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Abstract

The resolution of the G,-orbifold T” /T, where T is a suitably chosen finite group, admits a 1-
parameter family of G,-structures with small torsion ¢, obtained by gluing in Eguchi-Hanson
spaces. It was shown in [Joyg6b] that ¢’ can be perturbed to a torsion-free G,-structure ¢’ for
small values of ¢. Using norms adapted to the geometry of the manifold we give an alternative
proof of the existence of ¢’. This alternative proof produces the estimate ||¢’ — ¢*|| o, < ct*/2.
This is an improvement over the previously known estimate ||at - ¢t ||C0 < ct'/?, As part of
the proof, we show that Eguchi-Hanson space admits a unique (up to scaling) harmonic form
with decay, which is a result of independent interest.

More generally, there exists a construction of torsion-free G,-structures on resolutions of a
more general class of G;-orbifolds, given in [JK21]. We explain a construction of G,-instantons
on these manifolds, which includes the case of G,-instantons on resolutions of T’ /T" asa special
case. The ingredients needed are a G,-instanton on the orbifold and a Fueter section over the
singular set of the orbifold. In the general case, we make the very restrictive assumption that
the Fueter section is pointwise rigid. In the special case of resolutions of T /T, the improved
estimate for ¢’ — ¢’ allows to remove this assumption. As an application, we construct one

new example of a G,-instanton on the resolution of (T° x K3)/Z5.
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1 Introduction

In [Berss]], Berger presented a list of groups which can possibly occur as the holonomy groups
of Riemannian manifolds. However, constructing manifolds which realise these holonomy
groups remained a wide-open problem for decades. A milestone in this direction was the for-
mulation and proof of the Calabi conjecture in [Cals4, |Cals7] and [Yau77, [Yau78] respectively.
Among other things, the proof of this conjecture gives a powerful characterisation of man-
ifolds admitting a metric with holonomy SU(n), giving rise to a wealth of examples of such
manifolds. For the exceptional holonomy group G, such a general characterisation remains

out of reach, and even the construction of examples persists to be a challenging task.

The first compact examples of Riemannian manifolds with holonomy equal to G, were con-
structed in [Joy96b] by resolving an orbifold of the form T7/T’, where T is a finite group of
isometries of T7. In [JK21], this construction was extended to resolutions of orbifolds of the
form Y /T, where Y is a manifold with holonomy contained in G,, but not necessarily flat, and
T is a finite group of G,-involutions. In [Joy96b|] and [JK21] this was done by constructing G,-
structures with small torsion, and subsequently perturbing them to torsion-free G,-structures.
This perturbation made use of a general existence result for torsion-free G,-structures that
holds on all 7-manifolds. An immediate question is: how far away is the torsion-free G,-
structure from the G,-structure with small torsion? This is important in applications, such as
the construction of associative submanifolds and G,-instantons. In Section g we give a par-
tial answer to this question by proving an improved estimate for the difference between the
torsion-free G,-structure and the one with small torsion for the G,-manifolds from [Joy96b].

The main result of this section is Theorem [3.84}

Theorem. Choose a € (0,1) and § € (—1,0) both close to 0. Let N; be the resolution of T’ /T
from Eq. 3:31) and @' € Q*(N,) the G;-structure with small torsion from Eq. (3:33). There exists
¢ > 0 independent of t such that the following is true: fort small enough, there existsn' € Q*(N,)

such that ¢ = @' + dn' is a torsion-free G,-structure, and n' satisfies

||’7t||c;§/z <t P,
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In particular,

5/2 5/2—a/2 3/2-at/2

||$— qot||Loc < ct’’“ and ||$— qot”CO,a/Z <ct as well as ||$— qot”Cm/z <ct
Here, the norm || - || C;g;/z is a weighted Holder norm. The norms in the last line of the theorem
are ordinary, unweighted norms. The group I’ is a finite group acting through G,-involutions
on T7. In [Joy96b, Joyoo|] the estimate || — ¢||;« < ct'/? was shown. In this sense, the
estimates from Theorem|[3.84|are an improvement. The theorem hinges on an estimate for the
inverse of the Laplacian acting on 2-forms on the resolution of T7/T’. The crucial idea necessary
for obtaining this estimate is to split 2-forms into a part that is harmonic on the 4-dimensional
fibres orthogonal to the singular set of T7/T, and a rest. The 4-dimensional fibres are subsets
of Eguchi-Hanson space Xgy, and the proof of Theorem [3.84] uses detailed knowledge of the
harmonic forms on Xgy. The space Xgpy admits a harmonic 2-form v, that can be written down

explicitly and comes from rescaling the metric. In Theorem[3.26] we denote the Laplacian on

Xen acting on p-forms by A, 4 ), and we prove that v, is essentially the only form with decay:

Theorem. For A € (—4,0), the Lg,/l-kernels of Apg,, acting on p-forms of different degrees are

the same as the L*-kernels, namely:

Ker(Ag,, : Ly ,(N*(Xen) — Lg ,_, (A*(Xgr))) = (v1),

Ker(Ag,, : L2, (AP (Xgr) — L2,y (A" (Xr))) = 0 forp # 2.

Here Lg (AP (Xgn)) denote the usual weighted Sobolev spaces on asymptotically conical man-
ifolds. They consist of, roughly speaking, L*>-sections with 2 weak derivatives that decay like

r* as r — oo, where r is a radius function.

Using the idea from [Joy96b]], some millions of G,-manifolds can be constructed, see [Joyoo,
p-322]. However, using Betti numbers alone, only around 100 of them can be distinguished.
This prompts the question: how many of these G,-structures are deformation equivalent?
An idea that may potentially help to answer this question comes from gauge theory: in the

seminal article [Don83]], the moduli space of anti-self-dual connections was used to define in-
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variants of smooth 4-manifolds. Following this, a rich theory of gauge theoretical invariants
and their relations to other manifold invariants in 4 dimensions was developed. The article
[DT98] then recognised some of the 4-dimensional phenomena in dimension 7, for example
the existence of a functional whose critical points are instantons. With great optimism, one
may hope to recreate the four-dimensional success story in dimension 7, and use the moduli
space of G;-instantons to define deformation invariants of G;-manifolds. There are analytic
difficulties present in dimension 7 that were not there in dimension 4, and therefore the study
of Gy-instantons has mainly focused on the construction of examples. The examples that have
appeared in the literature so far are [Wali3a, [SEW15| Wal16, MNSE21, LO20| [LO18]. In Sec-
tion gy we add to this as follows: we prove a gluing theorem that can be used to construct G,-
instantons on the Gy-manifolds from [JK21]]. Such a manifold is a resolution of a G,-orbifold,
obtained by taking the quotient of a G;-manifold Y by a G,-involution :. The resolution N is
obtained by gluing Eguchi-Hanson spaces over the singular set of Y/(1). Given a G;-instanton
0 on Y /(i) one may be able to construct from it a G,-instanton on N. To do this, one needs a
connection over the glued in part. One way to get such a connection is by taking a suitable
family of anti-self-dual instantons over Eguchi-Hanson space, say s. Our main result is that
one can glue together 8 and s to a genuine G,-instanton if s consists of a rigid instanton in

each fibre and they satisfy a simple compatibility condition (cf. Theorem [£130):

Theorem. Assume now that the section s is given by a rigid ASD-instanton in every pointx € L,

and assume that the connection 0 used to define the approximate G,-instanton A; from Proposi-

tion is infinitesimally rigid.

There exists ¢ > 0 such that for small t there exists a, = (as, &) € CH(Q° @ QY (AdE,)) such

that A; == A; + a; is a Gy-instanton. Furthermore, a, satisfies ||gt||cl,a < ct!/18,
-1,8;t

Here, a € (0,1) must be a small number and || - || -1« denotes a weighted Holder norm. We
-1,5;t

use this theorem to construct a new G,-instanton on the resolution of (T° x K3)/Z5.

Thanks to the improved estimate for the difference ¢ — ¢’ on resolutions of T7/T from the
aforementioned Theorem [3.84] we have an even stronger gluing theorem on these manifolds.
In this case, we need not require that the section s is given by rigid instantons, only that it is

a rigid solution of the Fueter equation (cf. Theorem [£:131):

12



Theorem. Let N — Y’ be the resolution of the orbifold Y’ = T’ /T from before. Assume that the
connection 0 used to define the approximate G,-instanton A; from Proposition[g.27|is infinitesim-

ally rigid and that s is an infinitesimally rigid Fueter section.

There exists ¢ > 0 such that for small t there exists an a, = (a;, &) € C**(Q° ® Q' (AdE;)) such

that gt = A; + a; is a Gy-instanton. Furthermore, a, satisfies ||gt||%t < ct? 2@,

Here, || - ||z, denotes a complicated composite norm. The basic idea of this norm is the same as
in the previous chapter: it consists of a part that is harmonic in the Eguchi-Hanson directions

in the gluing region and a rest, and the two parts are scaled differently.

Unfortunately, no genuine examples of these more general ingredients are known. That is:
all known rigid Fueter sections are actually sections of rigid instantons. Therefore, we were

unable to use this theorem to produce new examples so far.
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2 Background

2.1 Riemannian Holonomy Groups

Let (M, g) be a smooth, n-dimensional Riemannian manifold and denote its Levi-Civita con-

nection by V.

Definition 2.1. Given a piecewise smooth curve y : [0,1] — M from y(0) = x to y(1) =y,
denote the parallel transport induced by V along y by ¥, : .M — T,M. For p € M we then

define the holonomy group of g at p as

Hol(g, p) = {#y : y smooth loop based at p} € End(T,M).

