH.

Because
�
�
�
�cC808

�
�
�
�
! 1

V;C8

! 0, we have that0� is perpendicular toa on everyf~g � - EH � R3 � - EH.

Here is how to see this in detail: let~ 2 ! , then we calculate onf~g � - EH:

h0� •ai = h0� •a � j Cai ¸ h 0� � e08• j Cai ¸ h e08• j Cai = � ¸ � � ¸ � � � ” (3.73)

Here,

j� j �
�
�h0� •a � j Cai fG2- EH: �A¹Gº � C� 1Z•8g

�
� ¸

�
�h0� •a � j Cai fG2- EH: �A¹Gº � C� 1Z•8g

�
� •

where we have for the €rst summand

�
�h0� •a � j Cai fG2- EH: �A¹Gº � C� 1Z•8g

�
� �

¹ C� 1Z•8

0
j0� j6¹1º � ja � j Caj6¹1ºA

3 dA

� 2
¹ C� 1Z•8

0
AVC4A3 dA� 2C� V ! 0”

Here we used Eq. (3.70) and Eq. (3.59) (a‰er changing fromj � jC26- EH
to j � j6- EH

) in the second

step. For the second summand we €nd

�
�h0� •a � j Cai fG2- EH: �A¹Gº � C� 1Z•8g

�
� � 2

¹ 1

Z•8C� 1
AVA� 4A3 dA� 2C� V ! 0•

where we useda = O¹�A� 4º anda = O¹�A� 4º in the €rst step.

In order to estimate� � , let ; ¡ 0. ‘en

j� � j �
�
�h0� � e08• j Cai fG2- EH: �A¹Gº � ; g

�
� ¸

�
�h0� � e08• j Cai fG2- EH: �A¹Gº � ; g

�
� •

and we €nd for the €rst summand

�
�h0� � e08• j Cai fG2- EH: �A¹Gº � ; g

�
� � 2

�
j j0� j j! 1

V
¸ j j e08j j! 1

V

� ¹ 1

;
AV� 4̧ 3 dA� 2;V
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for a constant2 independent of;. For the second summand we have

�
�h0� � e08• j Cai fG2- EH: �A¹Gº � ; g

�
� � j j 0� � e08j j! 1

V ¹ fG2- EH: �A¹Gº � ; gº �
¹ ;

0
AV� 4̧ 3 dA

� 2 jj0� � e08j j! 1
V ¹ fG2- EH: �A¹Gº � ; gº ! 0

as8! 1 by de€nition of0� . Last,

j� � � j = C� 2� Vj ¹cC08º ¹~º j = C� 2� Vj ¹cC]CcC08º ¹~º j � 2 j jcC08j j! 1
V;C

! 0•

where we used Proposition 3.48 for the estimate.

Altogether we see that, by takinglim8!1 in Eq. (3.73), we have thath0� •ai � 2;V, where the

constant2 was independent of;. ‘is is true for any ; ¡ 0, thereforeh0� •ai = 0. But this is a

contradiction to Eq. (3.72).

Case 2:the sequenceG8 concentrates on the regular part, i.e.AC8¹G8º ! 2 ¡ 0 (see Fig. 3).

+ + +
++++++++++++++++++++++++++++++++++++++++++++++ !

+ + +
++++++++++++++++++++++++++++++++++++++++++++++++

N t

xx ii

L

Y

xx ii

Figure 3: Blowup analysis away from the associative is reduced to the analysis of the Laplacian
on) 7• � .

Using the Arzel�a-Ascoli theorem and a diagonal argument, we extract a limit0� 2 
 2¹) 7• � n! º.

Denote, furthermore,lim8!1 G8 = G� . We havej0� j Ÿ 2 � 3¹�• ! ºV, so we have that0� is a well-

de€ned distribution on" •h]i acting on! 2-sections becauseV ¡ � 2. We also have� 0� = 0, so

0� is smooth by elliptic regularity, e.g. [Fol95, ‘eorem 6.33].

Furthermore,

h0� • ¹1 � j ¹23¹�• ! ººº �U8i ) 7• � = lim
8!1

h08•¹1 � j C¹ACºº � c � U8i # C8
= 0” (3.74)
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By the unique continuation property for elliptic PDEs, the inner product

h �•¹1 � j º � ¹ 23¹�• ! ºº � i

is non-degenerate on harmonic forms. ‘e2-form 0� is a harmonic form that is orthogonal to

all harmonic forms with respect to this inner product, therefore 0� = 0. But this contradicts

0� ¹G� º ¡ 2.

Case 3:the sequenceG8 concentrates on the neck region, i.e.�A¹G8º ! 1 , butAC¹G8º ! 0 (see

Fig. 4).

+
+

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

N t

xx ii

+

R3 £ R4

zzii

Figure 4: Blowup analysis in the neck region is reduced to the analysis of the Laplacian on
R3 � R4.

De€nee08 2 
 2¹R3� - EHº andeG8 2 R3� - EH as in case 1. In this case, we have thatjd¹eG8º j ! 1 .

In order to be able to obtain a limit of this sequence, let' 8 ! 1 be a sequence such that

' 8•j d¹eG8º j ! 0. Cu‹ing out the exceptional locus of the Eguchi-Hanson space, we can consider

f¹ G� • GEº 2 R3 � - EH : ' 8 � j dj ¹GEº � ZC� 1
8 gas a subset ofR3 � C2•f� 1g. OnR3 � C2•f� 1g,

we have the rescaling map¹� jd¹eG8º jº.

We now de€ne:

ee08 := ¹� jd¹eG8º jº�
�
e08j f ' 8� j d j � ZC� 1

8 g

�
� jd¹eG8º j� 2� V

2 
 2¹R3 � f G2 - EH : ' 8•j d¹eG8º j � j d¹Gºj � ZC� 1
8 •j d¹eG8º jgº•

eeG8 := eG8•j d¹eG8º j ”

(3.75)
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‘is sequence satis€es

�
�
�
�
�
�ee08

�
�
�
�
�
�
� 2•U

V

� 2 and
�
�
�ee08¹eeG8º

�
�
� ¡ 2” (3.76)

‘e data ee08 andeeG8 are de€ned on (subsets of)R3 � C2•f� 1g. We use the same symbols to

denote their pullbacks under the quotient mapC2 ! C2•f� 1g.

As before, we extract a� 2•U•2
;>2 -limit 0� 2 
 2¹R3 � R4 n f0gº satisfying

� R70� = 0• and jj0� j j! 1
V ¹R3� R4º � 2”

We see as in case 2 that0� de€nes a distribution on all ofR7, and is smooth by elliptic regularity

on all of R7.

We also get an! 1 -bound for0� as follows: away fromR3 � f 0g, this is given by Eq. (3.76). To

see that0� does not blow up in theR3-direction nearR3 � f 0g, consider any~ 2 R3 � f 0g. Let

1 Ÿ ? Ÿ � 4•V, thenjj0� j j! ? ¹� 1¹~ºº � 2, independent of~, by Eq. (3.76). So, by elliptic regularity

jj0� j j! ?
< ¹� 1¹~ºº � 2 for any< 2 N, and by the Sobolev embedding we havejj0� j j! 1 � 2, where

all of these estimates were independent of~.

By Corollary 3.39 (applied toR3 � R4), 0� is constant in theR3 direction. ‘e limit 0� is

therefore the pullback of a harmonic, decaying form ofR4, and must thus vanish, which is a

contradiction to the second part of Eq. (3.76). �

Cross-term estimates We have now established uniform estimates for the inverse of� on

ImcC and Im dC. As it stands, it could happen that the operator norm ofdC� cC or cC� dC is

very big. It will turn out in our proof of Proposition 3.52 that insuch a case one would be

unable to deduce anything about the inverse of the operator normof � with respect tojj�j jXC

and jj�j jYC
. Fortunately, it turns out that the operator norms ofdC� ]C (and thereforedC� cC,

becausecC = ]CcC) andcC� dCare small, which is the content of the following proposition.

Proposition 3.77.Œere exists2 ¡ 0 independent ofCsuch that for all6 2 
 0¹! º and for all

86



0 2 
 2¹# Cº we have

jjdC� ]C6jj� 0•U
V;C

� 2C2� U j j6j j� 2•U if V Ÿ 0• (3.78)

jjcC� dC0jj� 0•U � 2C2̧ 2V� 2U j jdC0jj� 2•U
V;C

if � 2 Ÿ V Ÿ 0” (3.79)

Proof.We €rst prove Eq. (3.78). We havedC]C = 0 and therefore

jjdC� ]C6j j� 0•U
V;C

= jjdC¹� ]C6 � ]C� 6º j j� 0•U
V;C

� j j � ]C6 � ]C� 6j j� 0•U
V;C

¸ j j ]CcC¹� ]C6 � ]C� 6º j j� 0•U
V;C

� j j � ]C6 � ]C� 6j j� 0•U
V;C

¸ 2C� 2� V j jcC¹� ]C6 � ]C� 6º jj� 0•U

� j j � ]C6 � ]C� 6j j� 0•U
V;C

¸ 2C� U j j� ]C6 � ]C� 6jj� 0•U
V;C

� 2C2� U j j6j j� 2•U •

where we used Proposition 3.45 in the third step, Proposition3.48 in the fourth step, and

Proposition 3.55 in the last step.

Now to prove Eq. (3.79): assume without loss of generality that0 = dC0. De€ne

ecC : 
 2¹) 3 � - EHº ! 
 0¹! º

¹ecC0º¹Gº := h0•aiC26- EH
”

‘e di‚erence between ecCandcC is that they usea and j Ca in their de€nition, respectively:a

is not cut o‚, j Ca is, and both are rescaled to have unit norm. It su•ces to prove the claim for

0 2 
 2¹# Cº which is supported near! . We can view such0 as an element in
 2¹) 3 � - EHº

and applyecCto it. Also de€nee]C : 
 0¹! º ! 
 2¹) 3 � - EHº ase]C¹6º = ?�
) 3 � ?�

- EH
a. ‘en ecCe]C = Id

and we also de€needC := 1 � e]CecC.

We haveecC� = � ecC, thusecC0 = 0 ) ecC� 0 = 0, and thereforeecC� edC= 0. Hence

cC� dC0 = ¹cC� ecCº� dC0
|            {z            }

=:�

¸ ecC� ¹dC� ¹ 1 � ]CecCºº0
|                       {z                       }

=:��

¸ ecC� ¹ ¹1 � ]CecCº � edCº0
|                       {z                       }

=:�� �

”
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We €rst estimate I:

h� dC0•a � j Cai ! 2•C26- EH
� 2C4̧ V

¹ C� 1Z•8

0

�
j j� dC0jj� 0•U

V� 2;C
¹1 ¸ Aº� 2̧ V

�
A3 dA

|                                                        {z                                                        }
� 2C2¸ V j jdC0 j j

� 2•U
V;C

if � 2� V� 0

¸ 2CV
¹ 1

C� 1Z•8
j jdC0jj� 2•U

V;C
¹1 ¸ Aº� 2̧ V� 4A3 dA

|                                              {z                                              }
� 2C2 j jdC0 j j

� 2•U
V;C

”

Here we applied Eq. (3.59) on the regionfG2 - EH : �A¹Gº � ZC� 1•8gand we used

ja � j CajC26- EH
� j ajC26- EH

¸ j j CajC26- EH
� 2¹C¸ �ACº� 4C2

on the regionfG2 - EH : �A¹Gº � ZC� 1•8g. ‘us

jj ¹cC� ecCº� dC0jj! 1 � 2C2̧ V j jdC0jj� 2•U
V;C

and the� 0•U-estimate follows analogously.

For estimating II we need the estimate

jjecC0jj� :•U � C2̧ V� U� : j j0j j� :•U
V;C

” (3.80)

which is proved like Proposition 3.48. ‘en

jjecC� ¹dC� ¹ 1 � ]CecCºº0j j� 0•U = jjecC� ¹]CcC� ]CecCº0jj� 0•U

� 2C� U j j� ]C¹cC� ecCº0jj� 0•U
� 2;C

� 2C� U
�
j j]C� ¹cC� ecCº0j j� 0•U

� 2;C
¸ C2 j j ¹cC� ecCº0jj� 2•U

�

� 2C� U¹1 ¸ C2º jj¹cC� ecCº0j j� 2•U

� 2C� U¹1 ¸ C2ºC2 j j0j j� 2•U
V;C

� 2C2� U j jdC0jj� 2•U
V;C

where in the €rst estimate we used Eq. (3.80), in the second estimate we used Proposition 3.55,
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in the third estimate we used the estimate for the operator norm of ]C from Proposition 3.45,

and in the fourth estimate we did the same calculation as when estimating I and we again used

� 2 Ÿ V Ÿ 0. In the last step we used the assumption that0 = dC0.

It remains to estimate III. We €nd

jjecC� ¹ ¹1 � ]CecCº � edCº0j j� 0•U = jjecC� ¹]C� e]CºecC0jj� 0•U

� 2C� U¸ V j j� ¹]C� e]CºecC0jj� 0•U
V� 2;C

� 2C� U¸ V j j ¹]C� e]Cº� ecC0jj� 0•U
V� 2;C

¸ C2� U¸ V j jecC0jj� 2•U •

where we used Eq. (3.80) in the second step, ande]C� = � e]C together with Proposition 3.55 in

the third step. Here we €nd for the €rst summand

2C� U¸ V j j ¹]C � e]Cº� ecC0jj� 0•U
V� 2;C

� 2C� U¸ V j jj Ca � ajj� 0•U
0;C

�
�
�
�
�?�

! � ecC0
�
�
�
�
� 0•U

0;C
� j j1jj� 0•U

V� 2;C

� 2C� U¸ V � C2 � j j� ecC0jj� 0•U

� 2C2� U¸ V � j jecC0jj� 2•U

� 2C2� 2U¸ 2V � j j0jj� 2•U
V;C

where we used Eqs. (3.59) and (3.60) in the second step; we used
�
�
�
�?�

! � ecC0
�
�
�
�
� 0•U

0;C
= jj� ecC0jj� 0•U

which holds because?�
! � ecC0 is constant in the Eguchi-Hanson direction, so the derivativein

the� 0•U
0;C-norm is just a derivative in the! -direction; in the last step we used Eq. (3.80). For the

second summand we have

C2� U¸ V j jecC0jj� 2•U � C2� 2U¸ 2V j j0j j� 2•U
V;C

by Eq. (3.80), which proves the claim. �

Proof of Proposition 3.52

Proof of Proposition 3.52.By de€nition,jj0jjXC
= jjdC0jj� 2•U

V;C
¸ C� 3•2 j jcC0jj� 2•U. We treat the €rst
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summand €rst:

j jdC0jj� 2•U
V;C

� j j � dC0jj� 0•U
V� 2;C

�
�
j jcC� dC0jj� 0•U

V� 2;C
¸ j j dC� 0jj� 0•U

V� 2;C
¸ j j dC� cC0jj� 0•U

V� 2;C

�
•

where we used Proposition 3.65 in the €rst step and in the secondstep used1 = cC¸ dCtwice.

Here, the €rst summand satis€es

jjcC� dC0jj� 0•U
V� 2;C

� C� V j jcC� dC0jj� 0•U

� CV¸ 2� 2U j jdC0jj� 2•U
V;C

•

where we used Proposition 3.48 in the €rst step, and Eq. (3.79) in the second step. ‘e resulting

term can be absorbed into the le‰ hand side of Eq. (3.53).

For the third summand we get from Eq. (3.78) that

jjdC� cC0jj� 0•U
V� 2;C

� 2C2� U j jcC0jj� 2•U •

which can be absorbed into the le‰ hand side of Eq. (3.53) ifU is su•ciently small. Regarding

the cC-term, we €nd that

C� 3•2 j jcC0jj� 2•U � C� 3•2 j jcC� ]CcC0jj� 0•U

� C� 3•2 �
j jcC� 0jj� 0•U ¸ j j cC� dC0jj� 0•U

�
•

where we used Proposition 3.61 in the €rst step and1 = cC¸ dC in the second step. Here we

have for the last summand

C� 3•2 j jcC� dC0jj� 0•U � C� 3•2C2̧ 2V� 2U j jdC0jj� 2•U
V;C

(3.81)

which can be absorbed into the le‰ hand side of Eq. (3.53). ‘e remaining terms, i.e. the ones

that have not been absorbed into the le‰ hand side of Eq. (3.53), exactly sum up tojj� 0j jYC
,

which proves the claim. �
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3.2.4 ‹e Existence ‹eorem

We will now prove the theorem which guarantees the existence of a torsion-free� 2-structure

when starting from a� 2-structure with small torsion.

‹eorem 3.82. Assume there exists2 ¡ 0 such thatk C 2 
 3¹# Cº satis€esd� i C= d� k Cand

�
�
�
�d� k C

�
�
�
�
YC

� 2C4•
�
�
�
�k C

�
�
�
�
� 0•U

0;C
� 2C4”

Œen, for smallC, there exists[ C 2 
 2¹# Cº such thati C¸ d[ is a torsion-free� 2-structure and
�
�
�
�[ C

�
�
�
�
XC

� 2C4.

To ease notation, we writei = i C, k = k C, and[ = [ C throughout the proof.

Proof.We will construct[ 2 
 2¹# Cº satisfying

� [ = d� k ¸ d� ¹5kº ¸ � d¹� ¹d[ ºº • where5 =
7
3

hi• d[ i ” (3.83)

Set[ 0 = 0 and, if[ 9� 1 2 
 2¹# Cº is given, let[ 9 2 
 2¹# Cº be such that

� [ 9 = d� k ¸ d� ¹59� 1k º ¸ � d
�
� ¹d[ 9� 1º

�
• where59� 1 =

7
3

hi• d[ 9� 1i •

and such that[ 9 ? K . ‘is is well-de€ned, i.e. such [ 9 exists, becauseIm d� � Im � and

restricting� to K ? does not change its image by Proposition 3.54. We aim to show by induction

that
�
�
�
�[ 9

�
�
�
�
XC

� 2C4. For9= 0 this is true by de€nition, and we will now derive the estimate for

9¡ 0.

By de€nition of[ 9 together with Proposition 3.52 we have that

�
�
�
�[ 9

�
�
�
�
XC

� 2
�
�
�
�� [ 9

�
�
�
�
YC

� 2
�
j jd� k jjYC

¸
�
�
�
�d� ¹59� 1k º

�
�
�
�
YC

¸
�
�
�
�� d

�
� ¹d[ 9� 1º

� ��
�
�
YC

�

= 2 ¹� ¸ � � ¸ � � � º ”
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By assumption we have� = jjd� k jjYC
� 2C4.

Now to estimate II:

�
�
�
�d� ¹59� 1k º

�
�
�
�
YC

�
�
�
�
�d59� 1yk

�
�
�
�
YC

¸
�
�
�
�59� 1 d� k

�
�
�
�
YC

= �� ”� ¸ � � ”�”

Here

� � ”� =
�
�
�
�dC¹d59� 1yk º

�
�
�
�
� 0•U

V� 2;C
¸ C� 3•2

�
�
�
�cC¹d59� 1yk º

�
�
�
�
� 0•U

� ¹ C� U ¸ C� 3•2� U¸ Vº
�
�
�
�d59� 1yk

�
�
�
�
� 0•U

V� 2;C

� ¹ C� U ¸ C� 3•2� U¸ Vº
�
�
�
�d59� 1

�
�
�
�
� 0•U

V� 2;C
j jk j j� 0•U

0;C

� 2C4•

where for the €rst estimate we used Propositions 3.45 and 3.48,and for the last estimate we

used the induction hypothesis
�
�
�
�[ 9� 1

�
�
�
�
XC

� 2C4, which implies
�
�
�
�d59� 1

�
�
�
�
� 0•U

V� 2;C
� 2C7•2, together

with the assumptionjjk jj� 0•U
0•0;C

� 2C4. ‘e estimate � � ”� � 2C4 is derived analogously.

It remains to estimate III:

� � � =
�
�
�
�dC¹� d

�
� ¹d[ 9� 1º

� ��
�
�
� 0•U

V� 2;C
¸ C� 3•2

�
�
�
�cC¹� d

�
� ¹d[ 9� 1º

� ��
�
�
� 0•U = �� � ”� ¸ � � � ”�”

‘e summand III.A is estimated as

�� � ”� � 2C� U
�
�
�
�� d

�
� ¹d[ 9� 1º

� ��
�
�
� 0•U

V� 2;C
•

where we €rst estimate the! 1 -part of the� 0•U-norm. Namely, by Proposition 2.24:

�
�
�
�� d

�
� ¹d[ 9� 1º

� ��
�
�
! 1

V� 2;C
� 2

�
�
�
�d[ 9� 1

�
�
�
�
! 1

V� 1;C

�
�
�
�r d[ 9� 1

�
�
�
�
! 1

V� 2;C
C� 1̧ V

¸ 2
�
�
�
�d[ 9� 1

�
�
�
�2
! 1

V� 1;C
j jd� k jj! 1

V� 2;C
C� 2̧ 2V

� 2C4”

‘e »�¼� 0•U-part is estimated analogously. To estimate� � � ”� = C� 3•2
�
�
�
�cC

�
� d

�
� ¹d[ 9� 1º

� � ��
�
�
� 0•U,
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we again estimate the! 1 -part €rst. Fix some~ 2 ! and computecC
�
� d

�
� ¹d[ 9� 1º

� �
¹~º by

computing an integral over- EH ' f ~g � - EH � ! � - EH. By Proposition 2.24 we have

�
�cC

�
� d

�
� ¹d[ 9� 1º

� � �
� �

�
�
�h� d

�
� ¹d[ 9� 1º

�
• j CaiC26- EH

�
�
�

� 2
¹

- EH

j d[ 9� 1j � jr d[ 9� 1j � jj Caj volC26- EH

|                                               {z                                               }
� � � ”�” 1

¸ 2
¹

- EH

j d[ 9� 1j � j d[ 9� 1j � j d� k j � jj Caj volC26- EH

|                                                      {z                                                      }
� � � ”�” 2

”

Here,

� � � ”�” 1 � C3•2 = 2
¹

- EH

j d¹cC[ 9� 1 ¸ dC[ 9� 1º j � jr d¹cC[ 9� 1 ¸ dC[ 9� 1º j � jj Caj volC26- EH

� 2
¹ Z

0

�
¹C¸ Aº� 7

�
�
�
�dcC[ 9� 1

�
�
�
�
� 0•U

� 3;C

�
�
�
�r dcC[ 9� 1

�
�
�
�
� 0•U

� 4;C
|                                   {z                                   }

� 2j jcC[ 9� 1j j2� 2•U � 2C2�¹4¸ 3•2º

� �
¹C¸ Aº� 4C2�

A3 dA

¸ 2
¹ Z

0

�
¹C¸ Aº2V� 3

�
�
�
�ddC[ 9� 1

�
�
�
�
� 0•U

V� 1;C

�
�
�
�r ddC[ 9� 1

�
�
�
�
� 0•U

V� 2;C
|                                     {z                                     }

� 2j jdC[ 9� 1j j2� 2•U
V;C

� 2C2�4

� �
¹C¸ Aº� 4C2

�
A3 dA

¸ 2
¹ Z

0

�
¹C¸ AºV� 5

�
�
�
�dcC[ 9� 1

�
�
�
�
� 0•U

� 3;C

�
�
�
�r ddC[ 9� 1

�
�
�
�
� 0•U

V� 2;C
|                                    {z                                    }
� 2j jcC[ 9� 1j j� 2•U j jdC[ 9� 1j j� 2•U

V;C
� 2C4¸ 3•2¸ 4

� �
¹C¸ Aº� 4C2�

A3 dA

¸ 2
¹ Z

0

�
¹C¸ AºV� 5

�
�
�
�ddC[ 9� 1

�
�
�
�
� 0•U

V� 1;C

�
�
�
�r dcC[ 9� 1

�
�
�
�
� 0•U

� 4;C
|                                    {z                                    }
� 2j jcC[ 9� 1j j� 2•U j jdC[ 9� 1j j� 2•U

V;C
� 2C4¸ 3•2¸ 4

� �
¹C¸ Aº� 4C2�

A3 dA

� 2
�
C2�¹4̧ 3•2ºC� 7C2 ¸ C2�4C2V� 3C2 ¸ 2C4̧ 3• 2̧ 4CV� 5C2

�

� 2C6•

thus � � � ”�” 1 � 2C4. ‘e part � � � ”�” 2 and the� 0•U-parts of � � � ”�” 1 and �� � ”�” 2 are estimated

analogously. Altogether, this gives� � � � 2C4.
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‘e sequence [ 9 satis€es

�
�
�
�[ 9

�
�
�
�
� 2•U

V;C
�

�
�
�
�dC[ 9

�
�
�
�
� 2•U

V;C
¸

�
�
�
�cC[ 9

�
�
�
�
� 2•U

V;C

�
�
�
�
�[ 9

�
�
�
�
XC

¸ C� 2� V¸ 3•2
�
�
�
�[ 9

�
�
�
�
XC

� 2C7•2� V”

As usual, the constant2 is independent ofC, but in particular independent of9. ‘us, there

exists, up to a subsequence, a� 2•U•2-limit lim9!1 [ 9 =: [ by the Arzel�a{Ascoli theorem. ‘is

limit solves Eq. (3.83) and satis€es

jj[ j j� 2•U•2
V;C

� 2C7•2� V”

By [Joy00][‘eorem 10.3.7], i ¸ d[ is a torsion-free� 2-structure, which proves the claim. �

Taking everything together, this gives us:

‹eorem 3.84. Let# Cbe the resolution of) 7• � from Eq.(3.31)andi C 2 
 3¹# Cº the� 2-structure

with small torsion from Eq.(3.33). Œere exists2 ¡ 0 independent ofCsuch that the following

is true: forCsmall enough, there exists[ C 2 
 2¹# Cº such thatei = i C ¸ d[ C is a torsion-free

� 2-structure, and[ Csatis€es
�
�
�
�[ C

�
�
�
�
� 2•U•2

V;C
� 2C7•2� V”

In particular,

�
�
�
�ei � i C

�
�
�
�
! 1 � 2C5•2 and

�
�
�
�ei � i C

�
�
�
�
� 0•U•2 � 2C5•2� U•2 as well as

�
�
�
�ei � i C

�
�
�
�
� 1•U•2 � 2C3•2� U•2”

Proof.By Lemma 3.36, we have thatjjk jj� 0•U
0;C

� 2C4. Combined with Propositions 3.45 and 3.48,

we also havejjk j jYC
� 2C4. ‘us, ‘eorem 3.82 can be applied, which gives the claim. �

Remark3.85. ‘e power 7•2 � V in ‘eorem 3.84 can be improved to4 � n for any n 2 ¹0•1º

by de€ning the normsjj�j jXC
and jj�j jYC

with a factor ofC� ^ instead ofC� 3•2 for ^ 2 ¹0•2º close

to 2.

Remark3.86. In [Joy96a], compact manifolds with holonomySpin¹7º were constructed. In
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the simplest case, one constructsSpin¹7º-structures with small torsion by gluing together

the productSpin¹7º-structure on) 4 � - EH and the ƒatSpin¹7º-structure on) 8. ‘is gluing

construction is analogue to the de€nition of the� 2-structure in Eq. (3.33). In contrast to the

� 2-situation, however, Joyce's theorem about the existence of torsion-freeSpin¹7º-structures

cannot immediately be applied, because the torsion of the glued structure is too big. He over-

came this problem by constructing a correction of the glued structure by hand which has

smaller torsion, to which the existence theorem can be applied. ‘e same can be done in the

� 2 case. In fact, one gets a correction in the� 2-case from theSpin¹7º-case by considering the

Spin¹7º-orbifold) 7• � � ( 1. Using this corrected structure, one would get even be‹er control

over the di‚erence between glued structure and torsion-free structure than what is known

from ‘eorem 3.84.

3.3 Torsion-Free� 2-Structures on Joyce-Karigiannis Manifolds

In [JK21], the authors constructed new examples of compact manifolds with holonomy� 2

by generalising the construction that was described in Section 3.2.1. As in Section 3.2, they

€rst use a gluing procedure to construct a� 2-structure with small torsion. ‘ey then apply

‘eorem 2.26 to perturb this � 2-structure into a torsion-free� 2-structure.

‘e main di‚erence to Joyce's original construction is the following: if one uses the cuto‚

procedure from the) 7• � case in the new se‹ing, one produces a� 2-structure that does not

satisfy the necessary estimates to apply ‘eorem 2.26. ‘e authors of [JK21] overcome this

problem by constructing a� 2-structure with evensmaller torsion, to which ‘eorem 2.26can

be applied.

3.3.1 Ingredients for the Construction

Let . be a compact manifold endowed with a torsion-free� 2-structure i . Write 6 for the

metric induced byi . Let] : . ! . be a� 2-involution, i.e. satisfying]2 = Id, ] < Id, ]� i = i .

We then have:

Proposition 3.87(Proposition 2.13 in [JK21]). Let ! = €x¹]º and assume! < ; . Œen! is a
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smooth, orientable3-dimensional compact submanifold of. which is totally geodesic, and, with

respect to a canonical orientation, is associative.

Assumption3.88. We assume that! is nonempty, and we assume we are given a closed,

coclosed, nowhere vanishing1-form _ on ! .

Such a1-form need not exist, and cases in which its existence can be guaranteed are discussed

in [JK21, Section 7.1].

3.3.2 � 2-structures on the Normal Bundlea of !

‘e metric de€ned by i de€nes a spli‹ing

). j! ' a � ) !• (3.89)

which is orthogonal with respect to6. Write 6! for the metric on! induced by6 and6j! =

� a � 6! . Write er a for some connection ona. For now, we may think ofer a as being the

restriction of the Levi-Civita connection of6 to a ! ! , but later we will need the freedom to

choose another connection. We write elements ina as¹G• Uº, whereG2 ! , U 2 aG. For' ¡ 0

let

* ' = f¹ G• Uº 2 a : jUj� a Ÿ ' g”

Write c : * ' ! ! for the projection¹G• Uº 7! G. We will make use of a map� : * ' ! .

satisfying the following:

1. � is a di‚eomorphism onto its image,

2. � ¹G•0º = Gfor G2 ! ,

3. � ¹G•� Uº = ] � � ¹G• Uº for ¹G• Uº 2 * ' ,

4. the induced pushforward� � : )* ' ! ) . restricted to the zero section of)* ' is the

identity map on) G! � aG.
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For example,� = expwould satisfy these four conditions for small' . But later on we require

� to satisfy an extra condition thatexpneed not satisfy.

Write ¹�Cº : a ! a for the dilation map¹G• Uº 7! ¹ G• CUº, and forC< 0, de€ne� C = � � ¹� Cº :

* jCj� 1' ! . .

‘e connection er a de€nes a spli‹ing

)a = + � �• where+ ' c � ¹aº and� ' c � ¹) ! º• (3.90)

where+ and � are the vertical and horizontal subbundles of the connection.Combining

Eqs. (3.89) and (3.90), we have that)a ' c � ¹) . j! º. Denote by

i a 2 
 3¹aº•ka 2 
 4¹aº• and6a 2 ( 2¹aº (3.91)

the structures obtained fromi ,k , and6 via this isomorphism and forC¡ 0write i a
C = ¹�Cº� i a,

as well ask a
C = ¹�Cº�k a, and6a

C = ¹�Cº� 6a. Note that this de€nition implicitly depends on the

choice ofer a. ‘e main result of [JK21, Section 3] is then:

Proposition 3.92.Œere exist' ¡ 0, a connectioner a ona and a map� : * ' ! " satisfying

1. � is a di‚eomorphism onto its image,

2. � ¹G•0º = Gfor G2 ! ,

3. � ¹G•� Uº = ] � � ¹G• Uº for ¹G• Uº 2 * ' ,

4. the induced pushforward� � : )* ' ! ) . restricted to the zero section of)* ' is the identity

map on) G! � aG,

and forC¡ 0 a closed� 2-structureei a
C ona•f� 1gand closed4-form ek a

C 2 
 4¹a•f� 1gºsatisfying

the following properties: €rst,

i a
C � ei a

C = O¹C2A2º and k a
C � ek a

C = O¹C2A2º” (3.93)
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Second, there exist[ 2 
 2¹aº• Z2 
 3¹aº such that

j[ j6a = O¹A3º and j d[ j6a =
�
�� � i � ei a j* '

�
�
6a = O¹A2º•

jZj6a = O¹A3º and j dZj6a =
�
�
�� � k � ek a j* '

�
�
�
6a

= O¹A2º”

3.3.3 � 2-structures on the Resolution%of a•f� 1g

‘e � 2-structurei 2 
 3¹. º de€nes for allG2 . a cross product� : ) G. � ) G. ! ) G. as in

De€nition 2.19. We then have a complex structure� 2 End¹aº given by

� ¹+ º =
_
j_j

� + for + 2 aG• G2 !” (3.94)

Recall the metric� a on a de€ned by6j! = � a � 6! , cf. Section 3.3.2. ‘en� and� a together

de€ne aU¹2º-reduction of the frame bundle ofa. Denote by- EH the Eguchi-Hanson space

with Hyperk•ahler triplel ¹1º
1 • l ¹1º

2 • l ¹1º
3 from Proposition 2.10. Denote byd : - EH ! C2•f� 1g

the blowup map of the blowup with respect to the complex structure induced byl ¹1º
1 from

Remark 2.13 and let

%= Fr� U¹2º- EH” (3.95)

Denote byf : %! ! the projection of this bundle. Analogously, we have

a•f� 1g = Fr� U¹2ºC2•f� 1g”

Let ! 0 � ! be a nonempty, open set on which we can extend41 := _
j_ j 2 ) � ¹! 0º to an or-

thonormal basis¹41• 42• 43º. ‘en there exist ^l � • ^l � • ^l  2 
 2¹¹a•f� 1gºj! 0º such thati a from

Eq. (3.91) has the form

i a = 41 ^ 42 ^ 43 � ^l � ^ 41 � ^l � ^ 42 � ^l  ^ 43” (3.96)
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We de€ne�l � • �l � • �l  2 
 2¹%j! 0º as follows: ForG2 ! 0, let 5 2 FrG such that5 : ¹a•f� 1gºG !

C2•f� 1gsatis€es

5� ¹l ¹0º
1 • l ¹0º

2 • l ¹0º
3 º = ¹ ^l � jaG• ^l � jaG• ^l  jaGº•

where¹l ¹0º
1 • l ¹0º

2 • l ¹0º
3 º denotes the Hyperk•ahler triple onC2•f� 1gfrom Proposition 2.10. ‘is

choice of5 de€nes isomorphisms of complex surfaces%G ' - EH and ¹a•f� 1gºG ' C2•f� 1g.

Let �l � • �l � • �l  2 
 2¹%Gº be the pullback ofl ¹1º
1 • l ¹1º

2 • l ¹1º
3 2 
 2¹- EHº under this isomorph-

ism. ‘is is independent of the choice of5, and therefore de€nes�l � • �l � • �l  2 
 2¹%Gº. ‘e

following diagram sums up the situation:

¹%G• �l � j%G• �l � j%G• �l  j%Gº ¹- EH• l ¹1º
1 • l ¹1º

2 • l ¹1º
3 º

¹aG•f� 1g• ^l � jaG• f� 1g• ^l � jaG• f� 1g• ^l  jaG• f� 1gº ¹C2•f� 1g• l ¹0º
1 • l ¹0º

2 • l ¹0º
3 º

'

d d

'

(3.97)

Here, by abuse of notation we denoted the map%G ! aG•f� 1g which makes the diagram

commutative also byd. Horizontal arrows pull Hyperk•ahler triples back to one another, Hy-

perk•ahler triples connected by vertical arrows are asymptotic in the sense of Proposition 2.10.

A complicated point is the actual de€nition of�l � • �l � • �l  as2-forms on%j! 0. Equation (3.97)

tells us what they look like €brewise. To make sense of them as global objects on%, one needs

to choose a connection on%. In [JK21], the horizontal subspaces�� were de€ned to this end

which allows us to decompose forms on%into vertical and horizontal components, much like

for forms ona. ‘ere are then unique vertical 2-forms which restrict to �l � j%G• �l � j%G• �l  j%G on

every €bre.
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We are now ready to de€nei %
C 2 
 3¹%j! 0º,k %

C 2 
 4¹%j! 0º via

i %
C := �i 0•3 ¸ C2 �i 2•1

:= f � ¹41 ^ 42 ^ 43º � C2
�
f � ¹41º ^ �l � � f � ¹42º ^ �l � � f � ¹43º ^ �l  

�
•

(3.98)

k %
C := C4 �k4•0 ¸ C2 �k2•2

:=
1
2

�l � ^ �l � � f � ¹42 ^ 43º ^ �l � � f � ¹43 ^ 41º ^ �l � � f � ¹41 ^ 42º ^ �l  ”

‘ese expressions are independent of the choice of¹42• 43º, and therefore de€ne formsi %
C 2


 3¹%º•k%
C 2 
 4¹%º, not just forms over! 0 � ! . Let also6%

C denote the metric induced byi %
C.

As in the previous section, we add terms toi %
C andk %

C to de€neclosedforms on%, and we

have the following control over how they are asymptotic to forms ona•f� 1g:

Proposition 3.99(Section 4.5 in [JK21]). Œere existb1•2• b0•3 2 
 3¹%º,g1•1 2 
 2¹fG2 %: �A¹Gº ¡

1º, such that

ei %
C := i %

C ¸ C2b1•2 ¸ C2b0•3

is closed and satis€es

ei %
C = d� ei a

C ¸ C2 dg1•1 (3.100)

where�A¡ 1. Œese forms satisfy the following estimates:

�
�
�r : ¹C2b1•2º

�
�
�
6%

C

=

8>>>><

>>>>
:

O¹C1� : º• �A � 1•

O¹C1� : �A� 3� : º• �A¡ 1•

�
�
�r : ¹C2b0•3º

�
�
�
6%

C

=

8>>>><

>>>>
:

O¹C2� : º• �A � 1•

O¹C2� : �A2� : º• �A¡ 1•
(3.101)

�
�
�r : ¹C2g1•1º

�
�
�
6%

C

= O¹C1� : �A� 3� : º” (3.102)

Proposition 3.103(Section 4.5 in [JK21]). Œere existj 1•3• \3•1• \2•2 2 
 4¹%º, E1•2 2 
 3¹fG2 %:
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�A¹Gº ¡ 1º, such that

ek %
C := k %

C ¸ C2j 1•3 ¸ C4\ 3•1 ¸ C4\ 2•2 (3.104)

is closed and satis€es

ek %
C = d� ek a

C ¸ C2 dE1•2 (3.105)

where�A¡ 1. Œese forms satisfy the following estimates:

�
�
�r : ¹C2j 1•3º

�
�
�
6%

C

:=

8>>>><

>>>>
:

O¹C1� : º• �A � 1•

O¹C1� : �A� 3� : º• �A¡ 1•
(3.106)

�
�
�r : ¹C4\ 3•1º

�
�
�
6%

C

:=

8>>>><

>>>>
:

O¹C1� : º• �A � 1•

0• �A¡ 1•
(3.107)

�
�
�r : ¹C4\ 2•2º

�
�
�
6%

C

:=

8>>>><

>>>>
:

O¹C2� : º• �A � 1•

O¹C2� : �A2� : º• �A¡ 1•
(3.108)

�
�
�r : ¹C2E1•2º

�
�
�
6%

C

:= O¹C1� : �A� 3� : º” (3.109)

3.3.4 Correcting for the Leading-order Errors on%

Armed with the � 2-structuresi on . and ei %
C on %, we could de€ne a glued together� 2-

structure just as we did in Section 3.2. However, in this case it would turn out that the torsion

of the glued together� 2-structure is too big and ‘eorem 2.26 cannot be applied. We thus

make use of the following correction terms which will make the torsion of the glued together

� 2-structure small enough.

‹eorem 3.110 (‘eorem 5.1 in [JK21]). Œere existU0•2• U2•0 2 
 2¹%º, V0•3• V2•1 2 
 3¹%º, satis-

fying for all C¡ 0 the equation

¹� i %
C
� º

�
C2»dU0•2¼1•2 ¸ C4»dU2•0¼3•0 ¸ C2b1•2

�
= C2 dV0•3 ¸ C4»dV2•1¼3•1 ¸ C2j 1•3 ¸ C4\ 3•1”
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Moreover, forW¡ 0su•ciently small and for all: � 0, these forms satisfy the following estimates

�
�
�r : ¹C2U0•2º

�
�
�
6%

C

=

8>>>><

>>>>
:

O¹C2� : º• �A � 1•

O¹C2� : �A� 2� : ¸ Wº• �A � 1•

�
�
�r : ¹C4U2•0º

�
�
�
6%

C

=

8>>>><

>>>>
:

O¹C2� : º• �A � 1•

O¹C2� : �A� 2� : ¸ Wº• �A � 1•

�
�
�r : ¹C2V0•3º

�
�
�
6%

C

=

8>>>><

>>>>
:

O¹C2� : º• �A � 1•

O¹C2� : �A� 2� : ¸ Wº• �A � 1•

�
�
�r : ¹C4V2•1º

�
�
�
6%

C

=

8>>>><

>>>>
:

O¹C2� : º• �A � 1•

O¹C2� : �A� 2� : ¸ Wº• �A � 1•

3.3.5 � 2-structures on the Resolution# Cof . •h]i

We are now ready to glue together%and. •h]i to a manifold, and de€ne a� 2-structure with

small torsion on it.

De€nition3.111. De€ne

# C :=
h
d� 1¹* C� 1' •f� 1gº

Þ
¹. n ! º•h]i

i
•� • (3.112)

whereG� � C� d¹Gº for G2 d� 1¹* C� 1' •f� 1gº.

De€nition3.113. Let 0 : »0•1º ! R be a smooth function with0¹Gº = 0 for G 2 »0•1¼, and
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0¹Gº = 1 2 »2•1º . De€ne then

i #
C =

8>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>
:

ei %
C ¸ d»C2U0•2 ¸ C4U2•0¼• if �A � C� 1•9•

ei %
C ¸ d»C2U0•2 ¸ C4U2•0 ¸ 0¹C1•9�Aº � � � [ ¼• if C� 1•9 � �A � 2C� 1•9•

ei %
C ¸ d»C2U0•2 ¸ C4U2•0 ¸ � � [ ¼• if 2C� 1•9 � �A � C� 4•5•

ei a
C ¸ d»¹1 � 0¹C4•5�Aºº¹C2g1•1 ¸ C2U0•2 ¸ C4U2•0º ¸ � � [ ¼• if C� 4•5 � �A � 2C� 4•5•

i• elsewhere•

(3.114)

k #
C =

8>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>
:

ek %
C ¸ d»C2V0•3 ¸ C4V2•1¼• if �A � C� 1•9•

ek %
C ¸ d»C2V0•3 ¸ C4V2•1 ¸ 0¹C1•9�Aº � � � Z¼• if C� 1•9 � �A � 2C� 1•9•

ek %
C ¸ d»C2V0•3 ¸ C4V2•1 ¸ � � Z¼• if 2C� 1•9 � �A � C� 4•5•

ek a
C ¸ d»¹1 � 0¹C4•5�Aºº¹C2E1•2 ¸ C2V0•3 ¸ C4V2•1º ¸ � � Z¼• if C� 4•5 � �A � 2C� 4•5•

k• elsewhere•

(3.115)

‘e important properties of these forms are thati #
C andk #

C are closed, and thatk #
C is close

to being the Hodge dual ofi #
C . ‘at is, the 3-form i #

C � � i #
C

k #
C satis€es the assumption of

‘eorem 2.26 and i #
C can be perturbed to a torsion-free� 2-structure. ‘is yields the following

theorem:

‹eorem 3.116 (‘eorem 6.4 in [JK21]). For smallCthere exists[ C 2 
 2¹# Cº such thatei #
C :=

i #
C ¸ d[ C is a torsion-free� 2-structure, and

�
�
�
�ei #

C � i #
C

�
�
�
�
! 1 � 2C1•18 (3.117)

for some constant2 ¡ 0 independent ofC.
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4 ‹e Gluing Construction for Instantons

We now turn to constructing� 2-instantons on the resolutions of. •h]i explained in the pre-

vious chapter. Much like explained in the introduction to Section 3, we will follow again the

three step process of (1) constructing an approximate solution, (2) estimating the linearisation

of the equation to be solved, and (3) perturbing the approximate solution to a genuine solution.

In Section 4.1 we explain how a sectionBof a moduli bundle gives rise to a connectionB¹� º

on the bundle of Eguchi-Hanson spaces%from Eq. (3.95), cf. ‘eorem 4.15. If the topological

compatibility condition Assumption 4.1 is satis€ed, we can glueB¹� º to a� 2-instanton\ on the

orbifold . •h]i . ‘e resulting connection � C is close to being a� 2-instanton and in Section 4.2

we will quantify this. We will see that this error is small in a suitable norm ifBsatis€es a €rst

order partial di‚erential equation, the Fueter equation. Section 4.3 is the di•cult part of the

analysis, where we give an estimate for the inverse of the linearised instanton operator. In

Sections 4.4 and 4.5 we complete the argument and construct the perturbation that turns the

approximate solution from before into a genuine solution to the� 2-instanton equation.

‘roughout we will use the notation from the previous chapter.‘at is, . is a� 2-manifold

with � 2-involution ] : . ! . , and# C is the resolution of. •h]i . ‘e resolution # C is obtained

by gluing in the Eguchi-Hanson bundle%over the singular locus! = €x¹]º. On %we have

the � 2-structuresi %
C andei %

C, and on# C we have the� 2-structurei #
C with small torsion and

the torsion-free� 2-structureei #
C . In the case that# C is a resolution of) 7• � , we also de€ned

the � 2-structuresi C andei C. ‘ese two will also be denoted byi #
C andei #

C respectively and

the special case of) 7• � will need no special treatment most of the time. ‘e exception is the

pre-gluing estimate for resolutions of) 7• � , Corollary 4.57, which is be‹er than in the general

case. In the case of resolutions of) 7• � , our main result is ‘eorem 4.131:

‹eorem. Let# ! . 0 be the resolution of the orbifold. 0 = ) 7• � from before. Assume that the

connection\ used to de€ne the approximate� 2-instanton� Cfrom Proposition 4.27 is in€nitesim-

ally rigid and thatBis an in€nitesimally rigid Fueter section.

Œere exists2 ¡ 0 such that for smallCthere exists an0C = ¹0C• bCº 2 � 1•U¹
 0 � 
 1¹Ad � Cºº such

that e� C := � C¸ 0C is a� 2-instanton. Furthermore,0Csatis€es
�
�
�
�0C

�
�
�
�
XC

� 2C2� 2U.
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Here, j j � j jXC
is a complicated composite norm similar to the norm denoted withthe same

symbol from Section 3, andU 2 ¹0•1º is a number close to0. In the general case of resolutions

of . •h]i we only have a weaker result. Namely, we require the Fueter section to be pointwise

rigid. ‘is is ‘eorem 4.130:

‹eorem. Assume now that the sectionBis given by a rigid ASD-instanton in every pointG2 ! ,

and assume that the connection\ used to de€ne the approximate� 2-instanton� C from Proposi-

tion 4.27 is in€nitesimally rigid.