The following are standard properties of holonomy groups, see e.g. Chapters II and
IV]:

Lemma 2.2. 1. The groups Hol(g, p) and Hol(g, q) are isomorphic groups for all p, g € M.

2. For all p we have that Hol(g, p) preserves the metric on T,M, i.e. Hol(g,p) C O(T,M).

Because of the this, we can fix a point p € M and an isometry T, M =~ R" and speak of Hol(g, p)

as a subgroup of O(n) and call it the holonomy group of (M, g), denoted by Hol(g).

Figure 1: Parallel transport on the sphere S ¢ R* endowed with the round metric. The tangent
vector V is transported along the yellow curve, resulting in the vector #, (V). The holonomy
group of S? endowed with the round metric is SO(2).

Not every Lie group can appear as the holonomy group of a Riemannian manifold. A list of

possible holonomy groups was given by Berger:

14



Theorem 2.3 ([Berssll). Suppose (M, g) is a simply-connected manifold of dimension n that is
irreducible and nonsymmetric. Then exactly one of the following holds:

1. Hol(g) = SO(n),

2. n=2m withm > 2, and Hol(g) = U(m) c SO(2m),

3. n=2m withm > 2, and Hol(g) = SU(m) c SO(2m),

4. n=4m withm > 2, and Hol(g) = Sp(m) c SO(4m),

5. n=4m withm > 2, and Hol(g) = Sp(m) Sp(1) C SO(4m),

6. n =7 and Hol(g) = G, c SO(7),

7. n =8 and Hol(g) = Spin(7) c SO(8).
The list originally also included the group Spin(9), but it was shown in [Ale68] and inde-
pendently in [BG72] to only occur in symmetric spaces. Berger did not prove that all these
groups occur as holonomy groups of Riemannian manifolds, and it took a long time to find
example manifolds for each group. In the cases G, and Spin(7), metrics with these holonomy
groups were shown to exist on non-complete Riemannian manifolds in [Bry87]. The next step
was the construction of complete noncompact examples in [BS89]]. Finally, compact manifolds
with these holonomy groups were constructed in [Joyg96bl [Joyg6a]. In the rest of this section,

we will introduce the holonomy groups Sp(m) and G, in detail. A thorough discussion of all

holonomy groups can be found in [Sal89]].

2.2 Hyperkihler Geometry and the Eguchi-Hanson Space

We now turn to the holonomy group Sp(m), the holonomy group of Hyperkéhler manifolds.
Because of our later applications, we will be particularly interested in dimension four, that is

the group Sp(1).

To this end, consider the blowup of C?/{+1}, which is again a complex surface. More than that,

it admits a Hyperkahler structure that is asymptotically locally Euclidean (ALE), see [Joyool
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Section 7.2] and [Dangg] for surveys listing these and more properties. In this section, we will
define ALE Hyperkahler manifolds, write down an explicit formula for the Hyperkédhler metric

on the blowup of C?/{+1} (cf. Proposition[z5), and show that it satisfies the ALE Hyperkéhler

property (cf. Proposition 210).
We begin with the definition of Hyperkahler manifolds.

Definition 2.4. Define the quaternions H to be the associative, nonabelian real algebra
H = {xo+x1i+x2j +x3k : x; € R} =~ R4,
endowed with the unique multiplication satisfying
ij=—ji=k jk=-kj=1i, ki = —ik = j, iZ=jt=k*=-1.

Let H™ have coordinates (¢', ..., ¢™), with ¢ = x(l) + x{i + xéj + xék € Hand x! € R. Define a

metric and 2-forms on H™ by

3 m
D (dxdy?, 1= ) dxj Adx] +dx A du,

1 s=0 I=1

M=

~
Ul

m
dxl A dk + dxd A dx, 3= ) dxj Adx}+dx) A dx.
1 I=1

S
I
Nt

~
1l

Define complex structures I, J, K on H™ to be left multiplication with i, j, k respectively. The

subgroup of GL(4m, R) preserving g, w1, w,, w3 is Sp(m). It also preserves I, J, K.

A 4m-dimensional Riemannian manifold (M, g) is called Hyperkdhler if Hol(g) € Sp(m).

Thus, on a Hyperkahler manifold we have the data of a metric and three compatible complex
structures and symplectic forms. Conversely, a metric together with three parallel symplectic

structures that are compatible in this sense defines a Hyperkéahler structure on a manifold.

We will now define the Eguchi-Hanson space and the Eguchi-Hanson metrics, which are a
1-dimensional family of Hyperkahler metrics, controlled by a parameter k € R»o. For k > 0
we get a metric on a smooth 4-manifold (this is point one of the following proposition), and

for k = 0 we get the standard metric on H/{+1} or equivalently C?/{+1} (this is point two of

16



the following proposition).

Proposition 2.5. Let r be a coordinate on the R »-factor of R X SO(3). Let

0 0 0 00 -1 0 -1 0
n"=2lo o 1|.7°=2|o o o|.n’=2|1 o o|es0(3)

0 -1 0 1 0 0 0 0 O

and denote the dual basis extended to left-invariant 1-forms on SO(3) by the same symbols. For

k >0, let fi : Rog X SO(3) — Rsq be defined by fi.(r) = (k +r*)Y/* and set
dt = fio'(r) dr, el(r) =rfi(nn', e’(r) = fi(Nn?, e’(r) = fi(n’.
Define a)l(k), wék), a)ék) € Q?(Rso X SO(3)) to be
a)l(k) =dtAnel +e? A€, wék) =dtAe’+e3 Anel, a);k) =dtAned+el A€ (2.6)
and denote by g(x) the metric on R X SO(3) that makes (dt, €', %, e*) an orthonormal basis.

1. Ifk > 0, consider the copy of SO(2) in SO(3) defined by {exp(s - n') : s € R}, defining a
right action of SO(2) on SO(3). Denote by V ~ R? the standard representation of SO(2).

Define ¥ : SO(3) X R5g — SO(3) XV as ¥(g,r) = (g, (,0)). Denote
Xy = 50(3) Xs0(2) V.

Then ¥ induces a smooth injective map ¥ : SO(3) X Ry — Xgy that is a diffeomorphism
onto its image, and the forms ¥, (a)l.(k)) can be extended to smooth 2-forms on all of Xgy.
Furthermore, ¥, (9g(x)) can also be extended to a metric on all of Xgy, and (Xgp, ¥, (9w))

is a Hyperkdhler manifold.

2. Ifk = 0: parametrise the quaternions as xo + x1i + X2 j + x3k with xo, x1, X2, x3 € R, embed
S® C M as the unit sphere, and fix the identification ¢ : S*/{£1} — SO(3) that maps x

onto the mapy +— x -y - x1, where we use S®/{+1} C H/{+1} and - denotes quaternionic

17



multiplication, for x € S®/{+1} c H/{£1}. Denote

®:S0(3) x Ryg — H/{x1}

(x,t) > t- dfl(x).

Then ®*w; = wl.(o) fori € {1,2,3} and ®*g = g((o), where g, w1, w3, @3 € Q%(H) are defined

as in Definition 24}

By slight abuse of notation, we will denote the extensions of a)l.(k) fori € {1,2,3} and g to
Xgy in the case k > 0 by the same symbol, suppressing the pushforward under V.

Proof. For k > 0: the fact that wfk), wék), wék), J(k) can be extended to all of Xgy was proven,
for example, in [LM17, Section 2.4]. One checks using a direct computation that a)l.(k) fori e
{1, 2,3} is closed and [Hit87, Lemma 6.8] implies that a)l.(k) is also parallel for i € {1, 2, 3}. Both
the symplectic forms and the metric are defined using the same orthonormal basis, which

proves that they are compatible. The case k = 0 is a direct calculation. O

Remark 2.7. A possible point of confusion is that the function r : Xgiy — R is approximately

the squared distance to the bolt SO(3) Xso(2) {0} of Xgn, so it is not a radius function.

It is a folklore result that the group of isometries of Xgy that also preserve jl(k) is isomorphic
to U(2)/{x1}. This can be seen rather explicitly using the description of the metric from

Propositionz:5] and we give a proof of that in Proposition[A.l

The Hyperkahler structure on Xgyy also has the important property that it approximates the flat
Hyperkihler structure on R* for large values of r. The following definition makes this notion
precise, and Proposition ZI0 proves that the Hyperkahler structure on Xgy does indeed have
this property.

Definition 2.8 (Definition 7.2.1in [Joyoo]]). Let G be a finite subgroup of Sp(1), and let (&1, @2, @3, §)
be the Euclidean Hyperkéhler structure on H, and ¢ : H/G — [0, c0) the radius function on
H/G. We say that a Hyperkdhler 4-manifold (X, wy, ws, w3, g) is asymptotically locally Euc-

lidean (ALE) asymptotic to H/G, if there exists a compact subset S € X andamap 7 : X \ S —

18



H/G that is a diffeomorphism between X \ S and {x € H/G : (x) > R} for some R > 0, such

that
VE(1.(9) = §) = O(67*7) and V¥ (n.(w) — &;) = O(c™*F) (2.9)

as 0 — oo, fori € {1,2,3} and k > 0, where V is the Levi-Civita connection of g.

Proposition 2.10.

1. The 2-sphere Y := SO(3) Xso(2) {0} C Xgy has radius k174,

2. There exists rl(k) € Q' (Xgn \ SO(3) Xso(2) {0}) such that w{k) - wfo) = drl(k) and for any

leZ

=0(r 37, (2.11)

|Vl7.'1(1)
9g(0)

where V denotes the Levi-Civita connection of g(). Furthermore, wék) - wéo) = 0, and

0 — 0 =0.m articular, (XEH,w(k),w(k),w(k), ©) is ALE asymptotic to H/{=1}.
3 3 p 1 2 3 > 9(k) ymp

3. Fork,k’ > 0 there exists a diffeomorphism ¢y j» : Xggr — Xgp s.t. ¢lﬁ,k’ (9k)) = A2gx) for

A4 = kk which restricts to the identity on Y.
Proof.

1. The curve y(s) = [expyy(sn?),0] is a geodesic in Y C Xgyg with y(0) = y(27) of length

27k!/4, s0 S? has radius k/4.

2. Explicitly, s

= (sz - j%z)r]l. The ALE property is [Joyool Example 7.2.2].

3. The fact that g and gy are conformally equivalent is clear on abstract grounds, as
there exists a classification of asymptotically locally Euclidean Hyperkéahler metrics (this
argument is used in [Joyool p. 154]). Explicitly,

¢ : SO(3) Xso(2) V — SO(3) Xso(2) V
(2.12)

[u, (r,0)] — [u, (A%r, 0)]
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satisfies the claim in the proposition.

O

Remark 2.13. By definition, Xy is an associated bundle over SO(3)/SO(2) = S?. In fact, Xgy is
diffeomorphic to the total space of T*S?, which itself is diffeomorphic to T*CP". It is a folklore
result that (Xgy, ]1(k)) is biholomorphic to T*CP! for all k > 0, which in turn is the blowup of
C?/{#1} in the origin, see e.g. [Dangg} p. 17] for the statement. We thus have a blowup map

1% : Xgg — Cz/{il}

There is another description of the ALE metric on Eguchi-Hanson space arising from two
different Hyperkahler quotient constructions: first, Xgy is a special case of the Calabi-Yau
metrics on T*CP" explained in [GRGg7]. Second, Xgy is a special case of ALE manifolds
asymptotic to the metric on C?/T, where I' C SU(2) is a finite subgroup, which is explained in
[Kro89ga]. (The special case of Eguchi-Hanson space in this construction is described in [GNg2|

Section 2].)

We briefly describe the construction from [GRGg7]], as it will be needed in Section [Z:Z2} Let

M = H? with quaternionic coordinates g4, a € {1, 2}, and let U(1) act on M via
qa — qae”, te (0,27]. (2.14)

A Hyperkahler moment map for this action is given by

M — Im(H) = R*®u(1)

1 —
(q1.q2) = < Z alq,-

ac{1,2}

(2.15)

Let { = é € Im(H). The group U(1) acts freely on p~!({) and the general theory of Hy-
perkahler reduction gives rise to a Hyperkahler structure on the four-dimensional manifold

X' = p~1()/U(1), denoted by M JJU(1).

It will turn out that X’ and Xgy are isomorphic as Hyperkéhler manifolds. We now identify
the group of holomorphic isometries of X', thereby recovering the result of Proposition [A1l

We view SU(2) embedded in H**? as quaternion valued matrices with no j or k components.
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Then SU(2) acts on M by right multiplication. This action restricts to p~'({) and commutes
with the action of U(1). The action is not effective, as —1 € SU(2) acts trivially, but the induced
action of the quotient group SU(2)/{£1} =~ SO(3) is effective. Next, let SO(2) act on M from
the left via

qa P 'l . qa» t€(0,2r].

Again, the action restricts to g~ ! ({) and commutes with the action of U(1), but is not effective
as —1 € SO(2) acts trivially. The actions of SO(2) /{%1} and SU(2)/{%1} commute, as the first
group is acting from the left, the second is acting from the right. We thus get that the group
SO(2)/{£1} x SU(2)/{£1} acts through isometries on X’. Last, one readily confirms that the

map

U(1)/{x1} xSU(2)/{x1} — U(2)/{+x1}

(4], [A] = [AA]

is a group isomorphism. Its inverse is given by [B] +— ([VdetB], [B/VdetB]) which is not
well-defined as a map U(1) x SU(2) — U(2) but is well-defined after dividing out {+1}. One
may also recover the full isometry group of the Eguchi-Hanson space by noticing that there

is an additional isometry induced by the map on M that swaps coordinates, i.e. M — M,

(q1,92) = (g2, 91).

As a smooth manifold, X’ ~ T*CP!, so Xgg and X’ are diffeomorphic by Remark z13} The
Hyperkéhler metric on X’ is asymptotically locally Euclidean by [CGLPo1, Section 2.4]. By
[Joyg96b, Example 7.2.2], X" is isomorphic as a Hyperkahler manifold to (Xgn, g(x)) for some
k > 0. The curve y : [0, 27] — X’ given by

0 -1

(1,0) -exp|t-

1 0

parametrises a perimeter of the minimal 2-sphere (1,0) - SO(3) in X". It has length 2, so X’

is isomorphic to the Hyperkéahler manifold (Xgg, g(*) by the first point of Proposition ZIol

We sum up the results:
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Proposition 2.16. Under the U(1)-action on M = H? from Eq. @14) we have that M JJU(1) ~

(Xer, 9'V) as Hyperkdhler manifolds.

2.3 Gy-structures

2.3.1 Torsion of G;-structures on 7-manifolds

We now introduce G,-structures and their torsion, following the treatment in [Joyoo].

Definition 2.17 (Definition 10.1.1 in [Joyoo]]). Let (xy, ..., x7) be coordinates on R7. Write dx;;. ;

for the exterior form dx; A dx; A - -+ A dx;. Define ¢y € Q*(R7) by

@o = dx123 + dxygs + dx167 + dxse — dxos7 — dxgey — dxsse. (2.18)

The subgroup of GL(7,R) preserving ¢, is the exceptional Lie group G,. It also fixes the

Euclidean metric gy = dx? + - - - + dxZ, the orientation on R’, and ¢, € Q*(R").

Definition 2.19. The skew-symmetric bilinear map X : R” — R7 defined by

@o(u,v,w) = go(u X 0, w)

for u, v, w € R7 is called the cross product induced by ¢.
Theorem 2.20 (Theorem 8.5 in [SWi7]). Let y = x¢@o. Then A*(R”)* splits into irreducible
representations of G, as follows:

AV = AL

AV =A@ A3,

NV =N oA e,
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and correspondingly for A*(R7)* ~ A7*(R”)* with k = 4,5, 6. Here, dim AZ =d and

AZ = {a: *(a A @g) =20} = {i(w)po : u € R"} =~ Al
Ny ={a:+(ahg) =—a} ={a:any =0} =g,
Aj = (po),

A ={i(wy:ueR’} = Al and

Ay ={a:aA@y=0anda Ay =0}~ Sym,(R7)

Definition 2.21. Let M be an oriented 7-manifold. A principal subbundle Q of the bundle of
oriented frames with structure group G, is called a G,-structure. Viewing Q as a set of linear
maps from tangent spaces of M to R, there exists a unique ¢ € Q*(M) such that Q identifies

@ with gy € Q3(R7) at every point.

Such G,-structures are in 1-1 correspondence with 3-forms on M for which there exists an
oriented isomorphism mapping them to ¢, at every point. We will therefore also refer to such

3-forms as G-structures.

Let M be a manifold with G,-structure ¢. We call Vg the torsion of a G,-structure ¢ € Q3(M).
Here, V denotes the Levi-Civita induced by ¢ in the following sense: we have G, c SO(7), so
¢ defines a Riemannian metric g on M, which in turn defines a Levi-Civita connection. As a
shorthand, we also use the following notation: write ©(¢) = %@, where “+” denotes the Hodge
star defined by g. Using this, the following theorem gives a characterisation of torsion-free

G,-manifolds:

Theorem 2.22 (Propositions 10.1.3 and 10.1.5 in [Joyod|]). Let M be an oriented 7-manifold with

G;-structure ¢ with induced metric g. The following are equivalent:

(i) Hol(g) < G,
(i) Vo =0 on M, where V is the Levi-Civita connection of g, and

(iii) de = 0 and dO(¢) = 0 on M.

If these hold then g is Ricci-flat.
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The goal of Section 5 will be to construct G,-structures that induce metrics with holonomy
equal to G,. A torsion-free G,-structure alone only guarantees holonomy contained in G,, but

in the compact setting a characterisation of manifolds with holonomy equal to G, is available:

Theorem 2.23 (Proposition 10.2.2 and Theorem 10.4.4 in [Joyoo|]). Let M be a compact oriented
manifold with torsion-free Gy-structure ¢ and induced metric g. Then Hol(g) = G, if and only
if m (M) is finite. In this case the moduli space of metrics with holonomy G, on M, up to diffeo-

morphisms isotopic to the identity, is a smooth manifold of dimension b>(M).

Note that this theorem makes no statement about the existence of a torsion-free G,-structure in
the first place. Finding a characterisation of manifolds which admit a torsion-free G,-structure

and even the construction of examples remain challenging problems in the field.