Œere exists2 ¡ 0 such that for smallCthere exists0C = ¹0C• bCº 2 � 1•U¹
 0 � 
 1¹Ad � Cºº such

that e� C := � C¸ 0C is a� 2-instanton. Furthermore,0Csatis€es
�
�
�
�0C

�
�
�
�
� 1•U

� 1•X;C
� 2C1•18.

We will use this theorem in Section 4.6 to construct a new exampleof a� 2-instanton on the

resolution of¹) 3 � K3º•Z2
2.

4.1 ‹e Pregluing Construction

4.1.1 Moduli Bundles of ASD-Instantons

Letc : � 0 ! . •h]i be an orbifold� -bundle with connection\ , i.e. a� -bundle with connection

over . together with a li‰̂] of ] such that]̂2 = Id and such that̂]� \ = \ . As before,€x¹]º = !

and we now set� 1 = � 0j! , which is a� -bundle with Z2-action, and� 1 = \ j� 1 . Denote by

" the framed moduli space of ASD instantons on a bundle� over Eguchi-Hanson space- EH

from Section 2.4.2. ‘e homomorphismd : Z2 ! � used in the de€nition of" de€nes aZ2

le‰ action on� . We then ask for� 0 and" to be compatible in the following sense:

Assumption4.1. For all; 2 ! there exists an isomorphism of manifolds with� right action and

Z2 le‰ actionq : � 1 j; ! � .

Proposition 4.2.Let� d � � be the stabiliser ofd as in Eq.(2.43). Œen there exists a� d-reduction

�� of � 1 such that� 1 reduces to�� .

Proof.As before, letd : Z2 ! � be the representation that de€nes the asymptotic limit for

105



connections in" . De€ne

�� := fD 2 � 1 : D� d¹� 1º = ]̂¹Dºg” (4.3)

To see that this is a� d-bundle, €x; 2 ! and letq : � 1 j; ! � be the isomorphism from

Assumption 4.1. ‘en D 2 �� j; if and only if q ¹Dº 2 � d .

It remains to check that� 1 reduces to�� . To this end, letW: � ! �� be a curve. ‘en

� 1 ¹ ¤W¹0ºº = ]̂� � 1 ¹ ¤W¹0ºº

= � 1

�
3
3C

¹W¹Cº � d¹� 1ºº jC=0

�

= Ad¹d¹� 1ºº ¹� 1 ¹ ¤W¹0ººº ”

(4.4)

In the €rst step we used̂]� \ = \ . ‘e second step is the de€ning property of�� from Eq. (4.3).

Now, for any subgroup� � � we de€ne thecentraliser of� in � as/ ¹� º = f6 2 � : �6� � 1 = 6

for all � 2 � g. ‘en

Lie¹/ ¹� ºº = z� := f+ 2 g : Ad¹� º+ = + for all � 2 � g” (4.5)

‘is equality holds, because for- = ¤6¹0º 2 Lie¹/ ¹� ºº, where6 : � ! / ¹� º is a curve, we have

that Ad¹� º- = 3
3C¹�6 ¹Cº� � 1º jC=0 = - by de€nition of/ ¹� º. Conversely, for+ 2 z� , we have

that 6¹Cº := exp¹C+º is a curve with ¤6¹0º = + in / ¹� º, because�6 ¹Cº� � 1 = exp¹C� Ad¹� º+ º =

exp¹C+º = 6¹Cº for all � 2 � .

‘erefore, by Eqs. (4.4) and (4.5), we have that� 1 j �� takes values inLie¹� dº, i.e. restricts to a

connection on�� . �

De€nition4.6. De€ne themoduli bundle

M := ¹Fr� �� º � U¹2º� � d " (4.7)
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and itsvertical tangent space

+ M := ¹Fr� �� º � U¹2º� � d ) "” (4.8)

4.1.2 Fueter Sections and Connections on Bundles over%

In the following, we will study sectionsB : ! ! M . It will turn out that such a sectionB

gives rise to a connection that is almost a� 2-instanton, if it satis€es a €rst order di‚erential

equation, theFueter equation(cf. De€nition 4.13).

De€nition4.9. LetB: ! ! M be a section. We de€ne its covariant derivativer B2 
 1¹!•+ M º

as follows: forG2 ! , - 2 ) G! let 5 2 � 1 ¹Frº and4 2 � 1 ¹ �� º be local sections aroundGsuch

that � LC d5¹Gº = 0 and � 1 ¹d4¹- ºº = 0, where� LC is the Levi-Civita connection of. . Let

� : ! ! " be a local section aroundGsuch thatB= »¹5 • 4º• � ¼. ‘en

r - ¹Bº = »¹5 • 4º•3� ¹- º¼ 2 ¹Fr� �� º � U¹2º� � d ) "”

De€nition4.10. LetB: ! ! M be a section. FixG2 ! and let41, 42, 43 be an orthonormal basis

of ) G! . ‘e � 2-structure on. de€nes a map

� 1¹) G! º ! � ¸ %G

48 7! �l 8j%G =: l 8”
(4.11)

‘e l 8 correspond to complex structures on%G and therefore, by ‘eorem 2.51, to elements

�8 2 End¹+GM º. We thus have a Cli‚ord multiplication given by

48� : +GM ! +GM

0 7! �8¹0º”
(4.12)

De€nition4.13. A sectionB: ! ! M is called aFueter sectionif

FB:=
3Õ

8=1

48 � r 48B= 0 2 � ¹B� + M º• (4.14)
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where ¹41• 42• 43º is a local orthonormal frame.

‘e following is an extension of [DS11, ‘eorem 1]:

‹eorem 4.15. Denote byeP ! " � ^- EH the tautological bundle with tautological connection

eA over" � - EH from Proposition 2.59 and assume that there exists a li‡ of theU¹2º-action on

" � ^- EH to eP preservingeA. LetB 2 � 1 ¹M º, and denotê%= Fr� U¹2º ^- EH. Œen there exists a

natural � -bundleB¹� º over%̂with connectionB¹� º 2 � ¹B¹� º j%º together with an isomorphism

of � -bundles withZ2 le‡ action� : B¹� º j%̂n% ! � 1 so that:

(i) Œe pair ¹B¹� º•B¹� ºº j%G representsB¹Gº. Œat means: ifB¹Gº = »¹5 • 4º•»� ¼¼for 5 2 FrG,

4 2 ¹� 0ºG, »� ¼ 2" , then under the di‚eomorphism- EH ' %G, ~ 7! »5 •~¼, the� -bundles

B¹� º j%G and� are isomorphic, and� andB¹� º are gauge equivalent.

(ii) Œe map� identi€es� 1 andB¹� º over the €bre at in€nity, i.e.� � � 1 = B¹� º j%̂n%.

(iii) Œe connectionB¹� º j% is a ¹k %
Cº� -instanton if and only ifBis a Fueter section. Here,B¹� º

being a¹k %
Cº� -instanton means that� B¹� º ^ ¹ k %

Cº� = 0, where¹k %
Cº� =

Í
f � ¹48º ^ f � ¹49º ^

�l : . Heref : %! ! is the projection of the bundle Eq.(3.95).

Proof.Construction of B¹� º, B¹� º, and� : together with the connectionsr LC on Frand� 1 on

�� , the connectioneA induces a connectionUon the principal� -bundle¹Fr� �� º � U¹2º� � d
eP !

¹Fr� �� º � U¹2º� � d ¹" � ^- EHº via the formula

U¹»¹* •+ º•) ¼º:= eA¹) º• (4.16)

where* 2 ) Fr,+ 2 ) �� are horizontal vectors and) 2 ) eP. By assumption,eA is le‰-invariant,

which makes the de€nition ofU independent of the chosen representative.

Consider the map

¹B� Idº : %̂= Fr� U¹2º ^- EH ! ¹ Fr� �� º � U¹2º� � d ¹" � -̂ EHº

»5 •~¼ 7! »¹5 • 4º• ¹�•~ º¼•
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whereB¹f ¹4ºº = »¹5 • 4º• � ¼ 2M c ¹4º . ‘en

B¹� º := ¹B� Idº� ¹¹Fr� �� º � U¹2º� � d
ePº• B¹� º := ¹B� Idº� U

and the trivialisationq : ePj" orb� f1g ! � � " orb from Proposition 2.59 induces an isomorphism

� : B¹� º j%̂n%

' ¹ B� Id j ^- EHn- EH
º�

�
¹Fr� �� º � U¹2º� � d

ePj" �f1g

�
! B�

�
¹Fr� �� º � U¹2º� � d � � "

�

' �� � � d � ' � 1 ”

(4.17)

‘e last point of Proposition 2.59 states thatq � � product = eAj" �f1g which implies that� � � 1 =

B¹� º j%̂n%.

B¹� º is a ¹k %
Cº� -instanton if and only if Bis a Fueter section:for easier notation, assume that

the bundleFr is trivial andr LC is the product connection. ‘e proof of the general case works

the same. In this case,! � ^- EH = %̂andB¹� º = ¹B� Idº� ¹ �� � � d
ePº. ‘en €x ¹;• Gº 2 ! � ^- EH = %̂,

an orthonormal basis¹41• 42• 43º of ) ; ! and denote by¹41• 42• 43º its dual basis. Around;, write

B¹Gº = »4• �¼with the property thatd4¹+ º is parallel for all+ 2 ) ; ! . ‘en, for / 2 ) G ^- EH:

� B¹� º ¹48• / º = ¹¹B� Idº� � Uº ¹48• / º

= � U ¹»d4¹48º•¹d� ¹48º•0º¼•»d4¹48º•¹0• / º¼º

= � eA ¹d� ¹48º• / º

= d� ¹48º ¹/ º”

(4.18)

In the €rst step we used that the curvature of a pullback connection is the pullback of its

curvature. ‘e third step is the de€nition of U from Eq. (4.16), and in the last step we used

the curvature properties of the tautological connectioneA from Proposition 2.59. As before,

denote by�1• �2• �3 the Hyperk•ahler triple of complex structures on- EH andl 1• l 2• l 3 the cor-

responding symplectic forms. ‘e Fueter condition from De€nition 4.13 forBis equivalent to
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the following equation of elements in
 1¹- EH•Ad%º:

0 =
3Õ

8=1

�8¹d� ¹48ºº =
3Õ

8=1

l 8¹d� ¹48º•�º =
3Õ

8=1

l 8¹� B¹� º ¹48•�º•�º

= �

 
3Õ

8=1

l 8 ^ � B¹� º ¹48•�º

!

where � denotes the Hodge star on- EH. ‘e €rst equality is the Fueter equation, the third

equality is Eq. (4.18), and the second and fourth equality are linear algebra computations that

can be computed in standard coordinates.

Applying � to both sides gives

0 =

 
3Õ

8=1

l 8 ^ � B¹� º ¹48•�º

!

which in turn implies

0 =
Õ

8•9•:cyclic

l 8 ^ 49 ^ 4: ^ »� B¹� º¼¹1•1º•

where»� B¹� º¼¹1•1º denotes the¹1•1º-component of� B¹� º according to the bi-grading on� � ) � ¹! �

- EHº induced by) � ¹! � - EHº = ) � ! � ) � - EH. On the other hand,»� B¹� º¼¹0•2º 2 
 2¹- EH•Ad%º

is anti-self-dual by Proposition 2.59, thus

0 =
Õ

8•9•:cyclic

l 8 ^ 49 ^ 4: ^ »� B¹� º¼¹0•2º ”

Last,0 =
Í

8•9•:cyclic l 8^ 49^ 4: ^ »� B¹� º¼¹2•0º , because this is a sum of forms of type¹2•4º which

must vanish as! has dimension3. �

4.1.3 Gluing Connections over%and. •h]i

We will de€ne here a further modi€cation of the H•older norm.
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De€nition4.19 (cf. Section 6 in [Wal17]). ForX• ;2 R, let

F ;•X;C : # C ! R

G7!

8>>>><

>>>>
:

CX¹C¸ AC¹Gºº� ; � X• if AC¹Gº �
p

C

A� ; ¸ X
C if AC¹Gº ¡

p
C”

(4.20)

Note thatF ;•X;C is not continuous, but that does not cause any problems. For a metric 6 on

# C, de€ne the weighted H•older normsjj�j j� :•U
;•X;C•6 as in De€nition 3.15, where we use parallel

transport with respect to the Levi-Civita connection inducedby the metric6, and measure

vectors in6. If no metric6 is speci€ed, we take6 = 6#
C . For the instanton analysis, we need

X 2 ¹� 1•0º, U 2 ¹0•1º, U � j Xj, for exampleX= � 1•64, U = 1•256will work.

Proposition 4.21(Proposition 6.2 in [Wal17]). If ¹5 •6º 7! 5 � 6 is a bilinear form satisfying

j5 � 6j � j 5j j6j, then

jj5 � 6j j� :•U
;1¸ ;2•X1¸ X2;C

� j j 5jj� :•U
;1•X1;C

� j j6j j� :•U
;2•X2;C

”

We have shown thatB¹� º is a ¹k %
Cº� -instanton. It is, however, in general not a� 2-instanton

with respect tok %
C because of the¹2•0º part of its curvature. We will later estimate the failure

of B¹� º of being a� 2-instanton.

De€nition4.22. For; 2 ! choose a neighbourhood; 2 +; � ! over which � 1 is trivial. Use

the identi€cation� : B¹� º j%̂n% ! � 1 and parallel transport with respect toB¹� º to get a

trivialisation of B¹� º around%̂j+; n %j+; , say on a neighbourhood* ; � %̂. Using this, we can

view the pullback ofB¹� º j%̂n%under the projection* ; ! +; as a connection� 1
;

2 � ¹B¹� º j* ; º.

‘is de€nition is independent of the choice of; 2 ! , and therefore de€nes some connection

� 1 2 � ¹B¹� º j* º, where* � %̂is a neighbourhood of the points at in€nitŷ%n%.

Now is the €rst time we cite a non-trivial result from [Wal17]. ‘erein, Fueter sections into a

moduli bundle of ASD-instantons onR4 were considered, while in this chapter ASD-instantons

on- EH are considered. At some points this changes the analysis, and these results are reproved

in this new se‹ing in the coming sections. At some points, results carry over without having

to change the proof. ‘e following proposition is the €rst such result:
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Proposition 4.23(Proposition 7.4 in [Wal17]). Œere exists2 ¡ 0 such that for allC2 ¹0•) º:

�
�
�
�
�
�»� B¹� º¼2•0 � � � 1

�
�
�
�
�
�
� 0•U

� 2•0;C¹* º•6%
C

� 2C2• (4.24)

�
�
�
�»� B¹� º¼1•1

�
�
�
�
� 0•U

� 3•0;C¹* º•6%
C

� 2C2• and (4.25)

�
�
�
�»� B¹� º¼0•2

�
�
�
�
� 0•U

� 4•0;C¹* º•6%
C

� 2C2” (4.26)

Proposition 4.27.Let � 0 ! . •h]i be an orbifold bundle with connection\ satisfying Assump-

tion 4.1,! = €x¹]º, andB: ! ! M be a Fueter section.

Œen there exists a� -bundle� Cover# Cand a connection� Con� Csuch that

¹� C• � Cº j# Cn� C¹* C� 1' º ' ¹ � 0• \ º j# Cn� C¹* C� 1' º and

¹� C• � Cº j� C¹* 1º ' ¹ B¹� º•B¹� ºº jd� 1¹* 1º”

Proof.Construction of � C: By ‘eorem 4.15 we have a bundle isomorphism� : � 1 ! B¹� º j%̂n%.

Let * � %̂be a neighbourhood of̂%n %. Now use radial parallel transport with respect to\

on � 0 and parallel transport with respect to� 1 (the pullback of� � � 1 to a neighbourhood of

%̂n%de€ned in Proposition 4.23) to extend� to the neighbourhood� ¹* ' º � . of ! , denote the

extension by	 . ‘e conditions ]̂� \ = \ and Assumption 4.1 ensure that this is well-de€ned.

As in Section 3.3.3 we use the symbold to denote the mapd : %! a•f� 1g induced by the

blowup map- EH ! C2•f� 1g on Eguchi-Hanson space. For small enoughCwe have that the

overlap$ := * C� 1' \ d¹* º is non-empty. Use this to de€ne� Cby gluing together� 0 andB¹� º

via 	 over$ , i.e.

� C := � 0j. n� C¹* C� 1' n$ º [ B¹� º jd� 1¹* C� 1' º• � • (4.28)

whereE� 	 ¹Eº for E2 � 0j� C¹$ º.

Construction of � C: Let j �
C : # C ! » 0•1¼and j ¸

C : # C ! » 0•1¼be rescalings of a smooth
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j �
C

j ¸
C

b

C

b

2C

b

' •2

b

'

Figure 5: ‘e cut-o‚ functions j �
C and j ¸

C from Eq. (4.29) for smallC.

cut-o‚ function such that

j �
C j fAC� Cg � 0 and j �

C j fAC� 2Cg � 1•

j ¸
Cj fAC� ' •2g � 1 and j ¸

Cj fAC� ' g � 0”
(4.29)

Similar to the de€nition of� 1 2 � ¹B¹� º j* º, de€ne� 1 2 �
�
� 0j� C¹* C� 1' º

�
by pulling back

� 1 2 � ¹� 1 º. By de€nition of� C, we have that� 1 and� 1 are both connections on� C. ‘e

map� identi€es� 1 andB¹� º by the second point of ‘eorem 4.15. Because	 is an extension

of � de€ned by radial parallel transport, and� 1 and� 1 are also de€ned via radial parallel

transport, we have that� 1 = � 1 as connections on� Cj� C¹$ º.

We then havef 2 
 1¹AdB¹� º j$ º and1 2 
 1¹Ad � 0j$ º such that

B¹� º = � 1 ¸ f• \ = � 1 ¸ 1 over$” (4.30)

De€ne then

� C :=

8>>>>>>>><

>>>>>>>>
:

B¹� º on AC Ÿ C

� 1 ¸ j �
C1 ¸ j ¸

Cf on C� AC � '

\ on AC ¡ '”

(4.31)

�

‘e following proposition follows immediately from De€nition 4.19.
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Proposition 4.32.Let j �
C and j ¸

C as in Eq.(4.29). Œen there exists2 ¡ 0 such that for all

C2 ¹0•) º:

�
�
�
�j �

C

�
�
�
�
� 0•U

0•0;C
¸

�
�
�
�dj �

C

�
�
�
�
� 0•U

� 1•0;C
� 2•

�
�
�
�j ¸

C

�
�
�
�
� 0•U

0•0;C
¸

�
�
�
�dj ¸

C

�
�
�
�
� 0•U

0•0;C
� 2”

‘e following proposition is proved like Proposition 4.23 with theproof from [Wal17] directly

carrying over to this se‹ing. ‘e estimate for f holds because of the fast decay of the curvature

of ASD connections on ALE spaces, see Proposition 2.45. ‘e estimate for1 holds because over

! we have that� 1 = \ , not just in the! -direction. ‘at is because� 1 is de€ned using parallel

transport with respect to\ as in De€nition 4.22.

Proposition 4.33(Proposition 7.6 in [Wal17]). Letf 2 
 1¹AdB¹� º j$ º and1 2 
 1¹Ad � 0j$ º as

de€ned in Eq.(4.30). Œen there exists2 ¡ 0 such that for allC2 ¹0•) º:

j jf j j� 0•U
� 3•0;C¹C� AC� ' º ¸

�
�
�
�
�
�d� 1

f
�
�
�
�
�
�
� 0•U

� 4•0;C¹C� AC� ' º
� 2C2 and

jj1j j� 0•U
1•0;C¹AC� ' º ¸

�
�
�
�
�
�d� 1 1

�
�
�
�
�
�
� 0•U

0•0;C¹AC� ' º
� 2C2”

4.2 Pregluing Estimate

‘e goal of this section is to derive an estimate for� � C ^ ek #
C . ‘is is achieved in Corollary 4.54

in the general case, and in Corollary 4.57 in the special case of resolutions of) 7• � .

4.2.1 Estimates for the� 2-structures Involved

We have constructed a connection� C that looks likeB¹� º near ! and looks like\ far away

from ! . ‘e connection B¹� º is close to being a� 2-instanton with respect tok %
C, so in order to

control the pregluing error, we will need to estimate the di‚erencek #
C � i %

C. ‘is will be done

in Propositions 4.34 and 4.37.

On the other hand,\ is a � 2-instanton with respect tok , so we will need to estimate the
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di‚erence k #
C � k . ‘is will be done in Proposition 4.39.

Proposition 4.34.Œere exists2 ¡ 0 independent ofCsuch that

�
�
�
�k #

C � k %
C

�
�
�
�
� 0•U

2•0;C¹* ' º � 2C� 1” (4.35)

Proof.We have

jk #
C � k %

C j6#
C

=

8>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>
:

d»C2V0•3 ¸ C4V2•1¸¼C2j 1•3 ¸ C4\ 3•1 ¸ C4\ 2•2 if �A � C� 1•9

d»C2V0•3 ¸ C4V2•1 ¸ 0¹C1•9�Aº � � � Z¼ ¸C2j 1•3 ¸ C4\ 3•1 ¸ C4\ 2•2 if C� 1•9 � �A � 2C� 1•9

d»C2V0•3 ¸ C4V2•1 ¸ � � Z¼ ¸C2j 1•3 ¸ C4\ 3•1 ¸ C4\ 2•2 if 2C� 1•9 � �A � C� 4•5

d»¹1 � 0¹C4•5�Aºº¹C2V0•3 ¸ C4V2•1º ¸ � � Z¼¸

C2j 1•3 ¸ C4\ 3•1 ¸ C4\ 2•2 � 0¹C4•5�AºC2E1•2

if C� 4•5 � �A � 2C� 4•5

d¹� � Zº ¸ C2j 1•3 ¸ C4\ 3•1 ¸ C4\ 2•2 � C2E1•2 if 2C� 4•5 � �A

=

8>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>
:

O¹Cº if �A � C

O¹C�A� 3º if C� �A � C� 1•9

O¹C�A� 3 ¸ C2�A2º if C� 1•9 � �A � 2C� 1•9

O¹C�A� 3 ¸ C2�A2º if 2C� 1•9 � �A � C� 4•5

O¹C2�A2 ¸ �A� 4º if C� 4•5 � �A � 2C� 4•5

O¹C2�A2 ¸ �A� 4º if 2C� 4•5 � �A•

(4.36)

where we used Propositions 3.92 and 3.103 and ‘eorem 3.110 in thesecond step. Multiplying

with the weight function ¹Ç ACº� 2 gives the estimate for the! 1
2•0;C-norm, and the estimate for

the� 0•U
2•0;C-norm is proved analogously. �

Proposition 4.37.Let# Cbe the resolution of) 7• � from Section 3.2. Œere exists2 ¡ 0independent

of Csuch that

�
�
�
�k #

C � k %
C

�
�
�
�
� 0•U

2•0;C¹* ' º � 2C4” (4.38)
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Proof. ‘is is a restatement of Lemma 3.36. In the case that# C is the resolution of) 7• � we

have thatk %
C is closed, so the formsC2j 1•3, C4\ 3•1,C4\ 2•2 from Proposition 3.103 can be chosen to

be0. Furthermore, in this caseek a
C = � �

C¹� i º, soZ = 0. Using this and that the cut-o‚ happens

whereZC� 1•2 � �A � ZC� 1, the same proof as for Eq. (4.35) shows the claim. �

‘e following estimate holds in general, not just for resolutions of) 7• � :

Proposition 4.39.Œere exists2 ¡ 0 independent ofCsuch that

�
�
�
�k #

C � k
�
�
�
�
� 0•U

� 2•0;C¹ fG2# C: �A¹Gº � 1gº � 2C2” (4.40)

Proof.Using Propositions 3.92 and 3.103 and ‘eorem 3.110, the proof isanalogous to Propos-

ition 4.34. �

Last we need an estimate comparingek #
C andk #

C in a H•older norm. In ‘eorem 3.110 we had

this estimate for the! 1 -norm, but not for the� 0•U
0•0;C-norm. Going through the proof of 2.26,

one can improve this to a� 0•U
0•0;C-estimate as stated in the following proposition. For the caseof

resolutions of) 7• � , this was done in [Wal13a, Proposition 4.20], and the proof carries over to

resolutions of. •h]i .