Later on, we will investigate perturbations of G,-structures and analyse how that changes

their torsion. To this end, we will use the following estimates for the map © defined before:

Proposition 2.24 (Proposition 10.3.5 in [Joyoo] and eqn. (21) of part I in [Joyg6bl]). There exists
€ > 0 and ¢ > 0 such that whenever M is a 7-manifold with G,-structure ¢ satisfying dg = 0,
then the following is true. Suppose y € C*(A3T*M) and |y| < €. Then ¢ + y is a Gy-structure,

and

O(p+yx)==+p—T(x) - F(x), (2.25)

where “«” denotes the Hodge star with respect to the metric induced by ¢, T : Q*(M) — Q*(M)
is a linear map (depending on @), and F is a smooth function from the closed ball of radius € in

A3T*M to A*T*M with F(0) = 0. Furthermore,

IF(x)| < clxl?,
IAFO)| < c{lxlP1d ol + [Vxl 1 xI},

[d(F()]a < e {Ixla Il l1d" @l + 1Ll [d°0la + [Vxla Ll + 1V Xl [X]a}s
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as well as

IVCFO)I < e {lxI* Vol + Vx| IxI}.

[VE()]eow < e {lxla xllps 1V@llps + xll7e [Vla + [Vxla ¥l + 1Vl Dxla} -

Here, |-| denotes the norm induced by ¢,V denotes the Levi-Civita connection of the metric induced

by ¢, and [-] o« denotes the unweighted Holder semi-norm induced by this metric.

Finally, the landmark result on the existence of torsion-free G,-structures is the following
theorem. It first appeared in [Joyg6b| part I, Theorem A], and we present a rewritten version

in analogy with [JK21, Theorem 2.7]:

Theorem 2.26. Let a, Ky, K,, K3 be any positive constants. Then there exist € € (0,1] and Ky > 0,

such that whenever 0 < t < €, the following holds.

Let M be a compact oriented 7-manifold, with G,-structure ¢ with induced metric g satisfying

deg = 0. Suppose there is a closed 3-form i on M such that d*p = d*y and

W) Wl < Kt |[Yllp2 < Kit"2*%, and ||| 1 < Kyt /24
(ii) The injectivity radius inj of g satisfies inj > Kat.

(iii) The Riemann curvature tensor Rm of g satisfies ||Rm||co < K3t 2.

Then there exists a smooth, torsion-free G,-structure ¢ on M such that ||¢ — ¢||0 < K4t* and

[@] = [¢] in H*(M,R). Here all norms are computed using the original metric g.

The main purpose of Section g will be to prove an improved existence theorem, specialised to

the resolution of T7/T. This will be achieved in Theorem 3.82}
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2.3.2 Gy-manifolds and Hyperkihler 4-manifolds

On H with coordinates (yo, Y1, Y2, y3) we have the three symplectic forms w1, w;, w3 from Defin-

ition[Z4] given as
wy = dyo A dyl + dy2 A dyg, w1 = dyo A dy2 - dyl A dy3, Wy = dyo A dy3 + dyl A dy2

Identify R” with coordinates (x1, . . ., x7) with R3@®H with coordinates ((x1, X2, X3), (Y1, Y2, Y3, Ya)).

Then we have for ¢y, *¢y from Definition 2T

3
@y = dx1a3 — Z dx; A w;, #po = voly — Z w; A dxjg. (2.27)
i=1 (i.1.k)=(1,2.3)
and cyclic permutation
This linear algebra statement easily extends to product manifolds in the following sense: if
X is a Hyperkéhler 4-manifold, and R3 is endowed with the Euclidean metric, then R3 x X
has a G,-structure. The G,-structure is given by the same formula as in the flat case, namely
Eq. (ZZ7), after replacing (w1, w,, w3) with the triple of parallel symplectic forms defining the

Hyperkéahler structure on X. This product G,-structure will be glued into G,-orbifolds in the

following sections.

2.4 Gauge Theory in Dimension 4

In this part we briefly review the theory of ASD instantons on compact 4-manifolds as well as
the (non-compact) ALE spaces. We follow the treatment of [DKgol| for the compact case, and

the treatment of [Nakgo] for ALE spaces.

Let (X*, g) be an oriented Riemannian 4-manifold. Let Q?(X) = Q*(X)® Q™ (X) be the decom-
position of Q?(X) into positive and negative eigenspaces of the Hodge *-operator. A connec-
tion A on a principal G-bundle P is then called an anti-self-dual instanton (or ASD instanton)
if its curvature Fy4 satisfies *F4 = —F4, where F, is viewed as an element in Q?(X, Ad E), and

* acts on the 2-form part while leaving the Ad P part unchanged.
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2.4.1 On Compact Manifolds

Now, let Y be a compact 4-manifold.

Definition 2.28. Fix some smooth connection Ay on P and assume there exists a faithful rep-

resentation V of G. Write E = P X5 V and for fixed [ € N, [ > 3, we then define:

o' ={Ag+a:aeL?(A'(AdP), A +a is anti-self-dual)},
e = {s e L2 (A%(End(E))) : s(y) € Gforally € Y},

1+1

M(l) = ol /2™

Here, €1 can be identified with gauge transformations of the bundle P, and through this acts

on ﬂalsd via pullback. Then, M := M(3) is called the moduli space of ASD instantons.

Remark 2.29. By the Sobolev Embedding Theorem, equivalence classes in M(3) have continu-
ous representatives. Elements in & ;S 4 need not have continuous representatives for [ < 2,
which is the reason for the choice I > 3 here. On the other hand, Proposition 230 states,

roughly speaking, that the exact value of I does not matter, as long as it is at least 3.

It is now that we make use of the compactness assumption. If Y is compact, then the definition

of M actually turns out to be independent of the chosen regularity [ in the following sense:

Proposition 2.30 (Proposition 4.2.16 in [DK90]l). The natural inclusion of M(1 + 1) in M(l) is a

homeomorphism forl > 3.

Because of this proposition, we may think of the moduli space to be made up of smooth ASD
instantons and smooth gauge transformations. Define the operator
Sa: QN(Y,AdP) — Q°(Y,AdP) ® Q*(Y,AdP)
(2:31)
a— (dya d}a),
where d’ja : QY(Y,Ad P) — Q2(Y, Ad P) denotes the composition of the differential d4 and the

projection of the 2-form part onto Q*(Y). This operator governs the infinitesimal deformations

of ASD instantons, as stated in the following proposition:
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Proposition 2.32 (Proposition 4.2.23 in [DKgo])). For any connection A on P let
Iy ={ue@:u(A) =A}

If A is an ASD instanton, then a neighbourhood of [A] in M is modelled on a neighbourhood of 0

of the quotient f~1(0)/T4 where
f :Kerd4 — CoKerd}
is a I'a-equivariant map.

We will also make use of the following Weitzenbdck formula for the operator d4:
Proposition 2.33 (Equation 6.2.5 in [FU9q1l]). Let P be a principal bundle over Y, and A a connec-
tion on P and 5, = d’, ® V2d*, : Q'(Y,AdP) — Q°(Y,AdP) & Q2(Y,Ad P). Then

ngAa =V, Vaa+ {Ric,a} + {F,, a},

where F, denotes the projection of the 2-form part of F4 onto Q™ (Y), and {-, -} denote universal

bilinear forms.
We then have the following index formula for §4:
Proposition 2.34 (Equation 4.2.22 in [DKgo]]). Let P be a bundle with structure group SO(3)

over Y, and A an ASD instanton. Then

ind 84 = —2p1 (E) — 3(1 — by (Y) + by (Y)).

One last result to mention is the classification of SO(3)-bundles and SU(2)-bundles. It will be

mentioned in passing in Sections[z5]and[4.6]but is not used in an essential way anywhere.

Theorem 2.35 (Theorem 1 in [DW59]] and Theorem E.8 in [FU9q1]]). Let P, Q be SO(3)-bundles

over a compact 4-manifold Y. Then P and Q are isomorphic if and only if p1(P) = p1(Q) and
wa(P) = w2(Q).
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Theorem 2.36 (Theorem E.5 in [FUo91]). Let P, Q be SU(2)-bundles over a compact 4-manifold

Y. Then P and Q are isomorphic if and only if c2(P) = c2(Q).

2.4.2 On ALE Manifolds

Let ' c SU(2) be a finite subgroup and let X be an ALE 4-manifold asymptotic to C?/T. Even
though X is non-compact, some of the results from gauge theory on compact manifolds carry
over to this setting. First, we explain a correspondence between gauge equivalence classes
of connections on X and on its one point compactification X = X U {co}. The following

proposition explains the orbifold structure on X:

Proposition 2.37 (p.687 in [Kro89b|] and Proposition 2.36 in [Walisb]]). Let (X, g) be an ALE
manifold asymptotic to C*/T by means of a map n : X — C?/T in the sense of Definition 2.8,

and let X = X U {co} be the one point compactification of X.

1. The topological space X is an orbifold and there exist a neighbourhood V of co and an

orbifold chart f : B*/T — V, where B* is the unit ball in R*.

2. The orbifold X carries an orbifold metric § of regularity C>* for any a € (0,1) such that

the restriction of § to X C X is conformally equivalent to g.

Proof sketch.

1. Fix an orientation reversing linear isometry o of R*. Let T act on B* ¢ R* by (g,x)

o (g - o(x)) and define

f:BYr - X
00 ifx=0 (2.38)

7 o(x)/|x|?) otherwise.
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2. The metric § := (1 + |7|*)7%g on X is shown in [Kro89b} p.687] to extend to X as an

orbifold metric with regularity C*>* and is by definition conformally equivalent to g.

Let G be a compact connected Lie group with a faithful representation G — GL(V). Let P
be an orbifold G-bundle over X and denote its restriction to X by P,ie. P = P| x. That is, P
restricted to V =~ B*/T from Proposition 2:37)is the trivial bundle B* X G together with a fixed
lift of the action of I on B* to B* x G. Over the point 0 € B*, this defines a homomorphism
p : ' = G. The following proposition states that this homomorphism essentially characterises

the orbifold bundle over B* completely.