Proposition 4.41.Œere exists2 ¡ 0 independent ofCsuch that

�
�
�
�
�
�ek #

C � k #
C

�
�
�
�
�
�
� 0•U

0•0;C

� 2C1•18” (4.42)

4.2.2 Principal Bundle Curvature Estimates

For our pregluing estimate we will want to estimate�¹ � � C^ ek #
C º. ‘is is done in Corollaries 4.54

and 4.57. Most of the heavy li‰ing is done by the following Proposition 4.43: here we get an

estimate for�¹ � � C ^ k #
C º which then is combined with the estimate forek #

C � k #
C .

Proposition 4.43.Œere exists2 ¡ 0 such that for allC2 ¹0•) º we have

�
�
�
��¹ � � C ^ k #

C º
�
�
�
�
� 0•U

� 2•0;C
� 2C” (4.44)
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Proof.We will estimate�¹ � � C ^ k #
C º separately on some regions:

1. OnAC � 2Cwe have

� � C = � B¹� º ¸ j �
C d� 1 1 ¸ j �

C»f•1¼ ¸
1
2

¹j �
Cº2»1• 1¼ ¸dj �

C ^ 1”

‘us by Proposition 4.21, Proposition 4.32, and Proposition 4.33:

�
�
�
�� � C � � B¹� º

�
�
�
�
� 0•U

� 2•0;C¹AC� 2Cº

� j j 1j j� 0•U
� 2•0;C¹AC� 2Cº

�
�
�
�j �

C

�
�
�
�
� 0•U

0•0;C¹AC� 2Cº

�
�
�
�d� 1 1

�
�
�
�
� 0•U

0•0;C¹AC� 2Cº

¸
�
�
�
�j �

C

�
�
�
�
� 0•U

0•0;C¹AC� 2Cº j jf j j� 0•U
� 3•0;C¹AC� 2Cº j j1j j� 0•U

1•0;C¹AC� 2Cº

¸
1
2

jj1j j� 0•U
� 3•0;C¹AC� 2Cº

�
�
�
�j �

C

�
�
�
�2
� 0•U

0•0;C¹AC� 2Cº j j1j j2
� 0•U

1•0;C¹AC� 2Cº

¸ j j 1jj� 0•U
� 2•0;C¹AC� 2Cº

�
�
�
�dj �

C

�
�
�
�
� 0•U

� 1•0;C¹AC� 2Cº j j1j j� 0•U
1•0;C¹AC� 2Cº

� 2C2

(4.45)

where we also used the fact thatjj1jj� 0•U
� ;•0;C¹AC� 2Cº � 2C; if ; ¡ 0, which follows from

De€nition 4.19 usingAC � 2C.

Remember that»� B¹� º¼2•0 ^ k %
C = 0 by the ASD condition and»� B¹� º¼1•1 ^ k %

C = 0 by the

Fueter condition (cf. ‘eorem 4.15). By Proposition 4.23, we therefore have:

�
�
�
�� B¹� º ^ k %

C

�
�
�
�
� 0•U

� 2•0;C¹AC� 2Cº

�
�
�
�
�»� B¹� º¼¹0•2º ^ k %

C

�
�
�
�
� 0•U

� 2•0;C¹AC� 2Cº

�
�
�
�
�»� B¹� º � � \ j! ¼¹0•2º

�
�
�
�
� 0•U

� 2•0;C¹AC� 2Cº �
�
�
�
�k %

C

�
�
�
�
� 0•U

0•0;C¹AC� 2Cº ¸

�
�
�
�� \ j!

�
�
�
�
� 0•U

0•0;C¹AC� 2Cº �
�
�
�
�k %

C

�
�
�
�
� 0•U

0•0;C¹AC� 2Cº � j j1jj� 0•U
� 2•0;C¹AC� 2Cº

� 2C2•

(4.46)

where we again used Proposition 4.21. Last, note that by Proposition 4.23 and Eq. (4.45)

we have
�
�
�
�� � C

�
�
�
�
� 0•U

� 4•0;C¹AC� 2Cº � C2 because the weight function in this region is uniformly
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bounded from above and below by2C2. ‘us, by Proposition 4.21 and Eq. (4.35):

�
�
�
�� � C ^ ¹ k #

C � k %
Cº

�
�
�
�
� 0•U

� 2•0;C¹AC� 2Cº �
�
�
�
�� � C

�
�
�
�
� 0•U

� 4•0;C¹AC� 2Cº

�
�
�
�k #

C � k %
C

�
�
�
�
� 0•U

2•0;C¹AC� 2Cº

� 2C”
(4.47)

Pu‹ing the estimates from Eqs. (4.45) to (4.47) together, we get

�
�
�
��¹ � � C ^ k #

C º
�
�
�
�
� 0•U

� 2•0;C¹AC� 2Cº

�
�
�
�
�� B¹� º ^ k %

Cº
�
�
�
�
� 0•U

� 2•0;C¹AC� 2Cº ¸
�
�
�
�¹� B¹� º � � � Cº ^ k %

C

�
�
�
�
� 0•U

� 2•0;C¹AC� 2Cº

¸
�
�
�
�� � C ^ ¹ k #

C � k %
Cº

�
�
�
�
� 0•U

� 2•0;C¹AC� 2Cº

� 2¹C2 ¸ C2 ¸ Cº � 2C”

2. On2C� AC � ' •2 we have� C = � 1 ¸ f ¸ 1 and therefore

� � C = � \ ¸ »f•1¼ �̧ B¹� º � � � 1 ” (4.48)

First,

�
�
�
�¹� B¹� º � � � 1 º ^ k %

C

�
�
�
�
� 0•U

� 2•0;C¹2C� AC� ' •2º

�
�
�
�
�
�
�
�
� B¹� º � � � 1

�
2•0 ^ k %

C

�
�
�
�
�
�
� 0•U

� 2•0;C¹2C� AC� ' •2º

�
�
�
�
�
�
�
�
� B¹� º � � � 1

�
2•0

�
�
�
�
�
�
� 0•U

� 2•0;C¹2C� AC� ' •2º

�
�
�
�k %

C

�
�
�
�
� 0•U

0•0;C¹2C� AC� ' •2º

� 2C2•

(4.49)

where we used point (ii) of ‘eorem 4.15 in the €rst step and Proposition 4.23 in the last

step. We also have

�
�
�
�¹� B¹� º � � � 1 º ^ ¹k #

C � k %
Cº

�
�
�
�
� 0•U

� 2•0;C¹2C� AC� ' •2º

�
�
�
�
�¹� B¹� º � � � 1 º

�
�
�
�
� 0•U

� 4•0;C¹2C� AC� ' •2º

�
�
�
�k #

C � k %
C

�
�
�
�
� 0•U

2•0;C¹2C� AC� ' •2º

� 2C

(4.50)
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where we used Proposition 4.23 and Eq. (4.35), therefore

�
�
�
�¹� B¹� º � � � 1 º ^ k #

C

�
�
�
�
� 0•U

� 2•0;C¹2C� AC� ' •2º

�
�
�
�
�¹� B¹� º � � � 1 º ^ k %

C

�
�
�
�
� 0•U

� 2•0;C¹2C� AC� ' •2º

¸
�
�
�
�¹� B¹� º � � � 1 º ^ ¹k #

C � k %
Cº

�
�
�
�
� 0•U

� 2•0;C¹2C� AC� ' •2º

� 2C”

(4.51)

Second,

�
�
�
�»f• 1¼ k̂ #

C

�
�
�
�
� 0•U

� 2•0;C¹2C� AC� ' •2º

� 2 jjf j j� 0•U
� 3•0;C¹2C� AC� ' •2º j j1j j� 0•U

1•0;C¹2C� AC� ' •2º

�
�
�
�k #

C

�
�
�
�
� 0•U

0•0;C¹2C� AC� ' •2º

� 2C4

(4.52)

by Proposition 4.33.

‘ird,

�
�
�
�� \ ^ k #

C

�
�
�
�
� 0•U

� 2•0;C¹2C� AC� ' •2º

� j j � \ ^ k jj� 0•U
� 2•0;C¹2C� AC� ' •2º

¸ j j � \ j j� 0•U
0•0;C¹2C� AC� ' •2º

�
�
�
�k #

C � k
�
�
�
�
� 0•U

� 2•0;C¹2C� AC� ' •2º

� 2C2

(4.53)

where we used the fact that\ is a� 2-instanton with respect tok as well as Eq. (4.40) in

the second step. So, altogether

�
�
�
��¹ � � C ^ k #

C º
�
�
�
�
� 0•U

� 2•0;C¹2C� AC� ' •2º �
�
�
�
�� \ ^ k #

C

�
�
�
�
� 0•U

� 2•0;C¹2C� AC� ' •2º

¸
�
�
�
�»f• 1¼ k̂ #

C

�
�
�
�
� 0•U

� 2•0;C¹2C� AC� ' •2º

¸
�
�
�
�¹� B¹� º � � � 1 º ^ k #

C

�
�
�
�
� 0•U

� 2•0;C¹2C� AC� ' •2º

� 2C

by combining Eqs. (4.48) and (4.51) to (4.53).
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3. On' •2 � AC � ' we have� C = \ ¸ j ¸
Cf and therefore

� � C = � \ ¸ j ¸
C d\ f ¸

1
2

¹ j ¸
Cº2»f• f ¼ ¸dj ¸

C ^ f”

‘erefore, we €nd that

�
�
�
�� � C � � \

�
�
�
�
� 0•U

� 2•0;C¹' •2� ACº �
�
�
�
�j ¸

C

�
�
�
�
� 0•U

0•0;C¹' •2� ACº j jd\ f j j� 0•U
� 4•0;C¹' •2� ACº j j1jj� 0•U

2•0;C¹' •2� ACº

¸
1
2

�
�
�
�j ¸

C

�
�
�
�2
� 0•U

0•0;C¹' •2� ACº j jf j j2
� 0•U

� 3•0;C¹' •2� ACº
j j1j j� 0•U

4•0;C¹' •2� ACº

¸
�
�
�
�dj ¸

C

�
�
�
�
� 0•U

0•0;C¹' •2� ACº j jf j j� 0•U
� 3•0;C¹' •2� ACº j j1j j� 0•U

1•0;C¹' •2� ACº

� 2C2

where we used Propositions 4.21, 4.32 and 4.33 in the second step.Using this, we see

�
�
�
�� � C ^ k #

C

�
�
�
�
� 0•U

� 2•0;C¹' •2� ACº �
�
�
�
�¹� � C � � \ º ^ k #

C

�
�
�
�
� 0•U

� 2•0;C¹' •2� ACº

¸
�
�
�
�� \ ^ k #

C

�
�
�
�
� 0•U

� 2•0;C¹' •2� ACº

� 2C2•

where we used the fact thatk #
C = k whereAC � ' •2 and that\ is a� 2-instanton with

respect tok .

We have that� � C ^ k #
C = 0 outside the three considered regions, which proves the claim.�

Corollary 4.54. Œere exists2 ¡ 0 such that

�
�
�
�
�
��¹ � � C ^ ek #

C º
�
�
�
�
�
�
� 0•U

� 2•0;C

� 2C1•18” (4.55)

Proof.First, observe that

�
�
�
�� � C

�
�
�
�
� 0•U

� 2•0;C
� 2” (4.56)

‘is follows from estimating � � C separately on the three regions from the proof of Proposi-
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tion 4.43. ‘en

�
�
�
�
�
��¹ � � C ^ ek #

C º
�
�
�
�
�
�
� 0•U

� 2•0;C

�
�
�
�
��¹ � � C ^ k #

C º
�
�
�
�
� 0•U

� 2•0;C
¸

�
�
�
�
�
��¹ � � C ^ ¹ ek #

C � k #
C ºº

�
�
�
�
�
�
� 0•U

� 2•0;C

�
�
�
�
��¹ � � C ^ k #

C º
�
�
�
�
� 0•U

� 2•0;C
¸

�
�
�
�� � C

�
�
�
�
� 0•U

� 2•0;C

�
�
�
�
�
�ek #

C � k #
C

�
�
�
�
�
�
� 0•U

0•0;C

� 2¹C¸ C1•18º � 2C1•18

where we used Proposition 4.43 to estimate the €rst summand inthe last step, and Eqs. (4.42)

and (4.56) to estimate the second summand in the last step. �

As promised, we now turn to the special case of resolutions of) 7• � , rather than general� 2-

orbifolds. We get a be‹er pregluing estimate here, which is due tothe following two facts:

€rst, we get a be‹er estimate for�¹ � � C ^ k #
C º on the resolution of) 7• � , because near the

associative,� C is close toB¹� º, which is close to being a� 2-instanton with respect tok %
C, and

Proposition 4.37 says thatk #
C � k %

C is small. Second, the di‚erenceek #
C � k #

C is smaller on

resolutions of) 7• � than in the general case.

Corollary 4.57. Let# C be the resolution of) 7• � from Section 3.2. Œen there exists2 ¡ 0 such

that for allC2 ¹0•) º we have

�
�
�
�
�
��¹ � � C ^ ek #

C º
�
�
�
�
�
�
� 0•U

� 2•0;C

� 2C2” (4.58)

Proof.We €rst prove

�
�
�
��¹ � � C ^ k #

C º
�
�
�
�
� 0•U

� 2•0;C
� 2C2” (4.59)

as in Proposition 4.43, the only di‚erence being that Eq. (4.38) in Eqs. (4.47) and (4.50) gives a

factor ofC2 rather thanC, yielding Eq. (4.59). For small enoughU 2 ¹0•1º we have that

�
�
�
�
�
�ek #

C � k #
C

�
�
�
�
�
�
� 0•U

0•0;C

� 2C5•2 (4.60)

by ‘eorem 3.84. Taking Eqs. (4.59) and (4.60) together gives Eq. (4.58) as in the proof of

Corollary 4.54. �
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4.3 Linear Estimates

We now arrived in the second step of the three step process of (1) constructing an approxim-

ate solution, (2) estimating the linearisation of the instanton equation, and (3) perturbing the

approximate solution to a genuine solution. ‘e estimate in question is Proposition 4.77. It

makes use of the normsjj�j jXC
and jj�j jYC

that are de€ned in Section 4.3.1, and the analysis is

analogous to Section 3.2.3.

‘e idea of the proof is this: near the resolution locus of the associative! , the linearisation of

the instanton equation is approximately equal to the linearisation of the Fueter equation. De-

formations of the approximate solution and deformations of the Fueter section live in di‚erent

spaces, so some work will need to go into making this statementprecise.

Over the course of Sections 4.3.3 to 4.3.5 we work out an estimate for the linearised operator

modulo deformations of the approximate instanton that come from deformations of the Fueter

section. ‘is estimate is given in Proposition 4.105. Its proofis very similar to the proof of

Proposition 3.65: we use a Schauder estimate for the linearised operator, which is given in

section Section 4.3.4, together with analysis on the local modelsR3 � - EH andR3 � C2•f� 1g,

which is explained in Section 4.3.3.

So we have estimates for the linearised operator on instantondeformations that come from

deformations of the Fueter section from Section 4.3.2 and on theother instanton deformations

from Section 4.3.5. In Sections 4.3.6 and 4.3.7 we combine both and complete the proof of

Proposition 4.105.
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4.3.1 Stating the Estimate

In the previous section, we constructed a connection� C 2 � ¹� Cº. ‘e linearisation of the

� 2-instanton equation together with the Coulomb gauge condition is

! C := ! � C : ¹
 0 � 
 1º ¹"• Ad � º ! ¹ 
 0 � 
 1º ¹"• Ad � º

©
­
­
«

b

0

ª
®
®
¬

7!
©
­
­
«

0 d�
� C

d� C �¹ ek #
C ^ d� Cº

ª
®
®
¬

©
­
­
«

b

0

ª
®
®
¬

•

cf. Eq. (2.103). We introduce the following notation for the constant part and the quadratic

part of the� 2-instanton equation: for0 = ¹b•0º 2 ¹
 0 � 
 1º ¹# C•Ad � Cº de€ne4C as well as

&C¹0º 2 
 0¹# C•Ad � Cº via

� ¹ � � Ç 0 ^ ek #
C º ¸ d� Ç 0b

= �¹ � � C ^ ek #
C º

|          {z          }
=:4C

¸ � ¹ d� C0 ^ ek #
C º ¸ d� Cb ¸

1
2

� ¹»0 ^ 0¼ ^ek #
C º ¸ »b• 0¼

|                              {z                              }
=:&C¹0º

” (4.61)

In this section we will study the operator! Cand derive an estimate for the operator norm of

the inverse of! C. ‘is operator norm will be taken with respect to the complicated norms

jj�j jX and jj�j jY , taken from [Wal17, Section 8], which we will explain now.

We need a way to decompose elements in
 1¹# C•Ad � Cº into a part coming from a section of

B� ¹+ M º, which is nonzero only near the gluing area, and a rest:

De€nition4.62. ‘e section Bgives rise to a connectionB¹� º 2 � ¹B¹� ºº by ‘eorem 4.15. A

section5 2 � ¹B� + M º analogously de€nes an element in) B¹� º � ¹B¹� ºº = 
 1¹%•AdB¹� ºº, say

8� 5. Use this to de€ne

]C : � ¹B� + M º ! 
 1¹# C•g� Cº

5 7! j ¸
C � 8� 5 ”

(4.63)
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Further de€necC : 
 1¹# C•Ad � Cº ! � ¹B� + M º for 0 2 
 1¹# C•Ad � Cº andG2 ! by

¹cC0º¹Gº :=
Õ

^

¹

%G

h0• ]Ĉ i6%
C

vol6%
C j%G

�^• (4.64)

where^ runs through an orthonormal basis of¹+ M ºB¹Gº with respect to the inner product

h]C�• ]C�i6C
%
. Here the integral is taken with respect to the metric inducedby i %

C restricted to%G.

Let furthercC := ]CcCand[ C := Id � cC.

‘e following proposition states that ]C and cC are bounded operators. ‘e proof of these

estimates is similar to the proofs of Propositions 3.45 and 3.48and [Wal17, Proposition 6.4].

Proposition 4.65.For; � � 1 andX 2 R such that; � U ¸ X ¡ � 3 and; ¸ X Ÿ � 1 there is a

constant2 ¡ 0 such that for allC2 ¹0•) º we have

jj]C5jj� 0•U
;•X;C

� 2C� 1� ; j j5jj� 0•U and

jjcC0jj� 0•U � 2C1̧ ; � U j j0j j� 0•U
;•X;C¹+»0•' º•Cº

”

Proof. ‘e €rst inequality is proved like Proposition 3.45.

To prove the second inequality, note that by Proposition 2.50 wehave forG2 !• ^ 2 ¹+ M ºB¹Gº

j8� ^ j6%
1

� 2̂ ¹1 ¸ �Aº� 3

for a constant2̂ depending onG 2 ! and on^. Because¹+ M ºB¹Gº is a €nite-dimensional

vector space we can take2 = maxj ĵ j j! 2•6%
1

=1 2̂ to get the estimate

j8� ^ j6%
1

� 2¹1 ¸ �Aº� 3 j ĵ j j6%
1 •! 2 (4.66)

for a constant2independent of̂ . By compactness of! , we can assume2to also be independent

of G2 ! . By measuring in6%
C instead of6%

1 we get from Eq. (4.66):

j8� ^ j6%
C

= C� 1j8� ^ j6%
1

� 2C2¹C¸ C�Aº� 3 j ĵ j j6%
1 •! 2 ” (4.67)

For some interval� � R andG 2 ! we denote%G•� := fD 2 %G : �A¹Dº 2 � g and similarly for
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¹a•f� 1gºG•�. By abuse of notation we writevol6%
C

for vol6%
C j%G

2 
 4¹%Gº and similarly forvol6a
C
.

¹

%G

h0• j ¸
C � 8� ^i6%

C
vol6%

C
�

¹

%G

j0j6%
C
j j ¸

C � 8� ^ j6%
C

vol6%
C

� 2
¹

%G•»0•1¼

C2

¹C¸ C�Aº3F � 1
;•X;Cvol6%

C
j j0j j! 1

;•X;C•6%
C

j ĵ j j! 2•6%
1

¸ 2
¹

%G•»1•'C � 1¼

C2

¹C¸ C�Aº3F � 1
;•X;Cvol6%

C
j j0jj! 1

;•X;C•6%
C

j ĵ j j! 2•6%
1

� 2vol6%
C

¹%G•»0•1¼º �C; � 1 j j0jj! 1
;•X;C•6%

C
j ĵ j j! 2•6%

1

¸ 2
¹

¹a•f� 1gºG•»0•'C � 1¼

C2

¹C¸ C�Aº3F � 1
;•X;Cvol6a

C
j j0j j! 1

;•X;C•6%
C

j ĵ j j! 2•6%
1

� 2C; ¸ 3 j j0j j! 1
;•X;C•6%

C
j ĵ j j! 2•6%

1

¸ 2
¹ p

C

0
C2� X¹C¸ Aº; ¸ X� 3A3 dA� j j0j j! 1

;•X;C•6%
C

j ĵ j j! 2•6%
1

¸ 2
¹ '

p
C

C2A; � X¹C¸ Aº� 3A3 dA� jj0j j! 1
;•X;C•6%

C
j ĵ j j! 2•6%

1
”

(4.68)

Here we used Eq. (4.67) in the second step. In the third step, we switched from integrating

over%G•»1•'C� 1¼to integrating overaG•»1•'C� 1¼. We could do this becauseC�Aon %corresponds to

the radius functionAon a, and6%
Cj%G•»1•'C � 1¼

� d� 6a
Cj%G•»1•'C � 1¼

! 0 measured in6a
C asC! 0 by

Eqs. (3.93) and (3.100). ‘e la‹er implies that we can changevol6%
C

to vol6a
C

by Proposition A.4.

We used the de€nition ofF ;•X;Cand changing into sphere coordinates in the fourth step.

We now treat the two integrals separately.

¹ p
C

0
¹C¸ Aº; ¸ X� 3A3 dA=

�
¹A¸ CºX¸ ;

�
�

3C
X¸ ;

�
C3

¹� 2 ¸ X¸ ;º ¹A¸ Cº2

¸
3C2

¹� 1 ¸ X¸ ;º ¹A¸ Cº
¸

A¸ C
1¸ X¸ ;

� � p
C

0

� 2¹CX¸ ;¸ 1 ¸ CX•2̧ ;• 2̧ 1•2º

� 2CX¸ ;¸ 1•

(4.69)
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where we used a computer algebra system to compute the integral in the €rst step and used

X¸ ; ¸ 1 Ÿ 0 in the third step. For the second integral we €nd that

¹ '

p
C

A; � X¹C¸ Aº� 3A3 dA�
¹ '

p
C

A; ¸ 1� X dA

�
h
A; ¸ 1� X

i '
p

C

� C; � C� ; •2� X•2� 1•2 � C1 ¸ 2

� 2C; ¸ 1

(4.70)

where we used the fact that� ; � X� 1 ¡ 0 to estimate the €rst summand in the last step, and

the fact that; � � 1 to estimate the second summand in the last step.

Combining Eqs. (4.68) to (4.70) we get

¹

%G

h0• jC � 8� ^i6%
C

vol6%
C

� 2C3̧ ; j j0j j! 1
;•X;C

j ĵ j j! 2•6%
1

” (4.71)

If ^1• ^2 2 ¹+ M CºB¹Gº , then

hj ¸
C � 8� ^1• j ¸

C � 8� ^2i ! 2•6%
C

� h 8� ^1• 8� ^2i ! 2•6%
C

� C2h8� ^1•8� ^2i ! 2•6%
1
•

(4.72)

where � means comparable uniformly inC. Here, in the second step we used the fact that

vol6%
C j%G

= C4 vol6%
1 j%G

and ĥ 1¹~º• ^2¹~ºi6%
C

= C� 2ĥ 1¹~º• ^2¹~ºi6%
1

for ~ 2 %G. Equation (4.72)

implies that if^ has unit length with respect to the inner producth]C�• ]C�i6%
C
, then

j ĵ j j! 2•6%
1

� 2C� 1” (4.73)

Becausejj�j j! 2•6%
1

and jj�j j! 1 •6%
1

are norms on a €nite-dimensional vector space, they are equi-

valent, and thus

j ĵ j j! 1 •6%
1

� 2C� 1” (4.74)

Combining Eqs. (4.71), (4.73) and (4.74) and recalling the de€nition of cC from De€nition 4.62
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gives

jjcC0jj! 1 �

�
�
�
�
�

Õ

^

¹

%G

h0• ]Ĉ i6%
C

vol6%
C j%G

�
�
�
�
�
� j ĵ j j! 1 •6%

1

� 2C1̧ ; j j0j j! 1
;•X;C

”

‘e estimate for the jj�j j� 0•U H•older norm follows analogously. �

We are now ready to de€ne the norms which we will use to prove estimates for the operator

! C:

De€nition 4.75. Denote byXC and YC the Banach spaces� 1•U¹# C• ¹� 0 � � 1º 
 Ad � Cº and

� 0•U¹# C•¹� 0 � � 1º 
 Ad � Cº equipped with the norms

�
�
�
�0

�
�
�
�
XC

:= C� X•2
�
�
�
�[ C0

�
�
�
�
� 1•U

� 1•X;C
¸ C

�
�
�
�cC0

�
�
�
�
� 1•U and

�
�
�
�0

�
�
�
�
YC

:= C� X•2
�
�
�
�[ C0

�
�
�
�
� 0•U

� 2•X;C
¸ C

�
�
�
�cC0

�
�
�
�
� 0•U

(4.76)

respectively.

Using these norms, we can now state the main result of this section:

Proposition 4.77.Let# Cbe the resolution of) 7• � from Section 3.2. LetBbe the Fueter section and

\ be the� 2-instanton used in the construction of� C (cf. Proposition 4.27). IfBis in€nitesimally

rigid and\ is in€nitesimally rigid and irreducible, then there existsa constant2 ¡ 0 which is

independent ofCsuch that for small enoughCand all0 2 ¹
 0 � 
 1º ¹# C•Ad � Cº:

�
�
�
�0

�
�
�
�
XC

� 2
�
�
�
�! C0

�
�
�
�
YC

” (4.78)

Unfortunately, we are restricted to the case where# C is a resolution of) 7• � . ‘e reason

for this is that in this case we have improved control over the� 2-structureei #
C as proved in

Proposition 4.37 and ‘eorem 3.84. ‘e proof of the proposition extends over the rest of this

section.

127



4.3.2 Comparison with the Fueter Operator

Given an elementE 2 � ¹B� + M º one may do two di‚erent things to it: either embed it into


 1¹# C•Ad � Cº €rst, and then apply! C. Or apply the linearised Fueter operator €rst, and then

embed it into
 1¹# C•Ad � Cº.

Compare this situation with Section 3.2.3: there we considered an element in
 0¹! º and could

either embed it into
 2¹# Cº €rst, and then apply� # C. Or we could apply� ! €rst, and then

embed it into
 2¹# Cº. In that case it turned out that the two are the same up to a small error,

cf. Proposition 3.55.

In this new situation this still turns out the be true with a similar proof. In [Wal17], Fueter

sections into a moduli bundle of ASD-instantons onR4 were considered, and the following

proposition was proved in that se‹ing. In this chapter ASD-instantons on- EH are considered,

but the proof works essentially the same way. ‘at said, we do need that ek #
C � k %

C is small. ‘is

is true on resolutions of) 7• � by Proposition 4.37 and ‘eorem 3.84 but not proved for general

resolutions of� 2-orbifolds. Consequently, we only know the following two propositions to

hold on resolutions of) 7• � .

Proposition 4.79(Proposition 8.26 in [Wal17]). Let# Cbe the resolution of) 7• � from Section 3.2.

Œere exists a constant2 ¡ 0 such that for allC 2 ¹0•) º and all E 2 � ¹B� + M º the following

estimate holds:

jj! C]CE� ]CdBFEjj� 0•U
� 2•0;C

� 2C2 j jEjj� 1•U ” (4.80)

‘e following proposition is a consequence of Proposition 4.79 that is proved like Propos-

ition 3.61. It essentially provides the estimate for the inverse of! C on the spaceImcC �


 1¹# C•Ad � Cº.

Proposition 4.81.Let# C be the resolution of) 7• � from Section 3.2. IfBis in€nitesimally rigid,

then there exists a constant2 ¡ 0 such that for allC2 ¹0•) º and allE2 � ¹B� + M º the following
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estimate holds:

jjEjj� 1•U � 2 j jcC! C]CEjj� 0•U ” (4.82)

4.3.3 ‹e Model Operators on R3 � - EH and R3 � C2•f� 1g

As before, let- EH be the Eguchi-Hanson space. To prove the estimate in Proposition 4.77, we

will compare the operator! C with the linearised instanton equation in the model case of a

pulled back ASD instanton onR3 � - EH.

Properties of the Model Operator

Let � be a €nite energy ASD instanton on a� -bundle� over- EH. ‘e in€nitesimal deforma-

tions of� are then governed by the operatorX� from Eq. (2.31). Denote by?- EH : R3 � - EH !

- EH the projection onto the second factor. By a slight abuse of notation we denote the pull-

backs of� and� to R3 � - EH under?- EH by � and� as well.

Denote by! � be the linearised� 2-instanton operator from Eq. (2.105). We can de€ne the map

¹ � º¥yi : ?�
R3) � R3 '

! ?�
- EH

� ¸ ) � - EH, which takes a1-form, dualises it, and plugs it into the

product� 2-structurei from Eq. (2.27). It mapsdG8 to � l 8. Using it, we can relateX� and! �

as follows:

Proposition 4.83(Proposition 2.70 in [Wal13b]). Under the identi€cation

¹ � º¥yi : ?�
R3) � R3 '

! ?�
- EH

� ¸ ) � - EH

and accordingly


 0 � 
 1¹R3 � - EH•Ad � º ' 
 0¹R3 � - EH• ?�
- EH

»¹R � � ¸ ) � - EH � ) � - EHº 
 Ad � ¼º

the operator! � can be wriˆen as! � = � ¸ � � where

� ¹b• l• 0º =
3Õ

8=1

¹�h m8l• l 8i • m8b � l 8• �8m80º and � � =
©
­
­
«

0 X�

X�
� 0

ª
®
®
¬

”
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Moreover,

! �
� ! � = � R3 ¸

©
­
­
«

X� X�
�

X�
� X�

ª
®
®
¬

” (4.84)

Recall the weighted H•older normsjj�j j� 0•U
V

on R3 � - EH from De€nition 3.40. ‘e following

proposition is then a consequence of Lemma 3.38:

Proposition 4.85(Proposition 2.74 in [Wal13b]). Let e- be an ALE space. LetV 2 ¹� 3•0º. Œen

0 2 � 1•U
V is in the kernel of! � : � 1•U

V ! � 0•U
V� 1 if and only if it is given by the pullback of an element

of the! 2 kernel ofX� to R3 � e- .

Comparison with ! C

We now explain two mapsB% andBa: the €rst for "zooming into" the resolution locus of the

associative! , the second for "zooming into" the gluing region of# C. Fix a point~ 2 ! , a scaling

parameter3 2 Z, a gluing parameterC2 ¹0•) º, and two positive real numbersn1• n2 de€ning

the scale of the region into which to zoom in.

Let

+ %
n1•n2;C¹~º := fG2 %: f ¹Gº 2 Im¹exp~ j ¹� n1•n1º3º• �A¹GºCŸ n2g � %•

* %
n1•C•n2•C;C := f¹ G• Iº 2 R3 � - EH : G2 ¹� n1•C• n1•Cº3• d¹I º Ÿ n2•Cg”

Here we implicitly used an identi€cation) ~! ' R3 to haveexp~ acting on¹� n1• n1º3. Choose

this identi€cation so that it maps the orthonormal basis41¹~º• 42¹~º• 43¹~º 2 ) �
~ ! from Sec-

tion 3.3.3 to the standard basisdG1•dG2•dG3 2 � 1¹¹R3º� º. Fix an element5 2 Fr~ of the

unitary frame bundle ofa around~ 2 ! . It induces an isometry- EH ' %~, and assume that

5 is chosen so thatl 8 is sent to �l 8j%~ under this map for8 2 f1•2•3g. ‘en, for small n1, we

de€ne

� % : * %
n1•C•n2•C;C ! + %

n1•n2;C¹~º

¹G• Iº 7! P B7! exp~ ¹CBGº ¹5¹I ºº 2 %”
(4.86)
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Here,B7! exp~ ¹BGº denotes the unique shortest geodesic from~ to exp¹CGº in ! , andPB7! exp~ ¹CBGº

denotes parallel transport in%with respect to �� along this curve, cf. the paragraph before

Eq. (3.98). Forn1 small enough, this is a di‚eomorphism. ‘e reason for this de€nition is the

following: because of our choices of identi€cations) ~! ' R3 and %~ ' - EH we have that

¹� %º� ¹i %
Cº ¹0• Iº is the standard� 2-structure onR3 � - EH, for all I 2 - EH, cf. Eq. (3.98). Let0

be a tensor €eld of valence¹?•@º, i.e. in index notation? lower indices and@upper indices,

on+ %
n1•n2;C¹~º. We then de€ne

B%¹0º := B%•n1•n2
3•~;C ¹0º := C3¸ ?� @¹� %º� 0• (4.87)

which is a tensor on* n1•C•n2•C;C. ‘e point of this is the following proposition:

Proposition 4.88.Œere are constants2 ¡ 0 andn ¡ 0 such that for smallCthe following holds:

for all n1• n2 2 ¹0• nº and for all0 2 ¹
 0 � 
 1º ¹# C• � Cº:

�
�
�
�
�
�B%•n1•n2

3•C;~ 0
�
�
�
�
�
�
! 1

; ¸ X ¹* %
n1•C•n2•C;Cº

� C3¸ ;
�
�
�
�0

�
�
�
�
! 1

;•X;C¹+ %
n1•n2 ¹~ºº • (4.89)

�
�
�
�
�
�B%•n1•n2

3•C;~ 0
�
�
�
�
�
�
� :•U

; ¸ X ¹* %
n1•C•n2•C;Cº

� C3¸ ;
�
�
�
�0

�
�
�
�
� :•U

;•X;C¹+ %p
C•

p
C
¹~ºº • (4.90)

where� means comparable independently ofC. Furthermore, using the Hyperk•ahler isomorphism

%~ ' - EH induced by5, we can view the connectionB¹� º over%~ as a connection over- EH,

denoted by5� ¹B¹~ºº. Œen

�
�
�
�

�
�
�
�! C0 �

�
B%•

p
C•

p
C

2•C;~

� � 1
! ?�

- EH
5� ¹B¹~ººB

%•
p

C•
p

C
1•C;~ 0

�
�
�
�

�
�
�
�
� 0•U

� 2•X;C¹+ %p
C•

p
C
¹~ºº

� 2
p

C
�
�
�
�0

�
�
�
�
� 1•U

� 1•X;C¹+ %p
C•

p
C
¹~ºº ” (4.91)

Proof.We €rst prove Eq. (4.89): for¹0• Iº 2 * n1•C•n2•C;C the mapd¹0•I º� % (cf. Eq. (4.86)) is an

isometry for the metricC2¹6R3 � 6¹1ºº on) ¹0•I º ¹R3 � - EHº and the metric on) � %¹0•I º%induced

by 6%
C. Because of the scaling factorC3¸ ?� @from Eq. (4.96) we have that

jB%•n1•n2
3•C;~ 0¹0• Iº j6R3 � 6¹1º = C3 j0¹� %¹0• Iºº j6%

C
” (4.92)

‘e map � % is not, in general, an isometry away from this one point, asexp~ need not be an

isometry. ‘us, Eq. (4.92) need not hold in points di‚erent from¹0• Iº. However, using Taylor
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expansions in a neighbourhood of~ in ! for 0 and6%
C we get

�
�
�
�
�
�B%•n1•n2

3•C;~ 0
�
�
�
�
�
�
! 1

; ¸ X ¹* n1•C•n2•C;Cº
� C3¸ ;

�
�
�
�0

�
�
�
�
! 1

;•X;C¹+n1•n2 ¹~ºº•6%
C

”

Now Eq. (4.36) and Proposition 4.41 give the claim for the metrice6#
C instead of6%

C, which is

Eq. (4.89). Equation (4.90) is proved analogously.

Now to prove Eq. (4.91): as in Eq. (4.92), we see that forG2 %~, �A¹Gº Ÿ 1•
p

C,

! B¹� º0¹Gº �
� �

B%•
p

C•
p

C
2•C;~

� � 1
! ?�

- EH
5� ¹B¹~ººB

%•
p

C•
p

C
1•C;~ 0

�
¹Gº = 0” (4.93)

And � C� B¹� º = O¹1º on %~, so

�
�
�
�

�
�
�
�! C0 �

� �
B%•

p
C•

p
C

2•C;~

� � 1
! ?�

- EH
5� ¹B¹~ººB

%•
p

C•
p

C
1•C;~ 0

� �
�
�
�

�
�
�
�
� 0•U

� 2•X;C¹ fD2%~ : �A¹DºŸ1•
p

Cgº

� 2 j j»� C � B¹� º• 0¼jj� 0•U
� 2•X;C¹ fD2%~ : �A¹DºŸ1•

p
Cgº

� 2 j j0j j� 0•U
� 1•X;C¹ fD2%~ : �A¹DºŸ1•

p
Cgº j j� C� B¹� º j j� 0•U

� 1•0;C¹ fD2%~ : �A¹DºŸ1•
p

Cgº

� 2
p

Cjj0j j� 0•U
� 1•X;C¹ fD2%~ : �A¹DºŸ1•

p
Cgº

� 2
p

C
�
�
�
�0

�
�
�
�
� 1•U

� 1•X;C¹ fD2%~ : �A¹DºŸ1•
p

Cgº

(4.94)

where in the third step we used� C � B¹� º = O¹1º to estimate the second factor as
p

C. ‘is

was possible because the weight function is bounded by
p

Con fD 2 %~ : �A¹Dº Ÿ 1•
p

Cg.

Equation (4.91) now follows from using Taylor expansions for0,6%
C, andBaround~, and com-

paring6%
C ande6#

C as in the proof of Eq. (4.89). �

We now de€neBa: let n1 ¡ 0, n2 ¡ n3 ¡ 0, and

+ a
n1•n2•n3;C¹~º := fG2 a•f� 1g : f ¹Gº 2 Im¹exp~ j ¹� n1•n1º3º• n3 Ÿ A¹Gº Ÿ n2g•

* a
n1•C•n2•C•n3•C;C := f¹ G• Iº 2 R3 � C2•f� 1g : G2 ¹� n1•C• n1•Cº3• n3•CŸ jd¹I º j Ÿ n2•Cg”

Just as in the de€nition of+ %
n1•n2;C, we implicitly used an identi€cation) ~! ' R3 so that48 is

sent todG8 for 82 f1•2•3g. Recall also the frame5 that sendsl 8 to �l 8j%~ for 82 f1•2•3gunder
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the isometry- EH ' %~ induced by5. We see from Eq. (3.97) thatl ¹0º
8 is sent to ^l 8ja~ under

the isometryC2•f� 1g ' ¹ a•f� 1gº~ induced by5. For smalln1• n2• n3, the map

� a : * a
n1•C•n2•C•n3•C;C ! + a

n1•n2•n3;C¹~º

¹G• Iº 7! P a
B7! exp~ ¹CBGº ¹5¹I ºº 2 a•f� 1g

(4.95)

is a di‚eomorphism, wherePa denotes parallel transport ina with respect to the connection

er a from Proposition 3.92. Because of our choices of identi€cations) ~! ' R3 and¹a•f� 1gº~ '

C2•f� 1gwe have that¹� %º� ¹i a
Cº ¹0• Iº is the standard� 2-structure onR3� C2•f� 1g, for all I 2

C2•f� 1g, cf. Eq. (3.96). We now de€neBa just as we de€nedB% in Eq. (4.96), only exchanging

� % for � a: for a tensor €eld0 of valence¹?• @º on+ a
n1•n2•n3;C¹~º set

Ba¹0º := Ba•n1•n2•n3
3•~;C ¹0º := C3¸ ?� @¹� aº� 0” (4.96)

In the following we use the norms from De€nition 3.40. So, the notation � 0•U
0 does not mean

zero boundary condition, but means that the weight function appears with powers of0 and

0 ¸ U in the two summands of the de€nitionjj�j j� 0•U
0

. We have the following analogue of Pro-

position 4.88:

Proposition 4.97.Œere are constants2 ¡ 0 andn ¡ 0 such that for smallCthe following holds:

for all n1• n2 2 ¹0• nº, n3 2 ¹C• nº and for all0 2 ¹
 0 � 
 1º ¹# C• � Cº:

�
�
�
�
�
�F a

;•X;CB
a•n1•n2•n3
3•C;~ 0

�
�
�
�
�
�
! 1

0 ¹* a
n1•C•n2•C•n3•C;Cº

� C3¸ ;
�
�
�
�0

�
�
�
�
! 1

;•X;C¹+ a
n1•n2•n3 ¹~ºº • (4.98)

�
�
�
�
�
�F a

;•X;CB
a•n1•n2•n3
3•C;~ 0

�
�
�
�
�
�
� :•U

0 ¹* a
n1•C•n2•C•n3•C;Cº

� C3¸ ;
�
�
�
�0

�
�
�
�
� :•U

;•X;C¹+ a
n1•n2•n3 ¹~ºº • (4.99)

where� means uniformly comparable inCand

F a
;•X;C=

8>>>><

>>>>
:

A� ; � X if A � 1•
p

C

A� ; ¸ XCX if A¡ 1•
p

C”

Furthermore, using the Hyperk•ahler isomorphism%~ ' - EH induced by5, we can view the connec-

tionB¹� º over%~ as a connection over- EH. By Eqs.(2.41)and(2.43), this connection is asymptotic
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to a ƒat connection, say� 0, on the orbifoldC2•f� 1g with monodromy representationd. Œen

�
�
�
�

�
�
�
�! C0 �

�
Ba•n1•n2•n3
2•C;~

� � 1
! ?�

C2� 0B
a•n1•n2•n3
1•C;~ 0

�
�
�
�

�
�
�
�
� 0•U

� 2•X;C¹+ a
n1•n2•n3 ¹~ºº

� 2¹n1 ¸ n2 ¸ ¹ C•n3º2º
�
�
�
�0

�
�
�
�
� 1•U

� 1•X;C¹+ a
n1•n2•n3 ¹~ºº •

(4.100)

where?C2 : R3 � C2•f� 1g ! C2•f� 1gdenotes the projection onto the second factor.

Proof.Equations (4.98) and (4.99) are proved as in Proposition 4.88.

We now prove Eq. (4.100). Adapting Eq. (4.94) to the areafD 2 %~ : n3•CŸ �A¹Dº Ÿ n2•Cg we

get

�
�
�
�

�
�
�
�! C0 �

� �
B%•n1•n2
2•C;~

� � 1
! ?�

- EH
5� ¹B¹~ººB

%•n1•n2
1•C;~ 0

� �
�
�
�

�
�
�
�
� 0•U

� 2•X;C¹ fD2%~ :n3•CŸ�A¹DºŸn2•Cgº

� 2n2
�
�
�
�0

�
�
�
�
� 1•U

� 1•X;C¹ fD2%~ :n3•CŸ�A¹DºŸn2•Cgº ”

(4.101)

We have
�
�
�
�
�
�?�

- EH
5� ¹B¹~ºº � � 0

�
�
�
�
�
�
� 0•U

0;0

= O¹¹d� ?- EHº� 2º by Eq. (2.43) and the fact that we useX = � 2

in our de€nition of moduli space (cf. Proposition 2.45). ‘us, forG2 %~ with n3•CŸ �A¹GºCŸ ' ,

�
�
�
�

�
B%•

p
C•

p
C

2•C;~

� � 1 h
! ?�

- EH
5� ¹B¹~ºº � ! ?�

- EH
� 0

i
B%•

p
C•

p
C

1•C;~ 0

�
�
�
�
e6#
C

¹Gº � 2¹C•n3º2” (4.102)

Combining Eqs. (4.101) and (4.102) we get the desired Eq. (4.100) on %~ \ + a
n1•n2•n3

¹~º. Equa-

tion (4.100) then follows like Eq. (4.91) by taking Taylor expansions of0, 6%
C, andBaround~,

and this time comparing6a
C ande6#

C using Eq. (3.93) and Propositions 3.99, 4.34 and 4.41.�

4.3.4 Sˆauder Estimate

On. •h]i we have the estimate

�
�
�
�0

�
�
�
�
� 1•U � 2

� �
�
�
�! \ 0

�
�
�
�
� 0•U ¸

�
�
�
�0

�
�
�
�
! 1

�

from standard elliptic theory, e.g. [Bes87, Section H]. With some additional work, we get an

estimate for weighted norms onR3 � - EH (see [Wal17, Proposition 8.15]), and can then glue
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these two estimates together to obtain:

Proposition 4.103(Proposition 8.15 in [Wal17]). Œere exists2 ¡ 0 such that for allC2 ¹0•) º

the following estimate holds:

�
�
�
�0

�
�
�
�
� 1•U

� 1•X;C
� 2

� �
�
�
�! C0

�
�
�
�
� 0•U

� 2•X;C
¸

�
�
�
�0

�
�
�
�
! 1

� 1•X;C

�
” (4.104)

4.3.5 Estimate of[ C0

‘e following proposition is the crucial ingredient in the construction of solutions to the in-

stanton equation:

Proposition 4.105.Œere exists a constant2 ¡ 0 independent ofCsuch that forCsmall enough

and for all0 2 ¹
 0 � 
 1º ¹# C•Ad � Cº the following estimate holds:

j j0j j! 1
� 1•X;C

� 2
� �
�
�
�! C0

�
�
�
�
� 0•U

� 2•X;C
¸

�
�
�
�cC0

�
�
�
�
! 1

� 1•X;C

�
” (4.106)

Proof.Assume not, then there existC8 ! 0 and08 such that

�
�
�
�08

�
�
�
�
! 1

� 1•X;C8

� 1• (4.107)

lim
8!1

�
�
�
�! C80

�
�
�
�
� 0•U

� 2•X;C8
= 0• (4.108)

lim
8!1

�
�
�
�cC80

�
�
�
�
! 1

� 1•X;C8

= 0” (4.109)

It follows from Proposition 4.103 that

�
�
�
�08

�
�
�
�
� 1•U

� 1•X;C
� 2” (4.110)

LetG8 2 # C8 such that

F � 1•X;C¹G8º
�
�08

�
� ¹G8º = 1” (4.111)

Without loss of generality we can assume to be in one of three following cases, and we will

arrive at a contradiction in each of them.
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Case 1.\08 goes to zero near! and on the neck", i.e. ifI 8 2 # C8 such thatAC8¹I 8º ! 0, then

F � 1•X;C¹I 8º
�
�08

�
� ¹I 8º ! 0.