Proposition 2.39. There exists a trivialisation x : P|g: — B* X G such that T acts through left

multiplication by p:

y -k '(b,g) =x"'(y- b, p(y)g) fory €T, (b,g) € B*XG. (2.40)

Proof. The lift of the action of T to B*X G can be viewed as an element w € C*(B*, Hom(T, G))
viay-(b,g) = (y-b,w(b)(y)-g). The space B* is connected, so by Corollary[A.12]the conjugacy
class of w does not change over B*. That is, there exists ¢ € C*(B%,G) such that [,r,-1w €
C*(B* Hom(T, G)) is constant and I,r,-1w(0) = p. Thus ¢ defines a trivialisation of B* x G in

which T" acts through left multiplication via p. O

Because of Propositionz3g|we can fix a trivialisation of P over B* such that T acts through left
multiplication by p. Then denote by Ay any extension of the product connection with respect
to this trivialisation to all of P. Different choices of extension will give rise to the very same
spaces in Eq. (273). We identify [R, o) x S*/T ~ X \ K for some R > 0 big enough and a
compact set K C X. Then the monodromy representation of Ay restricted to {t} x S*/T, say

h:m({t} x S*/T) — G, satisfies

h=p (2.41)
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under the canonical identification T' ~ 7 ({t} x S*/T"). Extend the projection onto the first
component X \ K =~ [R, o) X S> — [R, ) to a smooth positive function r on all of X. For a
non-negative integer [, a weight § € R, and p > 1 define the weighted Sobolev norm on the

k-forms with values in the adjoint bundle with compact support Q’g (AdP) via

1/p

I
||05||Lf(S = Z (/X |Vf40a|pr_(5_’)p_4 av| (2.42)
=0

and denote by Lf 5 (AK(Ad P)) the completion of Q]g (Ad P) with respect to the norm ||«|| 2

As before, set E = P Xg V and for [ > 3 define

A ={Ay+a:a€ LIZ,S(AI(AdP))}’

Gt — (s e 12 | (A°(End(E)) :s(x) € Gforallx € G,||s —1d||;2 < oo},

I+1,loc 1+1,5+1

1

G, ={s€G:sps" =p}, (2.43)

gHLorl — (s e 12 - (A%End(E)) : s(x) € Gforall x € G,

I+1,loc

[Is — sc,<,||le+1’5+1 < oo for some s € Gp}.

In the definition of €+1%*! we regarded s., € G, as an element in C* (A°(End(E)) as follows:
consider P over B* defined by the orbifold chart around co. Using the trivialisation from Pro-
position 239} this canonically defines a gauge transformation over B*. (It is the same to say
that we obtain a gauge transformation by parallel transport with respect to Ay.) This gauge
transformation is I'-equivariant by definition of G, and Proposition We then extend it
arbitrarily on the rest of X to an element in C°(A°(End(E)). The choice of the extension does

not matter for the condition ||s — seo||2 < o0.
1+1,6+1

The gauge groups ?é”’éﬂ and €191 hoth act on &%, and the quotient spaces ﬂl’a/féﬂ’aﬂ
and of -0 /G*1:9*1 are called the moduli space of framed connections and the moduli space of

unframed connections, respectively. We can restrict to anti-self-dual connections:

A = {A € 4" : Ais anti-self-dual}

asd

and obtain the moduli space of framed ASD connections M>% = o*?

asd/?éﬂ’aﬂ and the moduli

31



space of ASD connections ,Qié’sfi/gl”’fSH_

The four quotient spaces .Qfl"s/?éﬂ’aﬂ, A0 gL+ MO and ﬂé;ﬁ/?l”’&l are topological
spaces. For M"® we will observe explicitly (cf. Theorem zg) that it is metrisable and there-
fore Hausdorff, and the same argument works for the other three quotient spaces, cf. [DKgol

Lemma 4.2.4].

Moving on to the orbifold, we define:

Definition 2.44. For ] > 3 let

Al = Ao+ e o e LA (AdP)),

ghtto = (s e L2 (A°(EndV)) : s(x) € G for all x € X, s(c0) € G,},

?éﬂ,orb — {s c ?Hl,orb :s(oo) — Id}.

Then 1o and ?é”’orb both act on .Qf;’s(;rb and we can form the quotient spaces ﬂ;gb i Zanld

and M- = ﬂ;ﬁb / ?é“’orb. Here, M>™ is called the moduli space of framed ASD connections

N

on X.

We also have the following analogue of Proposition 230

Proposition 2.45. For3 < l; < I, the inclusion maps
P 5

Mll,orb SN Mlz,orb’ Ml1,—2 s Mlz,—Z
are homeomorphisms.

The proof of Proposition 245 works the same as in the compact case, i.e. the proof of Propos-
ition 230 given in [DK9go| Proposition 4.2.16]. The only difference is that in the non-compact
case, i.e. for the claim M2 < M"2~2 one has to take the weighted Sobolev norms from
Eq. (z:72). These have their own versions of the Sobolev embedding theorem and, if the weight
is non-positive, the multiplication theorem for Sobolev norms also holds. These properties of

weighted Sobolev norms are proved in [Pac13, Corollary 6.8].
Proposition 2.46. Forany A € (QY;;EZ there exists a connection A € of (P) satisfying Alp = A.

32



Proof. Corollary[A17 gives a bundle P’ over X with connection A’ together with an injective
bundle homomorphism & : P — P’. After fixing a trivialisation of P around o, this canonically
defines an isomorphism of orbifold G-bundles A : P — P, and A := h*(A’) satisfies A|p =

A. m|

Definition 2.47. Define the map

y . M3,—2 N M3,orb

as follows: for [Ag+a] € M> 2 let A € o/ (P) be the induced connection from Proposition[2.46]

and set ¥([A + a]) = [A].

Proposition 2.48. The function ¥ from Definition[z47 is bijective.

Proof. ¥ is injective: let [Ag + a], [Ao + @] € M>~2 such that ¥([Ay + a]) = [A] as well as
¥([Ay +a]) = [A’]. If [A] = [A’], then A’ = sA for some s € ?g’orb. We have s(o0) = Id,
so (s —Id) = O(|x|) and Vzo(s —1Id) = O(1) for k € {1,2,3,4}. Here, VZO includes terms
containing the Levi-Civita connection for the orbifold metric § on X for k > 1, and |x| denotes

the distance from oo € X in this metric. In particular, fo‘o (s=1d) = O(| x|1‘k), We have
|Vf‘0 (S - Id)| = (1 + rz)_k |Vf‘0 (S _ Id)|h — O(r—zk |x|1—k) — O(}’_l_k),
g g

where g denotes the ALE metric, in the first step we used the definition of § from the proof
of Proposition Z:37 and the fact that we are measuring a tensor with k covariant indices and
0 contravariant indices. Thus, s € ?g’_l. Therefore, [Ag + a] = [Ag + a] as elements in M>72,

which shows the claim.

¥ is surjective: Let [Ag + a] € M>*™ ie. Ay +a € .szf:s’grb. Similar to the previous point we
find that Vf‘oa = O(r~*7%). By construction ¥([(Aq + a)|x]) = [Ao + a], which proves the

claim. O

Because of Proposition 245 we will drop the regularity and decay from the notation of our
moduli spaces most of the time. That is, we will often write M for M"® with any [ > 3 and

§ = —2. Likewise for o/, %, Gy, o/°, M, £° and £o,
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The important results about the local structure of M are the following:

Theorem 2.49 (Theorem 2.4 and Proposition 5.1 in [Nakgo]). M is a nonsingular smooth man-

ifold and for [A] € M its tangent space is isomorphic to

Hy _,={a € L}_,(A'(AdP)) : 8a(a) = 0}.

For the linear operator §4 we have the following analytic result:
Proposition 2.50 (Proposition 5.10 in [Wali3a]]). Let A € & (E) be a finite energy ASD instanton
on E. Then the following holds:
1. If a € Kerdu decays to zero at infinity, ie., lim, e sup (), lal(x) = 0, then Vﬁa =
O(|7|>7%) forallk > 0.
2. If (¢, w) € Ker &, decays to zero at infinity, then (£, w) = 0.
The Hyperkihler triple of X acts on the 1-form part of Q! (Ad P). It is checked in [[t0o88] Section
4] together with [Ito8s| Proposition 2.4] that this action restricts to Hj‘ _, forall [A] € M. We

thus have a triple of complex structures on M. The following theorem states that this defines

a Hyperkahler structure with respect to the standard metric on M:

Theorem 2.51 (Theorem 2.6 and Proposition 5.1 in [Nakgo]). The metric gys defined by

g ) = /X glapyvoly fora feH,

and the Hyperkdhler triple defined by acting with the Hyperkdhler triple of X on the 1-form part
of Q1 (Ad P) is well-defined on M and defines a Hyperkdhler structure on M.

Theorem 2.52 (Theorem 2.47 in [Wal13b])). Let p : T — G be a homomorphism, Ay a connection
on a bundle P that is flat at infinity as in Proposition[2-39) whose holonomy representation is equal

to p in the sense of Eq. (z41). Let § € (=3,-1) and A = Ay + a for some a € L? s(A'(AdP)).
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Then the L? index of 4, defined as

dim{a € L*(AY(AdP)) N C* (A} (AdP)) : 84(a) = 0}

—dim{a € L*(A° ® A2(Ad P)) N C° (A’ ® AZ(AdP)) : §,(a) = 0},

is given by

Z Xs(9) — dlmg‘

2 —trg (2.53)

inddy = —2/p1(AdP) +—
ger\{e}

Here pi(AdP) is the Chern-Weil representative of the first Pontrjagin class of P and yq is the
character of g acting on g, the Lie algebra associated with G, via p, and tr g is the trace of g acting

on g. Moreover, if A is an ASD instanton, then ind §4 = dimKer §4 = dim M.

Here come two examples of anti-self-dual instantons on ALE spaces. First, recall the construc-
tion of Xgy as a Hyperkahler quotient and the Hyperkahler moment map p from Eq. Z15).

Using this notation, we have the following result from [GNgz2].

Proposition 2.54 (Section 2 in [GN92]]). TheU(1)-bundleR := p~1(i/2) — Xgg = p~1(i/2)/U(1)
admits a non-flat finite energy ASD instanton A asymptotic to the representation p : Z, — U(1)

determined by p(—1) = —1 in the sense of Eq. (Z:Z3).

An additional property of R that we will need later is the following:

Proposition 2.55. There exists a lift of the action of the holomorphic isometry group U(2)/{+1}

OfXEH to R.

Proof. We have seen in the construction of Xgy as a Hyperkahler quotient before Proposi-
tion[z.16]that the holomorphic isometry group U(2)/{+1} is realised as an action of U(2) /{+1}
on p~1(i/2) that commutes with the action of U(1) on p~!(i/2). The action of U(2)/{+1} on

u~1(i/2) is the desired lift of the action of U(2)/{+1} on Xgy. |

Remark 2.56. We can apply Theorem 252 to the U(1)-bundle over Xgy defined before to find
that it is rigid. As Ad R has rank 1, we have that p; (AdR) = c,(AdR®) = 0, and plugging this

into the index formula from Theorem 52| proves the claim.
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Remark 2.57. On simply connected compact manifolds it is the case that any U(1)-bundle
admits an ASD-instanton that is unique up to the action of the gauge group. This is a con-
sequence of the Hodge theorem. On non-compact manifolds a variation of the Hodge theorem
for L2-forms holds, see [Loc87, Example 0.15], and can be used to give an alternative proof of

Remark [2.56] without the use of the index formula.

Here is a non-rigid example:

Example 2.58 (Chapter I in [Ati78]). Consider the BPST instantons from [BPST75] on R*. On

the trivial SU(2)-bundle P over R* define a connection via

1
= 1+—|x|2(91i+92j+93k)

where i, j, k is the standard basis for the space of unit quaternions sp(1) =~ su(2) and
61 =X de — X2 dx1 — X3 d.X'4 + X4 d.X'3,

62 =X dX3 — X3 dx1 — X4 d.X'Z + X9 d.X'4,

93 =X d.X'4 —X4d.X'1 — X9 dX3 + X3 de.

Then A has curvature

2
1
Fy = (1+—|x|2) (dell + d@z] + d63k)

and a computations shows that A is an ASD-instanton. The Killing form on sp(1) is given by
(u1, uz) = —8 Re(uyuz) for uy, u; € sp(1)

which gives

1
/Wpl(AdP) =30 /R4<FA’FA> VOlR4

24 ( 1 )4
=- —— | volg:

72 Jou \ 1+ |x|2
[ 4
1
=—48/ dr
0 1+72
= —4.
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Thus, by Theorem 252} A lives in an 8-dimensional moduli space of framed ASD-instantons.
This moduli space is given by the following connections: for any y € R* and 1 € R* we
get another ASD instanton by translating by y and dilating with A. One checks that different
choices of y and A give rise to connections which are not gauge equivalent. The connection
A is irreducible, so its orbit under the action of ¥/%, = G, = G is isomorphic to G,/C(G) =

SU(2)/{x1} = SO(3) by [Nakgo| p. 275]. The framed moduli space M is thus diffeomorphic to
R* x R* x SO(3).

Before ending the section we will state two results about universal bundles that will be needed

later. The proof of the following proposition is based on the proof of [DK9o| Proposition 5.2.17].

Proposition 2.59. There exist

« aG-bundle P over M x X with a natural action of G, = &G/&, on P covering the action of

G, on M,
« a connection A € ﬂ(ﬁ) that is invariant under the action of G, ~ ¥ /%, and
« foreach choice of ¢ € Isor(G, Ps) a canonical isomorphism of G-bundles with T left action
? : ﬁlMx{oo} - GXxXM
satisfying:
« for any element [A] € M there exists an isomorphism ﬁ|{[A]}><X ~ P such that under this
isomorphism M{[A]}xx and A agree up to the action of &.

« if we decompose the curvature ofﬁ over Mx X according to the bi-grading on A*T* (M xX)

induced by T*(M X X) = m;T*M @ m,T*X, then its components satisfy the following:

- F/_l\’l € I'(Hom(z;T*M, 7, T*X ® Ad P)) at ([A], x) is the evaluation of a € Tj.)M at

x’

- F/_%z € I'(m;A™(X)* ® Ad P), where A™ is defined using the ALE metric on X,

. ?*Aproduct = R|M>({oo}; where Aproduct € 9 (G X M) denotes the product connection.
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The proof makes use of the following lemma. Here, the data T, E, Y can be taken to be infinite-

dimensional, which is the version of the statement that we use later.

Lemma 2.60 (Equation 5.2.16 in [DK9o]l). Let Y and Y be smooth manifolds, E — Y vector
bundle, and suppose a group T acts smoothly on E, covering a free action on Y. Let E = EJT —
Y = Y/T be the quotient. The data of

(i) a connection V in E which is invariant under T,

(ii) a connection in the T-bundle p : Y — Y, determined by a horizontal distribution H
define a connection V on E via
(Vus)® = Vs, (2.61)

in which s is a section of E corresponding to a local invariant section § : Y — E and U is a
horizontal lift of U with respect to H. This definition is independent of the choice of lift and the

curvature of V satisfies
F(V)(U, V)" = F(V)(U,V) = ®o (8(U,V)), (2.62)

whereU,V € Tiy1Y, U, Ve Tiy Y are horizontal lifts with respect toH, ® : f/xr Lie(T) — End E

is a linear map, and © is the curvature of H.

Proof of Propositionz5g Let E be the vector bundle associated to P by means of a faithful
representation of G. Then we will apply Lemma26dlin the case ¥ = ,527;’;(}1’ xX,T = ?(‘)’rb. Let
E= 7, E, where m, : ﬂ;’iﬁ’ x X — X is the projection onto the second factor. The orbifold

gauge group ?(g’rb then acts through pullback on E.

E carries a tautological connection V characterised by the properties that Y 9% (x) 18 trivial
asd
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and V| (apxx =A under the canonical isomorphism E| (apx = E. The connection V satisfies

F(V)(u0) = F(A)(u0),
F(V)(a,0) = {a,0), (2.63)

F(V)(a,b) =0

foru,v e TXX and a, b € Ty /9.

We will now define horizontal subspaces in the bundle ,Qf;’;g - M= ,Qf;’;g / ?(‘)’rb. As a first

step, we define the horizontal subspaces H for the principal bundle o,g — M = 54/ G as
Hp ={a € Tadoa = Q' (X, Ad P) : d'ya = 0}. (2.64)

Here, the adjoint d, is taken with respect to the ALE metric on X.

The H, are &y-invariant, i.e. for s € &, we have that dRg(H,) = Hg 4. To see this, let a € Hy
and u € Q°(X, Ad P). Under the identification of k-forms taking values in the adjoint bundle
with horizontal equivariant forms on P, we can view a as an element in Q!(P, g) and u as an
element in Q°(P, g). Elements in & are in 1-to-1 correspondence with G-equivariant smooth

maps P — G, and we denote by o5 : P — G the map corresponding to s. Then

(d;-4(dRs(a)), u) = (dRs(a), dsaut)
= (Ad(0;")a, du) + (Ad(o; ")a, [Ad(c; A, u])
= (a,d(Ad(oy)u)) + (a, Ad(0y) [Ad(0; A, ul)
= (a,da(Ad(gs)u))

= (d}ya, Ad(os)u) =0,

where we used that the Killing form is Ad-invariant in the third step, and we used the assump-
tion a € Hy in the last step. As this holds for all u € Q°(X, Ad P), we have that dRs(a) € Hs: 4.
The fact that they are horizontal, i.e. a complement to the vertical space generated by the ac-

tion of &, on /%%, is Theorem[z:4g, We are now ready to write down the horizontal subspaces
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H'’ for the principal bundle ,Qf;’;(}l’ - M= ,Qf;’;(}l’ / ?(‘)’rb. Let

H) = {a € Tadlosa = Q' (X, AdP) : &}|_(alx) =0}, (2.65)

where again the Hodge star is taken with respect to the ALE metric. The subspaces H’ are
right-invariant with the same proof as for H. To see that they are horizontal, note that they

are not vertical, and satisfy
rank H' = rank H = dim (M) = dim (Morb) .

The first step follows from the definitions of H and H’, the second step is the fact that H is
horizontal, and the third step is Proposition[2.48] This shows that H’ defines a principal bundle

connection.

By pullback, H induces a connection on the principal bundle .szf;;;’ xX — .szf;;;’ / ?(g’rb x X which

is trivial in the X-direction. Therefore, its curvature © satisfies

O(u,v) =0,
(2.66)

O(a,0) =0

foru,v e ,Xanda € TAd;:(E’.