Without loss of generality, the sequence¹G8º accumulates away from! , i.e.lim8!1 AC8¹G8º ¡ 0

(see Fig. 6).

+ + +
++++++++++++++++++++++++++++++++++++++++++++++ !

+ + +
++++++++++++++++++++++++++++++++++++++++++++++++

N t

xx ii

L

Y

xx ii

Figure 6: Blowup analysis away from the associative is reduced tothe analysis of\ on . .

Without loss of generality assume thatG8 ! G� 2 . •h]i , where we used that¹. n! º•h]i � # C8,

cf. De€nition 3.111. Now, using a diagonal argument and the Arzel�a{Ascoli theorem, we €nd

that a subsequence of08 converges to a limit0� 2 
 1¹¹. n ! º•h]i •Ad � 0º in � 1•U•2
loc . Denote by

c] : . ! . •h]i the quotient map, and denote byeG8 an arbitrary li‰ ofG8, i.e. c] ¹eG8º = G8. By

passing to a subsequence we still haveeG8 ! eG� for someeG� 2 . . Denote alsoe0� := c �
] 0� 2

¹
 0 � 
 1º ¹Ad � 0j. n! º.

Equation (4.108) implies that this limit satis€es! \ e0
� = 0on . n! . We can extende0� to all of .

as a distribution, and we €nd that then! \ e0
� = 0 on . in the sense of distributions. By elliptic

regularity, e.g. [Fol95, ‘eorem 6.33], we have thate0� is smooth.

Lastly, we note that Eq. (4.111) impliese0� ¹eG� º < 0. By assumption,\ is in€nitesimally rigid and

irreducible, which is a contradiction.

Case 2. \‘e sequence does not go to zero near! ", i.e. there exists~8 2 # C8 such that

C� 1
8 AC8¹~8º 9 1 , butF � 1•X;C¹~8º

�
�08

�
� ¹~8º 9 0.

Without loss of generality assume that this is the sequence¹G8º, i.e. lim8!1 C� 1
8 AC8¹G8º Ÿ 1

(see Fig. 7).
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+

N t

xx ii

R3 £ X

zzii

Figure 7: Blowup analysis near the associative is, by means of the mapB%, reduced to the
analysis of the pull-back of the ASD instanton de€ned byB¹f ¹~� ºº to R3 � - EH.

For08 = ¹b8• 08º 2 ¹
 0 � 
 1º ¹# C•Ad � Cº, let

18 :=
�
B%•

p
C8•

p
C8

1•f ¹G8º;C8
¹b8º•B%•

p
C8•

p
C8

1•f ¹G8º;C8
¹08º

�
”

Proposition 4.88 then gives

�
�
�
�18

�
�
�
�
� 1•U

� 1¸ X ¹* %
1•

p
C8•1•

p
C8

º � 2 and lim
8!1

�
�
�
�
�
�! ?�

- EH
5� B¹f ¹G8ºº18

�
�
�
�
�
�
� 0•U

� 2¸ X

= 0”

Without loss of generality we can assumef ¹G8º ! ~� 2 ! . By a diagonal argument and

the Arzel�a{Ascoli theorem, we have18 ! 1� 2 ¹
 0 � 
 1º ¹R3 � - EH•Ad?�
- EH

5� B¹f ¹~� ººº in

� 1•U•2
loc , satisfying! ?�

- EH
5� B¹f ¹~� ºº1

� = 0. Proposition 4.85 implies that1� = ?�
- EH

2, for some

2 2 Ker! 5� B¹f ¹~� º � 
 1¹- EH• 5� B¹f ¹~� ººº. Equation (4.109) implies that2 = 0 like in Case 1 in

the proof of Proposition 3.65.

‘is contradicts Eq. (4.111) as follows: denote by¹I 8º � R3 � - EH the sequence corresponding

to ¹G8º under the mapB
p

C•1•
p

C
1•C8;f ¹G8º . ‘en ¹I 8º is a bounded sequence, as theR3-coordinate of all

I 8 is 0, and the- EH-coordinates are bounded by the assumption thatlim8!1 C� 1
8 AC8¹G8º Ÿ 1 .

‘us we can assume without loss of generality thatI 8 ! I � 2 R3 � - EH, and €nd that

F ¹I � º1� X
�
�1� ¹I � º

�
� = lim

8!1
F a

;•X;C¹I 8º1� X
�
�18¹I 8º

�
� �

1
2

by Proposition 4.88, which is a contradiction to1� = 0.

Case 3.\‘e sequence does not go to zero on the neck", i.e. there exists~8 2 # C8 such that

AC8¹~8º ! 0, C� 1
8 AC8¹~8º ! 1 , butF � 1•X;C¹~8º

�
�08

�
� ¹~8º 9 0.
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Assume without loss of generality that this is the sequence¹G8º, i.e.lim8!1 C� 1
8 AC8¹G8º = 1 and

lim8!1 AC8¹G8º = 0 (see Fig. 8).

+
+

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

N t

xx ii

+

R3 £ R4

zzii

Figure 8: Blowup analysis in the neck region is reduced to the analysis of the ƒat� 2-instanton
de€ned on the pull-back of the framing at in€nity de€ned byB¹f ¹~� ºº to R3 � R4.

Let

ˆ n¹8º
2 such thatn¹8º

2 ! 0 andn¹8º
2 •AC8¹G8º ! 1 ,

ˆ n¹8º
3 such thatn¹8º

3 •AC8¹G8º ! 0 andn¹8º
3 •C8 ! 1 .

To ease notation, we writen2 instead ofn¹8º
2 andn3 instead ofn¹8º

3 in what follows. As before,

write 08 = ¹b8• 08º 2 ¹
 0 � 
 1º ¹# C•Ad � Cº, and set

18 := ¹Z8•18º :=
�
Ba•

p
C8•n2•n3

1•f ¹G8º;C8
¹b8º•Ba•

p
C8•n2•n3

1•f ¹G8º;C8
¹08º

�

and denote by¹I 8º the sequence inR3� C2•f� 1gcorresponding to¹G8º under the mapBa•
p

C8•n2•n3
1•f ¹G8º;C8

.

Equation (4.111) implies

j18¹I 8º j � F ¹I 8º ¡ 2• (4.112)

Proposition 4.97 and Eq. (4.110) imply that

�
�
�
�
�
�F a

;•X;CB
a•n1•n2•n3
3•C;~ 0

�
�
�
�
�
�
� 1•U

0 ¹* a
1•

p
C•n2•C•n3•C;C

º
� 2• (4.113)

Proposition 4.97 and Eq. (4.108) imply that

�
�
�
�
�
�F a

;•X;C! ?�
- EH

� 0B
a•n1•n2•n3
1•C;~ 0

�
�
�
�
�
�
� 1•U

0 ¹* a
1•

p
C•n2•C•n3•C;C

º
! 0 as8! 1 ” (4.114)
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We will now conclude the argument as in case 2. ‘e only di‚erence is that, as it stands, the

pointsI 8 tend to in€nity. Because of this, we cannot directly conclude that a limit of 18 would

be non-zero. ‘at is why we rescale byjI 8j €rst. By passing to a subsequence we can assume

without loss of generality to be in case 3.1 or 3.2 as below:

Case 3.1.:jI 8j � 1•
p

C8. In this case let

e18 := ¹eZ8•e18º :=
�
jI 8j1� X¹�jI 8jº� Z8• jI 8j� X¹�jI 8jº� 18

�
” (4.115)

Equation (4.112) impliesje18¹I 8•j I 8jº j �A1� X¹I 8•j I 8jº = je18¹I 8•j I 8jº j ¡ 2, and Eq. (4.113) implies that

on the sets� 3¹0•1•
p

Cº � » � 4¹0• n2•jG8jº n� 4¹0• n3•jG8jº¼, which exhaustR3 � ¹ C2•f� 1g n f0gº,

we have:

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

8>>>><

>>>>
:

e18A
1� X if A � 1•¹

p
C� jI 8jº

e18A
1̧ XCXjI 8j2X if A¡ 1•¹

p
C� jI 8jº”

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
� 1•U

0 ¹� 3¹0•1•
p

Cº�» � 4¹0•n2• jG8jºn� 4¹0•n3• jG8jº¼º

� 2” (4.116)

Here is how to arrive at the exponents of the weight function for eZ8 in the areaf¹D• Eº 2

R3 � C2•f� 1g : A¹Eº ¡ 1•¹
p

C� jI 8jºg:

eZ8A1̧ XCXjI 8j2X = ¹�jI 8jº� Z8jI 8j1̧ XA1̧ XCX

= ¹�jI 8jº�
h
Z8A1̧ XCX

i
•

andZ8A1̧ XCX was bounded by Eq. (4.113). ‘e exponents of the weight functionon the area

f¹D• Eº 2 R3 � C2•f� 1g : A¹Eº ¡ 1•¹
p

C� jI 8jºgand also for the1-form part e18 are computed

analogously and precisely give Eq. (4.116). Now, because of Eq. (4.116), we can use the Arzel�a-

Ascoli theorem and a diagonal sequence argument to extract a limit 1� onR3� ¹ C2•f� 1gnf0gº.

We denote the pullback under the quotient mapR3 � ¹ C2 n f0gº ! R3 � ¹ C2•f� 1g n f0gº by

the same symbol and end up with a tensor1� on R3 � ¹ C2 n f0gº. Again, by passing to a

subsequence we can assume without loss of generality that we are in one of the following two

cases:

Case 3.1.1:
p

C8jI 8j ! 0 as8! 1 .
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In this case, the areafD 2 R3 � C2•f� 1g : A¹Dº ¡ 1•¹
p

C� jI 8jºgdisappears as8! 1 , and from

Eq. (4.116) we get the estimate

�
�
�
�
�
�1� A1� X

�
�
�
�
�
�
� 1•U•2

0 ¹R3�¹ R4nf0gºº
� 2” (4.117)

‘e element 1� de€nes a distribution on all ofR3 � C2 and is smooth by elliptic regularity, e.g.

[Fol95, ‘eorem 6.33]. As in the proof of Proposition 3.65, we get an! 1 -bound for1� . ‘us,

by Corollary 3.39, we get that1� is independent of theR3-direction. Because of Eq. (4.84) we

have that1� is the pullback of a harmonic form of mixed degree (in degrees0and1) onC2. So,

1� is harmonic and bounded onC2 by Eq. (4.117), therefore vanishes by Liouville's theorem.

‘at contradicts Eq. (4.112).

Case 3.1.2:
p

C8jI 8j ! ^ 2 ¹0•1º as8! 1 .

In this case, a‰er passing to a subsequence, Eq. (4.116) gives the estimate

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

8>>>><

>>>>
:

1� A1� X if A � 1•^

1� A1̧ X if A¡ 1•^”

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
� 1•U

0 ¹R3�¹ C2nf0gº

� 2” (4.118)

Here is how to obtain this estimate: the assumption
p

C8jI 8j ! ^ implies that
p

C8jI 8j ¡ 2, at

least up to a subsequence. ‘us, we haveCX � jI 8j2X Ÿ 2, and Eq. (4.116) becomes

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

8>>>><

>>>>
:

e18A
1� X if A � 1•¹

p
C� jI 8jº

e18A
1̧ X if A¡ 1•¹

p
C� jI 8jº”

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
� 1•U

0 ¹� 3¹0•1•
p

Cº�» � 4¹0•n2• jG8jºn� 4¹0•n3• jG8jº¼º

� 2”

Here, taking the limit8 ! 1 gives Eq. (4.118). In this case, we arrive at a contradiction as in

case 3.1.1.

Case 3.2.:jI 8j ¡ 1•
p

C8. In this case let

e18 := ¹eZ8•e18º :=
�
CXjI 8j1̧ X¹�jI 8jº� Z8• CXjI 8jX¹�jI 8jº� 18

�
” (4.119)
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‘is gives us the following analogue of Eq. (4.116):

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

8>>>><

>>>>
:

e18A
1� XC� XjI 8j� 2X if A � 1•¹

p
C� jI 8jº

e18A
1̧ X if A¡ 1•¹

p
C� jI 8jº”

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
� 1•U

0 ¹� 3¹0•1•
p

Cº�» � 4¹0•n2• jG8jºn� 4¹0•n3• jG8jº¼º

� 2” (4.120)

We can extract a limit1� as in case 3.1 and are, without loss of generality, in one of the following

two cases:

Case 3.2.1:
p

C8 � jI 8j ! 1 as8! 1 . In this case we have the estimate

�
�
�
�
�
�1� A1̧ X

�
�
�
�
�
�
� 1•U•2

0 ¹R3�¹ R4nf0gºº
� 2 (4.121)

and arrive at a contradiction as in case 3.1.1.

Case 3.2.2:
p

C8 � jI 8j ! ^ 2 ¹0•1º as8! 1 . In this case we have exactly Eq. (4.118) and can

conclude the proof as in case 3.1.2. �

4.3.6 Cross-term Estimates

In the beginning of Section 4.3 we explained the idea for the proofof the linear estimate.

Namely, we want to separately consider two parts of the linearisation of the instanton equa-

tion: the €rst part near the resolution locus of the associative! , which is approximately equal

to the linearisation of the Fueter equation. ‘e second part isthe linearised operator modulo

deformations of the Fueter section. ‘ese parts were estimated in Sections 4.3.2 and 4.3.5.

However, it is not true that the linearised instanton operator neatly decomposes as a sum of

these two operators. We can take a deformation of the Fueter section, apply! C to it, and then

project it onto the part that doesnot come from a deformation of the Fueter section. In an

ideal world,! Cnear the resolution locus of the associative is exactly equal tothe linearisation

of the Fueter equation and the result is0. In reality, we do not have that the result is0, but we

have that it is small. ‘at is Eq. (4.123). ‘ere is also, roughly speaking, the converse of this,

which is Eq. (4.124).
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‘is proposition is the analogue of Proposition 3.77 from the estimate of the Laplacian on

the Generalised Kummer Construction. A crucial di‚erence between the present case, i.e.

Proposition 4.122, and Proposition 3.77 is that we now get a worsecross-term estimate for

cC! C[ C. For the Laplacian, we had a factor of roughlyC2, while now we have a factor of roughly

1. ‘e reason for this is that cC and � are very close to commuting. ‘e reason they do not

exactly commute is because of a cut-o‚ that happens far away from ! . For the linearised

instanton operator! C the situation is di‚erent: the connection� C was de€ned to look like\

already very close to! . ‘us, cC! CanddBFcCare far from being equal, which manifests itself

in this worse estimate.

Like the results from Section 4.3.2, this proposition has been proved in a slightly di‚erent

se‹ing in [Wal17]. Again, the proof given therein carries over to our situation if we only have

that ek #
C � k %

C is small, which is true on resolutions of) 7• � by Proposition 4.37 and ‘eorem 3.84.

Proposition 4.122(Proposition 8.29 in [Wal17]). Let# Cbe the resolution of) 7• � from Section 3.2.

Œere exists a constant2 ¡ 0 such that for allC2 ¹0•) º we have

jj[ C! C]CEjj� 0•U
� 2•0;C

� 2C2� U j jEjj� 1•U (4.123)

as well as

�
�
�
�cC! C[ C0

�
�
�
�
� 0•U � 2C� U

�
�
�
�[ C0

�
�
�
�
� 1•U

� 1•0;C
” (4.124)

4.3.7 Proof of Proposition 4.77

Proof.Assume that the claim does not hold, and letC8 ! 0, 08 2 ¹
 0 � 
 1º ¹# C•Ad � Cº such

that
�
�
�
�08

�
�
�
�
XC

= 1, but
�
�
�
�! C08

�
�
�
�
YC

! 0.

We €rst prove that

C� X•2
8

�
�
�
�[ C808

�
�
�
�
� 1•U

� 1•X;C8

! 0” (4.125)
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We have that

�
�
�
�[ C808

�
�
�
�
� 1•U

� 1•X;C8
�

�
�
�
�! C8[ C808

�
�
�
�
� 0•U

� 2•X;C8

�
�
�
�
�[ C8! C8[ C808

�
�
�
�
� 0•U

� 2•X;C8

¸
�
�
�
�cC8! C8[ C808

�
�
�
�
� 0•U

� 2•X;C8

�
�
�
�
�[ C8! C0

�
�
�
�
� 0•U

� 2•X;C8

¸
�
�
�
�[ C8! C8cC808

�
�
�
�
� 0•U

� 2•X;C8

¸
�
�
�
�cC8! C8[ C808

�
�
�
�
� 0•U

� 2•X;C8

�
�
�
�
�[ C8! C0

�
�
�
�
� 0•U

� 2•X;C8
¸ j j 1jj� 0•U

0•X;C8

�
�
�
�[ C8! C8cC808

�
�
�
�
� 0•U

� 2•0;C8
¸ C1� U

�
�
�
�cC8! C8[ C808

�
�
�
�
� 0•U

� 2
� �
�
�
�[ C8! C0

�
�
�
�
� 0•U

� 2•X;C8

¸ 2CX•2C2� U
�
�
�
�cC08

�
�
�
�
� 1•U ¸ C1� 2U

�
�
�
�[ C808

�
�
�
�
� 1•U

� 1•0;C

�

� 2
� �
�
�
�[ C8! C0

�
�
�
�
� 0•U

� 2•X;C8
¸ O¹ CX•2̧ 1� Uº ¸ O¹C1� 2U¸ X•2º

�

where we used Proposition 4.105 in the €rst step; we usedcC8 ¸ [ C8 = 1 in the second and

third steps; Propositions 4.21 and 4.65 in the fourth step; and Proposition 4.122 together with

jj1j j� 0•U
0•X;C8

� 2CX•2 in the €‰h step. Multiplying the last line withC� X•2
8 , the last two summands

tend to zero as they are bounded by positive powers ofC. ‘e €rst summand tends to zero by

the assumption
�
�
�
�! C08

�
�
�
�
YC

! 0.

It remains to prove that

C8
�
�
�
�cC808

�
�
�
�
� 1•U ! 0” (4.126)

We have that

lim
8!1

C8
�
�
�
�cC808

�
�
�
�
� 1•U � lim

8!1
C8

�
�
�
�cC8! C8]C8cC808

�
�
�
�
� 0•U

� lim
8!1

C8
� �
�
�
�cC! C0

�
�
�
�
� 0•U ¸

�
�
�
�cC! C[ C0

�
�
�
�
� 0•U

�

� lim
8!1

C8
� �
�
�
�cC! C0

�
�
�
�
� 0•U ¸ 2C� U

�
�
�
�[ C0

�
�
�
�
� 1•U

� 1•0;C

�
”

where we used Proposition 4.81 in the €rst step,cC8 ¸ [ C8 = 1 in the second step, Proposi-

tion 4.122 in the third step. Here, the second summand tends to zero by Eq. (4.125), and the

€rst summand tends to zero by the assumption
�
�
�
�! C08

�
�
�
�
YC

! 0. Altogether,
�
�
�
�08

�
�
�
�
XC

! 0, which

is a contradiction. �
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4.4 ‰adratic Estimate

We state an estimate for the quadratic form&Cfrom Eq. (4.61), where we denote its associated

bilinear form by the same symbol. ‘is statement is taken from [Wal17] and the proof can be

directly adapted to our slightly di‚erent se‹ing.

Proposition 4.127(Proposition 9.1 in [Wal17]). Œere exists a constant2 ¡ 0 such that forC2

¹0•1º we have

�
�
�
�[ C&C¹01• 02º

�
�
�
�
� 0•U

� 2•X;C

� 2C� U
� �
�
�
�[ C01

�
�
�
�
� 0•U

� 1•X;C
�
�
�
�
�[ C02

�
�
�
�
� 0•U

� 1•X;C
¸

�
�
�
�[ C01

�
�
�
�
� 0•U

� 1•X;C
�
�
�
�
�cC02

�
�
�
�
� 0•U

¸
�
�
�
�cC01

�
�
�
�
� 0•U �

�
�
�
�[ C02

�
�
�
�
� 0•U

� 1•X;C
¸

�
�
�
�cC01

�
�
�
�
� 0•U �

�
�
�
�cC02

�
�
�
�
� 0•U

�

(4.128)

and

C
�
�
�
�cC&C¹01• 02º

�
�
�
�
� 0•U

� 2C� U
� �
�
�
�[ C01

�
�
�
�
� 0•U

� 1•X;C
�
�
�
�
�[ C02

�
�
�
�
� 0•U

� 1•X;C
¸

�
�
�
�[ C01

�
�
�
�
� 0•U

� 1•X;C
�
�
�
�
�cC02

�
�
�
�
� 0•U

¸
�
�
�
�cC01

�
�
�
�
� 0•U �

�
�
�
�[ C02

�
�
�
�
� 0•U

� 1•X;C
¸ C

�
�
�
�cC01

�
�
�
�
� 0•U �

�
�
�
�cC02

�
�
�
�
� 0•U

�
”

(4.129)

4.5 Deforming to Genuine Solutions

In this subsection we will complete the construction of� 2-instantons and show that in two

favourable situations the� 2-instanton\ and the Fueter sectionBcan be glued together to a

� 2-instanton on# C. ‘e favourable situations are:

1. ‘e Fueter section is a section of rigid ASD-instantons (cf. ‘eorem 4.130). ‘is implies,

in particular, that the Fueter section is in€nitesimally rigid.In this case the mapcCfrom

De€nition 4.62 is just the zero map, which leads to be‹er estimates of the quadratic part

&Cof the instanton equation.

2. We are in the special situation of Eq. (4.58), where we resolved the orbifold) 7• � .

‘e main reason we are con€ned to these two favourable scenarios is the following: in Corol-
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laries 4.54 and 4.57 we proved a pregluing estimate with a good power of C1•18 in the general

case and a good power ofC2 in the case of) 7• � , roughly speaking. In Proposition 4.127 we

stated an estimate for the quadratic part of the instanton operator which in particular implies

�
�
�
�&C¹01• 02º

�
�
�
�
Y � C� 2� U� X•2

�
�
�
�01

�
�
�
�
X

�
�
�
�02

�
�
�
�
X ”

To apply the inverse function theorem, we would need the bad power C� 2� U� X•2 from this

estimate to be absorbed by the good power from the pregluing estimate, but the pregluing

estimate is only good enough to do this in the case of the orbifold) 7• � . If the Fueter section

is actually the constant section of a rigid ASD-instanton, then we have a be‹er estimate for

the quadratic part of the instanton equation.

‹eorem 4.130. Assume now that the sectionBis given by a rigid ASD-instanton in every point

G 2 ! , and assume that the connection\ used to de€ne the approximate� 2-instanton� C from

Proposition 4.27 is in€nitesimally rigid.

Œere exists2 ¡ 0 such that for smallCthere exists0C = ¹0C• bCº 2 � 1•U¹
 0 � 
 1¹Ad � Cºº such

that e� C := � C¸ 0C is a� 2-instanton. Furthermore,0Csatis€es
�
�
�
�0C

�
�
�
�
� 1•U

� 1•X;C
� 2C1•18.

‹eorem 4.131. Let # ! . 0 be the resolution of the orbifold. 0 = ) 7• � from before. Assume

that the connection\ used to de€ne the approximate� 2-instanton� C from Proposition 4.27 is

in€nitesimally rigid and thatBis an in€nitesimally rigid Fueter section.

Œere exists2 ¡ 0 such that for smallCthere exists an0C = ¹0C• bCº 2 � 1•U¹
 0 � 
 1¹Ad � Cºº such

that e� C := � C¸ 0C is a� 2-instanton. Furthermore,0Csatis€es
�
�
�
�0C

�
�
�
�
XC

� 2C2� 2U.

‘e proof of the theorems will use the following lemma:

Lemma 4.132(Lemma 7.2.23 in [DK90]). Let - be a Banach space and let) : - ! - be a

smooth map with) ¹0º = 0. Suppose there is a constant2 ¡ 0 such that

j j)G � )~ j j � 2¹j jGjj ¸ j j~j jº j jG� ~jj ”
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Œen if~ 2 - satis€esjj~j j � 1
102, there exists a uniqueG2 - with j jGjj � 1

52 solving

G¸ )G = ~”

Œe unique solution satis€esjjGjj � 2 j j~j j.

Proof of Œeorem 4.130.In the case thatBis a section of rigid ASD instantons, we have that the

projection mapcC is zero. ‘erefore, Propositions 4.103 and 4.105 give

�
�
�
�0

�
�
�
�
� 1•U

� 1•X;C
� 2

�
�
�
�! C0

�
�
�
�
� 0•U

� 2•X;C
” (4.133)

‘is means that

! C : � 1•U¹¹
 0 � 
 1º ¹# C•Ad � Cºº ! � 1•U¹¹
 0 � 
 1º ¹# C•Ad � Cºº

is injective. Because! C is formally self-adjoint, it is also bijective. Denote its inverse by! � 1
C .

Furthermore, usingcC = 0, and therefore[ C = Id, Proposition 4.127 gives

�
�
�
�&C¹01• 02º

�
�
�
�
� 0•U

� 2•X;C
� 2C� U

�
�
�
�01

�
�
�
�
� 0•U

� 1•X;C
�
�
�
�
�02

�
�
�
�
� 0•U

� 1•X;C
” (4.134)

Set) C := &C� ! � 1
C . We then have

�
�
�
�) C¹11º � ) C¹12º

�
�
�
�
� 0•U

� 2•X;C
=

�
�
�
�& ¹! � 111 � ! � 112• ! � 111 ¸ ! � 112º

�
�
�
�
� 0•U

� 2•X;C

� 2C� U
�
�
�
�! � 111 � ! � 112

�
�
�
�
� 0•U

� 1•X;C

�
�
�
�! � 111 ¸ ! � 112

�
�
�
�
� 0•U

� 1•X;C

� 2C� U
�
�
�
�! � 111 � ! � 112

�
�
�
�
� 1•U

� 1•X;C

�
�
�
�! � 111 ¸ ! � 112

�
�
�
�
� 1•U

� 1•X;C

� 2C� U
�
�
�
�11 � 12

�
�
�
�
� 0•U

� 2•X;C

� �
�
�
�11

�
�
�
�
� 0•U

� 2•X;C
¸

�
�
�
�11

�
�
�
�
� 0•U

� 2•X;C

�
•

where we used Eq. (4.134) in the €rst inequality and Eq. (4.133) in the last inequality.

For4Cwe have

jj4Cj j� 0•U
� 2•0;C

� 2C1•18

by Corollary 4.54. For smallC, we have thatC1•18 Ÿ
�
C� U¸ X•2� � 1

due to our choices ofU andX
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in De€nition 4.19. ‘us, by applying Lemma 4.132 to the map) C, we get a solution1C to the

equation1C¸ ) C¹1Cº = � 4C for smallC, satisfying the estimate
�
�
�
�1C

�
�
�
�
� 0•U

� 2•0;C
� 2C1•18.

Le‹ing 0C := ! � 1
C ¹1Cº, this means precisely! C¹0Cº ¸ &C¹0Cº = � 4C, so e� C = � C ¸ 0C is a � 2-

instanton, and0Csatis€es
�
�
�
�0C

�
�
�
�
� 1•U

� 1•X;C
� 2C1•18 by Eq. (4.133), which proves the claim. �

Proof of Œeorem 4.131.As in the proof of ‘eorem 4.130, set) C := &C� ! � 1
C . ‘en

�
�
�
�) C¹11º � ) C¹12º

�
�
�
�
YC

=
�
�
�
�& ¹! � 111 � ! � 112• ! � 111 ¸ ! � 112º

�
�
�
�
YC

= C� X•2
�
�
�
�[ C&¹! � 111 � ! � 112• ! � 111 ¸ ! � 112º

�
�
�
�
� 0•U

� 2•X;C

¸ C
�
�
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�cC&¹! � 111 � ! � 112• ! � 111 ¸ ! � 112º

�
�
�
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� 0•U

� 2C� U� X•2
� �
�
�
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�
�
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�
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�
�
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�
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� 0•U

¸
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�
� 0•U �

�
�
�
�[ C! � 1¹11 ¸ 12º

�
�
�
�
� 0•U

� 1•X;C

¸
�
�
�
�cC! � 1¹11 � 12º

�
�
�
�
� 0•U �

�
�
�
�cC! � 1¹11 ¸ 12º

�
�
�
�
� 0•U

�

¸ 2C� U
� �
�
�
�[ C! � 1¹11 � 12º
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�
�
� 0•U

� 1•X;C
�
�
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�
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�
�
�
� 0•U

� 1•X;C

¸
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�
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�
�
�
� 0•U

¸
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�
�
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� 0•U

� 1•X;C

¸ C2
�
�
�
�cC! � 1¹11 � 12º

�
�
�
�
� 0•U �

�
�
�
�cC! � 1¹11 ¸ 12º

�
�
�
�
� 0•U

�

� 2C� U� 2� X•2
�
�
�
�! � 1¹11 � 12º

�
�
�
�
XC

�
�
�
�! � 1¹11 ¸ 12º

�
�
�
�
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� 2C� U� 2� X•2 j j11 � 12j jYC
j j11 ¸ 12j jYC

� 2C� U� 2� X•2 j j11 � 12j jYC
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j j11j jYC

¸ j j 12j jYC

�
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Here we used Proposition 4.127 in the third step, and Proposition 4.77 in the second to last

step.

We have

jj4Cj jYC
� 2C2� U•

by Corollary 4.57. Applying Lemma 4.132 as in the proof of ‘eorem 4.130 shows the claim. �

4.6 An example Coming from a Stable Bundle

4.6.1 Review of the Resolution of¹) 3 � K3º• �

Recall the� 2-manifold constructed in [JK21, Section 7.3]: consider the sextic

� = f»I 0• I1• I2¼ 2CP2 : I 6
0 ¸ I 6

1 ¸ I 6
2 = 0g � CP2

and letc : - ! CP2 be the double cover ofCP2 branched over� . ‘en - is a complex K3

surface with a Hyperk•ahler triple of K•ahler formsl � • l � • l  , cf. [Huy16, Example 1.3]. On-

we can de€ne the following two maps: €rst, the mapU : - ! - which swaps the two sheets

of the branched cover. Second, there are two li‰s- ! - of the complex conjugation map

f : CP2 ! CP2. One of these two li‰s acts freely on- , the other one does not. Denote the

li‰ that does not act freely on- by V : - ! - , which has€x¹Vº = c � 1¹RP2º ' ( 2. ‘e

Hyperk•ahler triplel � • l � • l  can be chosen to satisfy

U� l � = l � • U� l � = � l � • U� l  = � l  •

V� l � = � l � • V� l � = l � • V� l  = � l  ”

LetU• Vact on) 3 via

U¹G1• G2• G3º = ¹G1•� G2•� G3º• V¹G1• G2• G3º =
�
� G1• G2•

1
2

� G3

�
”
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Denote� = hU• Vi . ‘en U• V: ) 3 � - ! ) 3 � - preserve the product� 2-structurei on) 3 � -

de€ned by equation Eq. (2.27). Furthermore,€x¹Uº = 4� ¹( 1 � � º, €x¹Vº = 4� ¹( 1 � ( 2º, where

the ( 2-factors are the double cover of€x¹f º = RP2 � CP2. ‘erefore, ! = €x¹Uº [ €x¹Vº

admits a nowhere vanishing harmonic1-form, namely the parallel1-form in the ( 1-direction

of each component. ‘us, this orbifold is of the type consideredin Section 3 and its resolution

# C ! ¹ ) 3 � - º• � admits a1-parameter family of� 2-structures with small torsion, inducing

metrics6C, which can be perturbed to torsion-free� 2-structures inducing metricse6C.

4.6.2 A Connection on the Orbifold¹) 3 � K3º• � coming from a Stable Bundle

We will now make use of theSO¹3º-bundle� over CP2 from Section 2.5.2. To this end, we

€rst recall its de€nition. ‘e tangent bundle � of CP2 is a complex vector bundle of rank

2, which induces anSO¹3º-bundle � by Proposition 2.90. ‘e Levi-Civita connection on�

is a Hermite-Einstein connection by Proposition 2.85 and induces an ASD instanton on� by

Proposition 2.90, denoted by� . We denote the standard K•ahler structure onCP2 by ¹�•6 =

6FS• l º, where6FS is the Fubini-Study metric. ‘e pullback c � � is then an ASD instanton on

the bundlec � � over ¹-• c � 6º, but it need not be ASD with respect to the Calabi-Yau metric

on - . We will show in Corollary 4.136 thatc � � also carries an instanton with respect to the

Calabi-Yau metric.

Proposition 4.135(Lemma 9.1.9 in [DK90]). Œe bundlec � � is stable with respect tol .

Corollary 4.136.Œe bundlec � � is stable with respect to the Calabi-Yau K•ahler forml � .

Proof of Corollary 4.136.Denote by ^l = c � l the pullback of the K•ahler form for the Fubini-

Study metric onCP2 to - . By Yau's proof of the Calabi conjecture we have thatl � = ^l ¸ 8mmq

for someq : - ! R. In particular,l � and ^l are in the same de Rham cohomology class.

By Proposition 4.135,c � � is stable with respect tol . ‘e K •ahler form enters into the de€nition

of stability only through the de€nition of slope. But slopes do not change when switching

betweenl � and ^l as they are in the same cohomology class. ‘usc � � is also stable with

respect tol � . �
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We also have the following:

Corollary 4.137(p. 348 in [DK90]). Denote byc � : � ! CP2 theSO¹3º-bundle overCP2 from

Section 2.5.2. Letc : - ! CP2 be the branched double cover from Section 4.6.1 with Calabi-Yau

metric6̂. Œen the bundle

�̂ = c � � = f¹ G•Dº 2 - � � : c � ¹Dº = c ¹Gºg (4.138)

admits an in€nitesimally rigid and unobstructed ASD instanton ^� with respect tô6.

Proof. ‘e bundle c � � is stable with respect tol � , and therefore admits a unique Hermite-

Einstein connection by ‘eorem 2.83. ‘us, we get anSO¹3º-bundle�̂ with ASD instanton ^�

by Proposition 2.90. Unobstructedness and in€nitesimal rigidity of ^� are proved in [DK90, p.

348]. �

Pulling back¹�̂• ^� º under the projection onto the second factor,? : ) 3 � - ! - , gives a

bundle with � 2-instanton by Example 2.98. Denote the bundle by� 0 and the connection by

\ . ‘e connection ^� was in€nitesimally rigid, and the following proposition implies that \ is

in€nitesimally rigid:

Proposition 4.139.Let � be an ASD instanton on a bundle%over a compact4-fold . with de-

formation operatorX� . Let? : ) 3 � . ! . be the projection onto the second factor. Œen the

� 2-instanton?� � is in€nitesimally rigid if and only if� is in€nitesimally rigid and unobstructed.

Proof. ‘e pulled back connection ?� � is a� 2-instanton by Example 2.98.

We €rst prove that?� � is in€nitesimally rigid if � is in€nitesimally rigid and unobstructed. We

will use Lemma 3.38 to derive an analog of Proposition 4.85 in this compact se‹ing:

Suppose0 2 ¹
 0 � 
 1º ¹) 3 � . • Ad?� %º satis€es! ?� � 0 = 0. ‘en 0 = ! �
?� � ! ?� � 0 = ¹� R3 ¸

� �
� � � º0 by Eq. (4.84), where� �

� � � is an elliptic operator of second order. Because. is compact,

it has bounded geometry, and� �
� � � is uniformly elliptic and its coe•cients and their €rst

derivatives are uniformly bounded. So, by Lemma 3.38,0 is independent of the) 3-direction.

By Proposition 4.83,0 is the pullback of an element inKerX� or the pullback of an element
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in KerX�
� . By assumption,� is in€nitesimally rigid (i.e. KerX� = 0) and unobstructed (i.e.

KerX�
� = 0), which proves the claim.

‘e converse direction follows directly from Proposition 4.83. �

‘e gluing theorems ‘eorems 4.130 and 4.131 require a connectionon the orbifold,¹) 3� - º• � .

‘e following proposition states that \ can be viewed as such a connection:

Proposition 4.140.Œere exist li‡sU0 : � 0 ! � 0 ofUandV0 : � 0 ! � 0 of Vsuch thatU2
0 = V2

0 =

Id, U�
0\ = V�

0\ = \ , U0 being the identity over€x¹Uº, andV0 not being the identity over€x¹Vº.

‘is relies on the following construction on - :

Proposition 4.141.Œere exists a li‡̂V : �̂ ! �̂ of Vsuch thatV̂2 = Id, V̂� ^� = ^� , andV̂not being

the identity over€x¹Vº.

Proof.Denote byf : CP2 ! CP2 the conjugation map and� = ) CP2 as before. We can then

view df as a complex linear map� ! � coveringf . De€ne

f̂ : � 
 � ! � 
 �

E
 F 7! � dfF 
 dfE•
(4.142)

which is a complex linear map coveringf : CP2 ! CP2.

‘e manifold CP2 is K•ahler, so the Levi-Civita connectionr LC on � is a Hermite-Einstein

connection. ‘e connection r LC on � induces the product connectionr 
 on � 
 � , which is

again a Hermite-Einstein connection. We have thatf is an isometry, sor 
 is preserved bŷf

in the sense of̂f � f � r 
 � f̂ = r 
 .

Let V̂ be the li‰ of̂f to c � � 
 c � � , i.e. V̂ : c � � 
 c � � ! c � � 
 c � � coveringV : - ! -

and satisfying?V̂ = f̂? , where? : c � � 
 c � � ! � 
 � is the obvious projection map. ‘en

f̂ � r 
 = r 
 impliesV̂� ¹c � r 
 º = c � r 
 .

If ? 2 CP2 and¹D1•D2º is a unitary basis of� ?, then¹df ¹D1º•df ¹D2ºº is a unitary basis of� f ¹?º ,

and writing elements of the trace-free unitary endomorphism bundleu0¹c � � º in these bases,
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we see thatV̂acts as

©
­
­
«

0 1

� 1 0

ª
®
®
¬

7!
©
­
­
«

0 1

� 1 0

ª
®
®
¬

•

©
­
­
«

0 8

8 0

ª
®
®
¬

7! �
©
­
­
«

0 8

8 0

ª
®
®
¬

•

©
­
­
«

8 0

0 � 8

ª
®
®
¬

7! �
©
­
­
«

8 0

0 � 8

ª
®
®
¬

”

‘us, V̂ induces a map on̂� = SO¹u0¹c � � ºº that is not the identity over€x¹Vº and preserves

the ASD connection^� on �̂ induced byc � r 
 according to Proposition 2.90. �

Remark4.143. ‘is only works because we have a li‰ of complex conjugationf : CP2 ! CP2

to � in Proposition 4.141. It follows from Proposition 2.92 that no li‰ off to � exists, so it is

important to change fromU¹2º-bundles toSO¹3º-bundles in this example.

Remark4.144. Without the minus sign in Eq. (4.142),V̂would not descend to a map onSO¹u0¹c � � ºº.

‘at is because the map� Id : u0¹c � � º ! u0¹c � � º is orientation reversing, becauseu0¹c � � º

has odd rank.

Proof of Proposition 4.140.‘e bundle �̂ from Eq. (4.138) is the pullback of a bundle� from CP2

to - , thus we have the natural map

Û : �̂ ! �̂

¹G•Dº 7! ¹ U¹Gº•Dº

coveringU : - ! - . ‘e bundle � 0 is the pullback of�̂ to ) 3 � - , and we can canonically

extend the mapÛ and the mapV̂ from Proposition 4.141 to� 0 and €nd that they have the

required properties. �

Because of Proposition 4.140, the connection\ de€nes a connection on the orbifold¹) 3� K3º• � .

‘e holonomy of \ around the four( 1 � � � ¹ ) 3 � - º• � €xed byUis trivial, and the holonomy

around the four( 1 � ( 2 €xed byVhas order2.
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4.6.3 ‹e Resulting Connection on the Resolution of ¹) 3 � K3º• �

Corollary 4.145.For smallC, there exists an irreducible� 2-instanton with structure groupSO¹3º

on the resolution# Cof ¹) 3 � - º• � .

Proof.We make use of theU-invariant andV-invariant connection\ from Proposition 4.140

over ¹) 3 � - º• � .

Next consider the product connection� 0 on the trivial SO¹3º-bundle over Eguchi-Hanson

space- EH. ‘e holonomy representation at in€nity of the product connection is trivial, i.e.

d0 : � ! SO¹3º, d0¹� 1º = Id, thus� d0 = � , where� d0 was de€ned in Eq. (2.43).� 0 is in€n-

itesimally rigid, which can for example be seen from the dimensionformula in ‘eorem 2.52,

so for each copy of( 1 � � � ¹ ) 3 � - º• � €xed byUwe have that

( 1 � � ! Fr� � 0j( 1� � � U¹2º� � "

G7! »¹5 •Dº•»� 0¼¼for 5 2 FrG, D 2 ¹� 0ºG arbitrary

is a well-de€ned map, parallel, and therefore a Fueter section.

Likewise, let� 0•1 be the ASD instanton over- EH from Proposition 2.54. ‘is is de€ned on a

U¹1º-bundle and we view it as a reducibleSO¹3º-connection. ‘is has non-trivial holonomy

d0•1 : � ! SO¹3º at in€nity, thus� d0•1 ( � . For each copy of( 1 � ( 2 €xed byVwe €nd that

( 1 � ( 2 ! Fr� � 0j( 1� ( 2 � U¹2º� � d0•1
"

G7! »¹5 •Dº•»� 0•1¼¼for 5 2 FrG, D 2 ¹� 0ºG arbitrary

is a Fueter section. By Proposition 4.140, the connection\ and the eight Fueter sections satisfy

the necessary compatibility condition from Proposition 4.27. ‘us, ‘eorem 4.130 applies and

gives a� 2-instanton e� Con # C. ‘e connections e� Cconverge to\ on compact subsets of¹) 3 �

- º• � n €x¹� º asC! 0. ‘e connection \ has full holonomySO¹3º, as otherwise the Fubini-

Study metric onCP2 would need to have reduced holonomy. ‘us,e� Chas full holonomy for

smallCand is therefore irreducible. �
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A Appendix

A.1 ‹e Isometry Group of Eguˆi-Hanson Space

In Proposition 2.5 we de€ned the Eguchi-Hanson space- EH and proved that it admits a Hy-

perk•ahler metric6¹: º . ‘e following statement about the isometry group of- EH is a standard

fact, but we could not locate a proof of it in the literature, so weprovide it here:

Proposition A.1.For any: ¡ 0,

1. the isometry group of the metric6¹: º on- EH is isomorphic toSO¹3º � O¹2º,

2. the group of isometries preserving the complex structureinduced byl ¹: º
1 is isomorphic to

U¹2º•f� 1g,

3. the group of isometries preserving the three complex structures induced byl ¹: º
1 , l ¹: º

2 , and

l ¹: º
3 respectively is isomorphic toSO¹3º.

Proof. ‘e space - EH containsSO¹3º � ($ ¹2º f 0g as a unique minimal surface which must be

mapped to itself by an isometry. ‘us, an isometry must preserve the distance to this minimal

surface, i.e. preserve theR � 0-factor of R � 0 � SO¹2º SO¹3º. It thus su•ces to €nd the iso-

metry group ofSO¹3º endowed with the metric¹41¹Aºº2 ¸ ¹ 42¹Aºº2 ¸ ¹ 43¹Aºº2 for someA¡ 0,

where41• 42• 43 were de€ned in Proposition 2.5. AsA ! 1 , this metric converges towards

the metric induced by the round metric on( 3. ‘rough this, an isometry of - EH induces an

isometry ofR4•f� 1g, which has isometry groupSO¹4º•f� 1g ' SO¹3º � SO¹3º. ‘is shows

that Isom¹- EH•6¹: º º � SO¹3º � SO¹3º, where the €rstSO¹3º acts by le‰ multiplication, and

the second acts by right multiplication on theSO¹3º-factor of- EH.

A calculation in coordinates showsIsom¹- EH•6¹: ºº = SO¹3º � O¹2º ›! SO¹3º � SO¹3º, where

O¹2º ›! SO¹3º

� 7!
©
­
­
«

det� 0

0 �

ª
®
®
¬

”
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Regarding the second point, a computation shows that the subgroup of isometries preserving

the complex structure induced byl ¹: º
1 and is exactlySO¹3º � SO¹2º. ‘is is isomorphic to

U¹2º•f� 1g, which is seen from the split short exact sequence

1 ! SU¹2º•f� 1g ' SO¹3º ! U¹2º•f� 1g
det
! U¹1º ' SO¹2º ! 1” (A.2)

‘e last point is again a computation in coordinates. �

A.2 Measuring Vectors in Nearby Metrics

In Section 3 we de€ne several di‚erent metrics on a manifold, for example6%
C, 6#

C , ande6#
C .

‘ese metrics are all near to each other, in a suitable sense. In Section 4 we sometimes switch

between these metrics: an estimate with respect to6%
C gives rise to an estimate with respect

to 6#
C , provided the two metrics are near enough to each other. To be precise, we use the

following result:

Proposition A.3. Let+ be a vector space and let6 ande6 be inner products on+ .

1. LetE2 + such thatjEj6 � Xand je6 � 6j6 � n, thenjEje6 � X¸ Xn.

2. Letl 2 + � such thatjl j6 � Xand je6 � 6je6 � n, thenjl je6 � X¸ Xn.

When integrating, we have the following estimate for switching from one volume form to

another:

Proposition A.4. Let" be an oriented manifold, and6, e6, � Riemannian metrics on" . Œen

�
�
�
�

¹

"
5 � vol6 �

¹

"
5 � vole6

�
�
�
� �

¹

"
j5j � j vol6 � vole6 j� � vol� (A.5)

for all 5 : " ! R with the property that all the integrals in Eq.(A.5)are de€ned.

A.3 Rigidity of Finite Subgroups

Let� be a compact connected Lie group and� be a €nite group. In Section 2.4.2 we took� to

be a €nite subgroup ofSU¹2º, thereby acting on� 4. An orbifold � -bundle over� 4• � is a� -
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bundle%over� 4 together with a li‰ of the action of� to %. In Eq. (2.43) we extended elements

of � to elements of the orbifold gauge group� ¹%º. We could do this, because we assumed

the li‰ of� to act in a standard way on%, see Eq. (2.40) for the precise statement. In other

words: we used that up to gauge equivalence, orbifold bundles over� 4• � are determined by

the homomorphism� ! %0 ' � induced by the li‰ of� to %. ‘e proof of this fact was given

in Proposition 2.39, but used that the homomorphism� ! � is rigid, in some sense. We make

this rigidity precise here and prove that every €nite group ina compact Lie group is rigid. ‘e

proof is taken from [Bad21], where also the generalisation to non-compact� is explained.

De€nitionA.6. ‘e set Hom¹� • � º � � j� j endowed with the restriction of the product topology

on � j� j is called therepresentation variety.