Lemma [2.60] then gives a connection V on E := E/?g’rb. And Eqs. (2.62), (2.63) and (2.66) give

for the curvature of V at the point ([A], x) € M X X:

F(V)(u,0) = F(A)(u0),
(2.67)
F(V)(a0) = (a,0)

for u,o € T, X and a € T[A]M‘“b ~ Ker§4 C Q'(AdP). Denote by P a G-reduction of the
bundle of frames of E and by A the connection on P induced by V. The curvature of A still

satisfies the analogue of Eq. (2.67).

Last, any ¢ € Isor(G, Ps) pulls back to an isomorphism of vector bundles with I'-left action
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¢ E|Morbx{oo} ~ EXx .szf;sr;’ By definition of V, we have that
asd

(¢/)*(Vproduct) = @|M§:§x{oo}‘ (2.68)

Using that ¢’ is &j-equivariant and changing to the bundle of frames, we get an isomorph-

ism ¢ : Plyomy )y = G X M°™ of the quotient. Lastly, because of Eq. (2.68), we have that

Q*Aproduct = '& | mx {c0}- O

By Proposition [A] the group of holomorphic isometries acting on Xgy is U(2)/{+1}. This
induces a non-effective action of U(2) on Xgy by demanding that each group element fixes
oo € Xg. Then U(2) acts from the left on M (and equally M°™) as follows: U(2) is connected,
so (1 !)*E and E are homotopic bundles and in particular isomorphic. Different choices of

isomorphism give rise to gauge equivalent connections, so [(u™!)*A] € M is well-defined.

Later on (cf. Definition [f:9) we will need the following assumption:

Assumption 2.69. The action of U(2) on M x Xgy can be lifted to an action on P that preserves

A.

In the examples constructed in Section [4.6] this assumption will be satisfied because of the

following proposition:

Proposition 2.70. Let P — M X Xgy be the tautological bundle with tautological connection A

from Proposition

If the action of U(2) on Xgy can be lifted to an action on P, then the action of U(2) on M X Xgy

can be lifted to an action on P. If it exists, this lift can be chosen to preserve A.

Proof. First, assume that the action of U(2) on Xgn can be lifted to an action on P. This is
equivalent to saying that for all g € G there exists a bundle isomorphism &, : P — P covering
g: XEH — XEH. Recall that P ~ ﬂ;ﬁ/ ?(‘)’rb, where 5 : ,527;’;(}1’ X XEH — XEH is the projection
onto the second factor. Let ([A], x) € M X Xgyy and [u] € ﬁ([A],x) where u € (ﬂ;p) ax) ~P,.

We define x, : PP covering g : M X Xen — M X Xy via Kkglu] == [&4(u)]. To check that
this is well-defined, let s € ?(‘)’rb, and observe that x,[su] = [(§gs§g_1) (Equ)] = [&qul.
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It remains to show that this lift preserves A. First observe that the map

A * *
Kg : myP — myP

(7, P) (Ax) DU §Gu) € (3 P) (&, Ag)

preserves the tautological connection A, which is the principal bundle connection on P

inducing V on the associated vector bundle, because

(k;A)l{A}XXEH = ’%; (A| {f;_lA}XXEH) = g;é‘:;flA = A

The action of U(2) on .szf;sr;’ also preserves the horizontal subspaces H’ from Eq. (2.65). By
definition of H’ it suffices to check that the action of U(2) on &, preserves the horizontal

subspaces H from Eq. (2.64). To this end, let a € Hy, i.e. dja = 0. Then
& a(§a) = #dea v (E00) = #de a2 00)) = 28 (da@) = 1 (d5a) =

where in the second and fourth step we used that g7! : Xgg — Xgp is an isometry, and in
the third step we used that exterior differential and pullback commute. The connection A was
defined using the data of A and H by means of Lemma .60l The action of U(2) preserves A

and H and therefore preserves A. O

2.5 Gauge Theory on Complex Vector Bundles
2.5.1 Hermite-Einstein Connections and Stable Bundles

Throughout the section, let E be a complex vector bundle over a complex manifold M.

Definition 2.71. A bundle atlas of E with holomorphic transition functions is called a holo-

morphic structure on E.

We will often use & to denote a complex vector bundle together with its holomorphic structure,

and E to denote the underlying complex vector bundle.

Definition 2.72. A map dg : Q°(M, E) — Q%!(M, E) that is C-linear, satisfies the Leibniz rule
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dp(fs) = o(f) ® s + fog(s) for f € C*(C) and s € I'(E), and satisfies 5125 = 0 is called a

Dolbeault Operator.

Given a holomorphic structure, we get a Dolbeault operator by taking the canonical d in the
trivialisations of the bundle atlas. The fact that transition functions are holomorphic guaran-
tees that the resulting operator is well-defined on all of M, not just on one trivialisation. We
have the following result that describes the relation between Dolbeault operators and connec-

tions:

Definition 2.73. For a Hermitian metric on E, denote by &/"! the set of unitary connections
with curvature of type (1, 1). Here, curvature of type (1, 1) means that in the decomposition
of the curvature F4 according to type, i.e. F4 = Ff"o + Fj{l + Fg’z, we have that Ff"o = Fg’z =0.

Denote by 94 = projgo: oda the Dolbeault operator induced by A.

Proposition 2.74 (Proposition 4.2.14 in [Huyos|]). Let & be a holomorphic structure on E, fix
a Hermitian metric on E and let g be a Dolbeault operator on &. Then there exists a unique

A€ A" such that 9, = dg.

The uniquely determined connection from Propositionz-74)is called the Chern connection. One
can also go the converse way: every A € o/"! is the Chern connection with respect to some

holomorphic structure:

Proposition 2.75 (Theorem 5.1 in [AHS78]]). Fix a Hermitian metric on E. For A € o1, there
exists a natural holomorphic structure &4 on E which induces a Dolbeault operator dg satisfying

that A is the unique unitary connection such that da = .

Now, a complex bundle E will admit several holomorphic structures, some of them isomorphic.
These isomorphic holomorphic structures will give rise to different unitary connections. Iso-
morphism on holomorphic structures corresponds to the following equivalence on unitary

connections:

Definition 2.76. Denote by &€ the group of all smooth complex automorphisms of E covering

the identity, called the complex gauge group of E.

The group €€ acts on d-operators by conjugation, which induces an action on &/*! as follows:
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let A € &/"! and let 94 be the associated 9-operator (cf. Proposition [z75). Then g(A) € o/ is

defined to be the Chern connection with respect to the 9-operator gosg~"' = da — (dag)g .

Proposition 2.77 (Section 6.1.1in [DKgo]]). For A € o1 denote by E 4 the holomorphic structure

given by Proposition[Z775 Then, the map

A" — {holomorphic structures on E}

AI—)SA

descends to a bijective map o' /€° — {holomorphic structures on E}/~, where & ~ &’ if there
exists a holomorphic map f : & — &’ covering the identity such that f is an isomorphism of

complex vector spaces in every fibre.

In this sense, studying holomorphic structures on a vector bundle is essentially the same as
fixing a hermitian metric and then studying unitary connections on that bundle. Later on, we

will be interested in unitary connections with the following special curvature property:

Definition 2.78 (Hermite-Einstein connection). Let X be a Kdhler manifold of complex dimen-
sion n with Kihler form v € Q?(X). Let E be a Hermitian vector bundle and A be a unitary
connection on E. Then A is called a Hermite-Einstein connection (or Hermitian-Yang-Mills con-

nection) if it satisfies the system of equations
Fg’z =0and F4 - w =A1d (2.79)

for some constant A € C. Here, F4 - © € T'(End(E)) is defined via Fg A @™ ! = (F4 - )0™. In

particular, if n = 2,2 - F4 - 0 = (Fa, ).

All Chern connections satisfy the first of these conditions, i.e. Fg’z = 0, but they may not satisfy
the condition F4 - w = AId. The following definition and theorem give a criterion for when
a holomorphic bundle over a Kdhler manifold of complex dimension two admits a hermitian

metric so that its Chern connection is a Hermite-Einstein connection.

Definition 2.80 (Chern class of a coherent sheaf, [EH16]]). Let # be a coherent sheaf over an

44



n-dimensional projective variety X and let
0o & o0& 41— D& -oE>F >0

be a locally free resolution. Then the total Chern class of F is defined as

k

o(F) =] [e&) " e 2" (X).
i=0
For this definition to make sense we need that all coherent sheaves # admit a locally free
resolution, and that ¢(¥) does not depend of the choice of resolution. Both is proved in

[Fulg8, Section B.8].

Definition 2.81. Let # be a coherent sheaf over an n-dimensional projective variety X with

Kéhler form w. Then, the slope of & is defined to be

/X ci(F) A ™!
rank (%)

H(F) =

Definition 2.82 (Stable bundle). Let & be a holomorphic vector bundle over a projective variety
X. Then & is called stable, if for any coherent subsheaf # c O(E) with 0 < rank & < rank &
the inequality

WF) < (&)
holds.

Theorem 2.83 (Theorem 1in [Don8s])). A stable holomorphic vector bundle over a compact two-
dimensional Kdhler manifold admits a unique Hermitian metric so that its Chern connection is a

Hermite-Einstein connection.

As an example, consider the tangent bundle E = TCP? of CP%. The complex projective space

CP? is a Kdhler manifold, so it has a complex structure J. As for any other complex manifold,
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we have an isomorphism of complex vector bundles

£:E — THOCP?

v %(U—i](v)).