De€nitionA.7. Let � be a� -module. A map1 2 � ! � is calledcocycleif

1¹WXº = 1¹Wº ¸ W� 1¹Xº for all W• X2 � ”

We denote the set of cocycles by/ 1¹� • � º. A map1 2 � ! � is calledcoboundaryif there

existsE2 � such that

1¹Wº = E� W� Efor all W2 � ”

We denote the set of coboundaries by� 1¹� • � º � / 1¹� • � º. ‘e €rst cohomology of� with

coe•cients in� is

� 1¹� • � º = / 1¹� • � º•� 1¹� • � º”

‹eorem A.8 (Point 3 in [Wei64]). Fix a group homomorphismA : � ! � . Œe group� is

acting ong through the adjoint representation, and together withAthis gives� the structure of a

� -module. If� 1¹� •gº = 0, then there exists a neighbourhood* � Hom¹� • � º ofAin which each

element is conjugate toA, i.e. for allB2 * there exists6 2 � such that

B= ;6 � A6� 1 � A”

Here,;6•A6� 1 : � ! � denote le‡ translation and right translation on� , respectively.

De€nitionA.9. Fix c : � ! Aut¹� º. An a•ne action of � on � is a group homomorphism

q : � ! A‚ ¹� º. We say thatc is the linear part of the a•ne action q if for all W2 � there
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existsE0 2 � such that

q ¹Wº¹Eº = c ¹Wº¹Eº ¸ E0 for all E2 �”

Lemma A.10(Lemma 2.1 in [DX16]). Œe mapc : � ! Aut¹� º endows� with an � -module

structure. We have� 1¹� • � º = 0with respect to this� -module structure if and only if every a•ne

action with linear partc has a €xed point.

Corollary A.11. Œe €nite group� with any � -module structure satis€es� 1¹� • � º = 0.

Proof.Letq : � ! A‚ ¹� º be an a•ne action. ‘en the element

- :=
Õ

X2�

q¹Xº¹0º 2 �

satis€esq¹Wº¹- º = - for all W2 � . By Lemma A.10 this implies that� 1¹� • � º = 0. �

Corollary A.12. Œe representation varietyHom¹� • � º has €nitely many connected components.

For each connected component� there existsA2 Hom¹� • � º such that

� = * A := f ;6 � A6� 1 � A: 6 2 � g”

Proof.Because� is €nite and� is compact we have thatHom¹� • � º is compact and therefore

has €nitely many connected components. Fix someA 2 Hom¹� • � º. ‘en * A is compact

because it is the image of� under the conjugation map. ‘us,* A is closed. On the other hand,

* A is open by ‘eorem A.8 together with Corollary A.11. ‘us, each connected component of

Hom¹� • � º is of the form* A for someA2 Hom¹� • � º. �

A.4 Removable Singularities

In De€nition 2.47 we de€ned a map from the moduli space of ASD connections over the

Eguchi-Hanson space- EH into the moduli space of ASD connections over the one point com-

pacti€cation of- EH. ‘ere, we used that every €nite energy ASD connection that isde€ned

over the complement of a point can be extended over this point. ‘is statement was proved

for Yang-Mills connections, not just ASD connections, in [Uhl82]. ‘is is called the Remov-
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able Singularities Œeorem. Because our map between moduli spaces should be a map between

framedmoduli spaces, we need a version of the Removable Singularities ‘eorem that respects

framings. ‘is is Proposition A.14 and we then apply it to our special case of connections over

- EH in Corollary A.17.

‹eorem A.13 (‘eorem 4.1 in [Uhl82], ‘eorem D.1 in [FU91]). Let� be a compact Lie group

and� be a connection on the trivial� -bundle over� 4 n f0g, � 2 � ¹¹� 4 n f0gº � � º, which is in

! 2
1•loc and anti-self-dual with respect to a smooth metric on� 4. If

¹

� 4nf0g
j� ¹� º j2 Ÿ 1 •

then there exists an injective bundle homomorphismb : ¹� 4 n f0gº � � ! � 4 � � and a smooth

connection� 0 2 � ¹� 4 � � º such thatb� � 0 = � over� 4 n f0g.

Theorem A.13 asserts existence of an extension over0, and the following proposition asserts

that this extension is essentially unique up to gauge:

Proposition A.14.Œe datab and � 0 from Œeorem A.13 are unique in the following sense: if

b0• b00: ¹� 4 n f0gº � � ! � 4 � � and� 0• � 002 � ¹� 4 � � º are such that¹b0º� � 0 = ¹b00º� � 00= � ,

then the mapb00� ¹ b0º� 1 : ¹� 4 n f0gº � � ! ¹ � 4 n f0gº � � can be extended to a continuous map

� 4 � � ! � 4 � � .

Proof.We view the connections� 0• � 00on the trivial bundle� 4 � � as elements in
 1¹� 4•gº,

and view the gauge transformationb00� ¹ b0º� 1 as a map� 4 n f0g ! � , denoted byB. Without

loss of generality assume that� 0¹0º = � 00¹0º = 0, which can be arranged by composingb0• b00

with a suitable gauge transformation of� 4 � � . ‘en � 00= B� � 0 on � 4 n f0g, thus

0 = � 00¹0º = lim
G! 0

B� 1¹Gº dB¹Gº

and by taking norms we see thatlimG! 0 dB¹Gº = 0. ‘is implies that limG! 0B¹Gº exists: if

the limit does not exist, then we have two sequencesG8• G0
8 ! 0 such thatlim8!1 B¹G8º <

lim8!1 B¹G0
8º. Without loss of generality assume thatG8• G0

8 can be joined by a line. ‘e mean
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value theorem then gives a sequence\ 8 2 � 4 n f0gsuch thatj dB¹\ 8º j ! 1 , which is a contra-

diction.

‘erefore limG! 0B¹Gº exists and de€nes a continuous mapB: � 4 ! � , which in turn extends

b00� ¹ b0º� 1. �

Viewing the mapb from ‘eorem A.13 as a mapb : � 4 n f0g ! � , the limit limG! 0 b¹Gº does

not exist in general. But in important cases it does, according to the following proposition:

Proposition A.15.Under the conditions of Œeorem A.13, assume that� is bounded, viewed as an

element in
 1¹� 4 n f0g•gº. Viewingb as a mapb : � 4 n f0g ! � , we have that the limit

lim
G! 0

b¹Gº 2 �

exists.

Proof.Without loss of generality assume that� 0¹0º = 0. ‘en,

b� � 0¹Gº = � ¹Gº for all G2 � 4 n f0g” (A.16)

Taking norms in Eq. (A.16) and usingb� � 0¹Gº = b� 1¹Gº db¹Gº ¸ � 0¹Gº we see thatdb is bounded

on � 4 n f0g, and we can conclude the proof as in the proof of Proposition A.14. �

‘is can be applied to the case of ASD instantons on ALE manifolds:

Corollary A.17. Let%be a� -bundle over- EH and denote by� asd•� 2 the set of ASD-connections

on%as in Eq.(2.43). Let� 0 ¸ 0 2 � asd•� 2, then there exists an orbifold� -bundle%0 over ^- EH

together with a connection� 0 2 � ¹%0º and an injective bundle homomorphismb : %! %0 such

that b� � 0 = � 0 ¸ 0. Denote by5 : � 4• � ! + the chart of^- EH around1 from Proposition 2.37.

Fixing a trivialisation of%over+ n f1g induces a trivialisation of%0 over+ and we can viewb

as a map+ n f1g ! � . Œen the limitlimG!1 b¹Gº, where1 2 ^- EH, exists.

Proof. ‘e assumption � 0 ¸ 0 2 � asd•� 2 means that0 = O¹A� 2º, measured in the ALE metric.

By inspecting how the inversion5 acts on1-forms, we €nd that0 = O¹1º, measured in the
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orbifold metric, and Proposition A.15 gives the claim. �

160



References

[AHS78] M. F. Atiyah, N. J. Hitchin, and I. M. Singer. Self-duality in four-dimensional

Riemannian geometry.Proc. Roy. Soc. London Ser. A, 362(1711):425{461, 1978. 43

[Ale68] D. V. Alekseevskii. Riemannian spaces with exceptional holonomy groups.Func-

tional Analysis and Its Applications, 2(2):97{105, 1968. 15

[Ati78] M. F. Atiyah. Geometry of Yang-Mills €elds. InMathematical problems in theoretical

physics (Proc. Internat. Conf., Univ. Rome, Rome, 1977), volume 80 ofLecture Notes

in Phys., pages 216{221. Springer, Berlin-New York, 1978. 36

[Bad21] Uri Bader. Which Lie groups have €nitely many conjugacy classes

of subgroups of €xed isomorphism type? MathOverƒow, 2021.

URL:h‹ps://mathoverƒow.net/q/401777 (version: 2021-08-15). 156

[Ber55] Marcel Berger. Sur les groupes d'holonomie homog�ene des vari�et�es�a connexion

a•ne et des vari�et�es riemanniennes.Bull. Soc. Math. France, 83:279{330, 1955. 10,

15

[Bes87] Arthur L. Besse.Einstein manifolds, volume 10 ofErgebnisse der Mathematik und

ihrer Grenzgebiete (3) [Results in Mathematics and RelatedAreas (3)]. Springer-

Verlag, Berlin, 1987. 134

[BG72] R. B. Brown and A. Gray. Riemannian manifolds with holonomy groupSpin¹9º. In

Di‚erential geometry (in honor of Kentaro Yano), pages 41{59. Kinokuniya, Tokyo,

1972. 15

[BPST75] A.A. Belavin, A.M. Polyakov, A.S. Schwartz, and Yu.S. Tyupkin. Pseudoparticle

solutions of the yang-mills equations.Physics Leˆers B, 59(1):85{87, 1975. 36

[Bry87] Robert L. Bryant. Metrics with exceptional holonomy.Ann. of Math. (2), 126(3):525{

576, 1987. 15

[BS89] Robert L. Bryant and Simon M. Salamon. On the construction of some complete

metrics with exceptional holonomy.Duke Math. J., 58(3):829{850, 1989. 15

161



[Cal54] Eugenio Calabi. ‘e space of kahler metrics. InProc. Int. Congress Math. Amsterdam,

volume 2, pages 206{7, 1954. 10

[Cal57] Eugenio Calabi. On K•ahler manifolds with vanishing canonical class. InAlgebraic

geometry and topology. A symposium in honor of S. Lefschetz, pages 78{89. Princeton

University Press, Princeton, N. J., 1957. 10

[CGLP01] M. Cveti�c, G. W. Gibbons, H. L•u, and C. N. Pope. Hyper-K•ahler Calabi metrics,

! 2 harmonic forms, resolved M2-branes, andAdS4•CFT3 correspondence.Nuclear

Phys. B, 617(1-3):151{197, 2001. 21

[Dan99] Andrew S. Dancer. Hyper-K•ahler manifolds. InSurveys in di‚erential geometry:

essays on Einstein manifolds, volume 6 ofSurv. Di‚er. Geom., pages 15{38. Int. Press,

Boston, MA, 1999. 16, 20

[DK90] S. K. Donaldson and P. B. Kronheimer.Œe geometry of four-manifolds. Oxford

Mathematical Monographs. ‘e Clarendon Press, Oxford University Press, New

York, 1990. Oxford Science Publications. 26, 27, 28, 32, 37, 43, 45,47, 53, 145, 149,

150

[Don83] S. K. Donaldson. An application of gauge theory to four-dimensional topology.J.

Di‚erential Geom., 18(2):279{315, 1983. 11

[Don85] S. K. Donaldson. Anti self-dual Yang-Mills connections over complex algebraic

surfaces and stable vector bundles.Proc. London Math. Soc. (3), 50(1):1{26, 1985. 45

[Don12] Simon K. Donaldson. Calabi-Yau metrics on Kummer surfaces as a model gluing

problem. InAdvances in geometric analysis, volume 21 ofAdv. Lect. Math. (ALM),

pages 109{118. Int. Press, Somerville, MA, 2012. 53

[DS11] Simon Donaldson and Ed Segal. Gauge theory in higher dimensions, II. InSurveys

in di‚erential geometry. Volume XVI. Geometry of special holonomy and related top-

ics, volume 16 ofSurv. Di‚er. Geom., pages 1{41. Int. Press, Somerville, MA, 2011.

108

162



[DT98] S. K. Donaldson and R. P. ‘omas. Gauge theory in higher dimensions. InŒe

geometric universe (Oxford, 1996), pages 31{47. Oxford Univ. Press, Oxford, 1998. 12

[DW59] A. Dold and H. Whitney. Classi€cation of oriented sphere bundles over a4-

complex.Ann. of Math. (2), 69:667{677, 1959. 28

[DX16] Tullia Dymarz and Xiangdong Xie. Day's €xed point theorem, group cohomology,

and quasi-isometric rigidity.Groups Geom. Dyn., 10(4):1121{1148, 2016. 157

[EH16] David Eisenbud and Joe Harris.3264 and all that|a second course in algebraic geo-

metry. Cambridge University Press, Cambridge, 2016. 44

[FHN20] Lorenzo Foscolo, Mark Haskins, and Johannes Nordstr•om. Complete non-compact

g2-manifolds from asymptotically conical calabi-yau 3-folds, 2020. To appear in

the Journal of the European Mathematical Society. 54

[Fol89] G. B. Folland. Harmonic analysis of the de Rham complex on thesphere.J. Reine

Angew. Math., 398:130{143, 1989. 55

[Fol95] Gerald B. Folland.Introduction to partial di‚erential equations. Princeton University

Press, Princeton, NJ, second edition, 1995. 84, 136, 140

[FU91] Daniel S. Freed and Karen K. Uhlenbeck.Instantons and four-manifolds, volume 1 of

Mathematical Sciences Research Institute Publications. Springer-Verlag, New York,

second edition, 1991. 28, 29, 158

[Ful98] William Fulton. Intersection theory, volume 2 ofErgebnisse der Mathematik und

ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in

Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathemat-

ics]. Springer-Verlag, Berlin, second edition, 1998. 44

[GN92] Toru Gocho and Hiraku Nakajima. Einstein-Hermitian connections on hyper-

K•ahler quotients.J. Math. Soc. Japan, 44(1):43{51, 1992. 20, 35

[GRG97] G. W. Gibbons, P. Rychenkova, and R. Goto. Hyper-K•ahler quotient construction

of BPS monopole moduli spaces.Comm. Math. Phys., 186(3):581{599, 1997. 20

163



[Hit87] N. J. Hitchin. ‘e self-duality equations on a Riemann surface.Proc. London Math.

Soc. (3), 55(1):59{126, 1987. 18

[Huy05] Daniel Huybrechts.Complex geometry. Universitext. Springer-Verlag, Berlin, 2005.

An introduction. 43, 46

[Huy16] Daniel Huybrechts.Lectures on K3 surfaces, volume 158 ofCambridge Studies in

Advanced Mathematics. Cambridge University Press, Cambridge, 2016. 148

[Ito85] Mitsuhiro Itoh. ‘e moduli space of Yang-Mills connectionsover a K•ahler surface

is a complex manifold.Osaka J. Math., 22(4):845{862, 1985. 34

[Ito88] Mitsuhiro Itoh. Geometry of anti-self-dual connections and Kuranishi map.J.

Math. Soc. Japan, 40(1):9{33, 1988. 34

[JK21] Dominic Joyce and Spiro Karigiannis. A new construction of compact torsion-free

G2-manifolds by gluing families of Eguchi-Hanson spaces.J. Di‚erential Geom.,

117(2):255{343, 2021. 5, 10, 12, 25, 76, 95, 96, 97, 99, 100, 101, 103, 148

[Joy96a] D. D. Joyce. Compact8-manifolds with holonomy Spin¹7º. Invent. Math.,

123(3):507{552, 1996. 15, 94

[Joy96b] Dominic D. Joyce. Compact Riemannian7-manifolds with holonomy� 2. I, II. J.

Di‚erential Geom., 43(2):291{328, 329{375, 1996. 5, 10, 11, 15, 21, 24, 25, 52, 67, 68

[Joy00] Dominic D. Joyce.Compact manifolds with special holonomy. Oxford Mathematical

Monographs. Oxford University Press, Oxford, 2000. 11, 16, 18,19, 22, 23, 24, 94

[KL20] Spiro Karigiannis and Jason D. Lotay. Deformation theory of G2 conifolds.Comm.

Anal. Geom., 28(5):1057{1210, 2020. 63, 64

[KN63] Shoshichi Kobayashi and Katsumi Nomizu.Foundations of di‚erential geometry.

Vol I. Interscience Publishers, a division of John Wiley & Sons, New York-London,

1963. 14

[Kro89a] P. B. Kronheimer. ‘e construction of ALE spaces as hyper-K•ahler quotients.J.

Di‚erential Geom., 29(3):665{683, 1989. 20

164



[Kro89b] P. B. Kronheimer. A Torelli-type theorem for gravitational instantons.J. Di‚eren-

tial Geom., 29(3):685{697, 1989. 29

[LM85] Robert B. Lockhart and Robert C. McOwen. Elliptic di‚erential operators on non-

compact manifolds.Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 12(3):409{447, 1985. 59,

63

[LM17] Jason D. Lotay and ‘omas Bruun Madsen. Instantons and special geometry. In

Special metrics and group actions in geometry, volume 23 ofSpringer INdAM Ser.,

pages 241{267. Springer, Cham, 2017. 18

[LO18] Jason D. Lotay and Goncalo Oliveira.(* ¹2º2-invariant � 2-instantons.Math. Ann.,

371(1-2):961{1011, 2018. 12

[LO20] Jason D. Lotay and Goncalo Oliveira.� 2-instantons on noncompact� 2-manifolds:

results and open problems. InLectures and surveys on� 2-manifolds and related

topics, volume 84 ofFields Inst. Commun., pages 287{317. Springer, New York, 2020.

12

[Loc87] Robert Lockhart. Fredholm, hodge and liouville theorems on noncompact mani-

folds. Transactions of the American Mathematical Society, 301(1):1{35, 1987. 35, 59,

62, 63

[MNSE21] Gr�egoire Menet, Johannes Nordstr•om, and Henrique N. S�a Earp. Construction of

� 2-instantons via twisted connected sums.Math. Res. Leˆ., 28(2):471{509, 2021. 12

[MS74] John W. Milnor and James D. Stashe‚.Characteristic classes. Princeton University

Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974. Annals of Mathem-

atics Studies, No. 76. 47

[Nak90] Hiraku Nakajima. Moduli spaces of anti-self-dual connections on ale gravitational

instantons.Inventiones mathematicae, 102(1):267{303, Dec 1990. 26, 34, 37

[Pac13] Tommaso Pacini. Desingularizing isolated conical singularities: uniform estimates

via weighted Sobolev spaces.Comm. Anal. Geom., 21(1):105{170, 2013. 32

165



[Pet16] Peter Petersen.Riemannian geometry, volume 171 ofGraduate Texts in Mathematics.

Springer, Cham, third edition, 2016. 46

[RC98] Ram�on Reyes Carri�on. A generalization of the notion of instanton.Di‚erential

Geom. Appl., 8(1):1{20, 1998. 51

[Sal89] Simon Salamon.Riemannian geometry and holonomy groups, volume 201 ofPitman

Research Notes in Mathematics Series. Longman Scienti€c & Technical, Harlow;

copublished in the United States with John Wiley & Sons, Inc., NewYork, 1989. 15

[SEW15] Henrique N. S�a Earp and ‘omas Walpuski. � 2-instantons over twisted connected

sums.Geom. Topol., 19(3):1263{1285, 2015. 12

[SW17] Dietmar A. Salamon and ‘omas Walpuski. Notes on the octonions. InProceed-

ings of the G•okova Geometry-Topology Conference 2016, pages 1{85. G•okova Geo-

metry/Topology Conference (GGT), G•okova, 2017. 22

[Tau82] Cli‚ord Henry Taubes. Self-dual Yang-Mills connections on non-self-dual4-

manifolds.J. Di‚erential Geometry, 17(1):139{170, 1982. 52

[Uhl82] Karen K. Uhlenbeck. Removable singularities in Yang-Mills€elds. Comm. Math.

Phys., 83(1):11{29, 1982. 157, 158

[Wal13a] ‘omas Walpuski. � 2-instantons on generalised Kummer constructions.Geom.

Topol., 17(4):2345{2388, 2013. 12, 34, 49, 116

[Wal13b] ‘omas Walpuski. Gauge theory on� 2-manifolds. PhD thesis, Imperial College

London, 2013. 29, 34, 50, 71, 129, 130

[Wal16] ‘omas Walpuski. � 2-instantons over twisted connected sums: an example.Math.

Res. Leˆ., 23(2):529{544, 2016. 12

[Wal17] ‘omas Walpuski. � 2-instantons, associative submanifolds and Fueter sections.

Comm. Anal. Geom., 25(4):847{893, 2017. 73, 81, 111, 112, 114, 123, 124, 128, 134, 135,

142, 144

166



[Wei64] Andr�e Weil. Remarks on the cohomology of groups.Ann. of Math. (2), 80:149{157,

1964. 156

[Yau77] Shing Tung Yau. Calabi's conjecture and some new results in algebraic geometry.

Proc. Nat. Acad. Sci. U.S.A., 74(5):1798{1799, 1977. 10

[Yau78] Shing Tung Yau. On the Ricci curvature of a compact K•ahler manifold and the

complex Monge-Amp�ere equation. I.Comm. Pure Appl. Math., 31(3):339{411, 1978.

10

167


	Statement of Originality
	Copyright Declaration
	Acknowledgements
	Abstract
	Introduction
	Background
	Riemannian Holonomy Groups
	Hyperkähler Geometry and the Eguchi-Hanson Space
	G2-structures
	Torsion of G2-structures on 7-manifolds
	G2-manifolds and Hyperkähler 4-manifolds

	Gauge Theory in Dimension 4
	On Compact Manifolds
	On ALE Manifolds

	Gauge Theory on Complex Vector Bundles
	Hermite-Einstein Connections and Stable Bundles
	Rank 2 Vector Bundles

	Gauge Theory on G2-manifolds

	Resolutions of G2-orbifolds
	Analysis on the Eguchi-Hanson Space
	Harmonic forms on (=193 =225 =125 =126 =43  ==67==67 C   2{0})/{ pm1}
	Harmonic forms on Eguchi-Hanson Space

	Torsion-Free G2-Structures on the Generalised Kummer Construction
	Resolutions of T7/
	The Laplacian on =193 =225 =125 =126 =43  ==82==82 R   3 XEH
	The Laplacian on Nt
	The Existence Theorem

	Torsion-Free G2-Structures on Joyce-Karigiannis Manifolds
	Ingredients for the Construction
	G2-structures on the Normal Bundle  of L
	G2-structures on the Resolution P of /{pm1}
	Correcting for the Leading-order Errors on P
	G2-structures on the Resolution Nt of Y/


	The Gluing Construction for Instantons
	The Pregluing Construction
	Moduli Bundles of ASD-Instantons
	Fueter Sections and Connections on Bundles over P
	Gluing Connections over P and Y/

	Pregluing Estimate
	Estimates for the G2-structures Involved
	Principal Bundle Curvature Estimates

	Linear Estimates
	Stating the Estimate
	Comparison with the Fueter Operator
	The Model Operators on =193 =225 =125 =126 =43  ==82==82 R   3 XEH and =193 =225 =125 =126 =43  ==82==82 R   3 =193 =225 =125 =126 =43  ==67==67 C   2/{pm1}
	Schauder Estimate
	Estimate of t a
	Cross-term Estimates
	Proof of Proposition 4.77

	Quadratic Estimate
	Deforming to Genuine Solutions
	An example Coming from a Stable Bundle
	Review of the Resolution of (T3 K3)/
	A Connection on the Orbifold (T3 K3)/ coming from a Stable Bundle
	The Resulting Connection on the Resolution of (T3 K3)/


	Appendix
	The Isometry Group of Eguchi-Hanson Space
	Measuring Vectors in Nearby Metrics
	Rigidity of Finite Subgroups
	Removable Singularities