T1OCP? is a holomorphic vector bundle, and ¢ endows E with a holomorphic structure via

pullback. We denote E together with this holomorphic structure by &. We then have:

Lemma 2.84 (Lemma 9.1.8 in [DK9o]]). & is stable.

Thus, from Theorem|2.83we know that & admits some Hermitian metric so that its Chern con-
nection is a Hermitian-Yang-Mills connection. We can exactly identify this Hermitian metric,

too:

Proposition 2.85. The Chern connection of the hermitian form induced by the Fubini-Study metric

grs on CP" is a Hermite-Einstein connection.

Also, the Levi-Civita connection of the Fubini-Study metric is a Hermite-Einstein connection.

Proof. Denote the Chern connection by V. Then Fg’z = 0, just because it is a Chern connection.
It remains to check the second part of Eq. (z779). One checks through direct computation that

grs is an Einstein metric satisfying
Ric = (2n + 2)gps (2.86)
(see [Pet16] Section 4.5.3]). The space CP" is Kihler, and on any Kihler manifold we have that
Ric =i - (Fy, w) (2.87)

viewed as endomorphisms of the tangent bundle (see [Huyos| Proposition 4.A.11]). The metric
induces the identity endomorphism on the tangent bundle, so Eqs. (2.86) and imply

Fy-w = Ald with A = —i(2n + 2).

On a Kéhler manifold, Levi-Civita connection and Chern connection agree, which proves the

claim for the Levi-Civita connection. O
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2.5.2 Rank 2 Vector Bundles

To every Hermitian vector bundle of rank 2 we can associate an SO(3)-bundle, which is ex-
plained in Proposition We then revisit the tangent bundle on CP? considered in the

previous section and study its associated SO(3)-bundle.

Definition 2.88. The group PU(n) := U(n)/C(U(n)) is called projective unitary group.

Lemma 2.89. There is an isomorphism PU(2) =~ SO(3) of Lie groups.

Proof. The group U(2) acts through the adjoint action on the space of trace-free Hermitian
endomorphisms 1y(2) € u(2). This action is isometric with respect to the metric given by the
negative of the Killing form of u(2) restricted to 14(2). Thus, PU(2) is a three-dimensional
connected Lie group acting effectively and isometrically on a three-dimensional vector space,

and thereby isomorphic to SO(3). O

Proposition 2.90. Let E be a complex vector bundle of rank 2 with hermitian metric h over X.
Denote its unitary frame bundle by U(E). Denote by A : U(2) — PU(2) =~ SO(3) the quotient
map and define

P =U(E) x, SO(3).

Then, the characteristic classes of uy(E) and E are related via
p1(ue(E)) = c1 (E)* = 4cy(E),  wa(uo(E)) = ¢1(E) mod 2. (2.91)

Every connection V on E canonically induces a connection on P. Furthermore, the connection on

P is an ASD instanton if V is a Hermite-Einstein connection.

Proof. The bundle P is defined as a principal bundle extension, and any connection can be
canonically extended to any principal bundle extension. Assume that V is a Hermite-Einstein
connection on E and denote the induced connection on P by V. We have that [i-1d] = [0]
in the quotient space Lie(PU(2)) = u(2)/Lie(C(U(2)), therefore (Fg,w) = 0 € Q%X,AdP).

The (0,2) and (2, 0) parts of the curvature satisfy F%’z = Fé’o = 0, thus F%’z = Fé’o = 0. The
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complexified space of self-dual 2-forms splits as (Q%)¢c = Q*°®(w)®Q%% so V is anti-self-dual.
Equation (Z97) is [DKgo| Eqn. 2.1.39]. O
As in Section[z5 1, let E = TCP?.

Proposition 2.92. Denote the SO(3)-bundle associated to E by means of Proposition[z-go by F and
denote by o : CP? — CP? the complex conjugation on CP?. Then E and ¢*E are not isomorphic,
while F and o*F are isomorphic.

The proof uses:

Theorem 2.93 (Theorem 14.10 in [MS74])). The total Chern class of TCP" is (1 + a)™*!, where a
is a suitably chosen generator of H*(CP", Z).

Proof of Proposition[zg2. We get from Theorem z:g3]and Eq. (Z97):

¢1(E) = 3a, ¢y(E) = 3a° p;(F) = —3a* wy(F) = amod 2,

where a is a suitably chosen generator of H2(CP?, Z). Complex projective 2-space CP? can

be given the structure of a CW-complex with a single 2-cell

CP! ~ {[xo : x1 : 0] € CP?} c CP?

and no 1-cells and no 3-cells. Thus, H?>(CP?, R) is generated by this CP. The complex conjug-
ation o restricts to CP! and reverses its orientation, so acts as —1 on H?(CP?, Z), in particular
c"a = —a. Therefore, ¢;(0*E) # c¢1(E), which implies that ¢*E and E are not isomorphic. On
the other hand, p;(¢*F) = p;(F) and wy(c*F) = wy(F). So, by Theorem 235, we have that F

and o*F are isomorphic. O

Remark 2.94. We will construct an explicit bundle isomorphism of F and ¢*F in Proposi-

tion[f:140} Thus, we will obtain Proposition 29z without the use of Theorem [2:35}
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2.6 Gauge Theory on G;-manifolds

Definition 2.95. Let (Y, ¢) be a Gz-manifold, / = *,¢, and E be a principal bundle over Y. A

connection A € &/ (E) is called a G-instanton, if F4 € T(A2%, ® AdE), i.e. (by Theorem 2:20)
FaANy =0, (2.96)

where the wedge product is taken in the 2-form part of A> ® AdE.
Example 2.97. Flat connections are G,-instantons.

Example 2.98. Let A be an ASD instanton on a bundle E over a Hyperkahler 4-fold X. Denote
by px : R®*xX — X the projection onto the second factor. Then R®*x X carries the torsion-free
G;-structure ¢ from Eq. (z:27), and p} A is a G;-instanton on the bundle p{ E with respect to
this G,-structure. To see this, let wy, @2, 03 € Q?(X) denote a Hyperkihler triple on X. These
2-forms are self-dual, thus A being ASD is equivalent to F4 A w; = 0 for i € {1, 2,3}. Recall

that for the product G,-structure, we have that
1,
*(p:lp: 50)1 —dxlg/\a)3—dx23/\a)1—dx31/\a)2
and therefore

Fpra Ny =px(Fa) Ay = 0.

A G,-instanton A satisfies *(Fq A ¢) = —F4 by Theoremzzal Thus, if ¢ is closed,
dyFa=—*da(FaA@)=—x(daFa) Ao

which vanishes due to the Bianchi identity. This means that A is a critical point of the Yang-

Mills energy functional

YM: d(E) —> R

A / |Fal? voly .
Y
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But even more is true:

Proposition 2.99 (Proposition 1.97 in [Wali3al]). Let ¢ be a closed G,-structure on' Y. Then G,-

instantons with respect to ¢ are absolute minima of the Yang-Mills functional.

Later on, we will study the linearisation of the instanton equation. The linearisation at a point

A € 9 (E) of Eq. (2:96) is

1:QY(Y,AdE) — Q!(Y,AdE)
(2.100)

a— #(y Adga).
This is not Fredholm (if the structure group G is at least one-dimensional), because elements
u € Z(E) of the gauge group satisfy F,;»4 = u*F4 and therefore preserve the G,-instanton

equation. Therefore, the infinitesimal action of the gauge group is in the kernel of I. As elliptic

operators are Fredholm, that also implies [ is not an elliptic operator.

As we have seen in Sectionz-7]it is customary to add in the Coulomb gauge conditiond’;a = 0in
order to make the linearised instanton operator elliptic. But in our case, ([, d},) : QY(M,AdE) —
(Q'® Q% (Y, Ad E) cannot be elliptic either, because it is a map between vector bundles of dif-

ferent rank. This problem is overcome in the following proposition:

Lemma 2.101 (Proposition 1.98 in [Wali3b]). Let (Y, @) be a compact G,-manifold, i = *,¢,
and E be a principal bundle over Y, and A € o/ (E). Then A is a Gy-instanton if and only if there

exists £ € Q°(Y, AdE) such that

*(Fa ANY) +da&=0. (2.102)

So, for a fixed connection A € o/ (E), £ € Q°(Y,AdE), and a € Q!(Y, Ad E) we consider the

system

>l<(FA+a A w) + dA+a§ =0
(2.103)
a=0.

Here, every solution (&, a) defines the G-instanton A + a which is in Coulomb gauge with
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respect to A. The linearisation of Eq. (z103) is an elliptic operator:
Proposition 2.104. The linearisation of Eq. is

La: (Q°® QY (Y,AdE) — (Q°® Q) (Y, AdE)

£ 0 dy 3 (2.105)

—

a da *(¢ Ady)f\a
which is a self-adjoint elliptic operator if d*¢ = 0.

Proof. Denote I = #(y A dy) : QY(Y,AdE) — Q!(Y,AdE) and denote its dual by [*. For

a,b € Q1(Y, AdE) we then have

(a,I"byvol = ¢y Adga A b= (a+da(y Ab))vol =(a, () A dab)) vol
where we used d*¢ = 0 in the last step. Thus, [ is self-adjoint which implies that Ly is self-
adjoint.

The operator L4 is associated to the complex
d Ly
Q°(Y,AdE) 4 Q'(Y, AdE) 5 Q!(Y, AdE) 3 Q°(Y, AdE). (2.106)

Forx € Yand 0 # £ € T,Y = R7 ~ (R7)*, the symbol of Eq. (z106) applied to ¢ is then the

sequence

(Ing

05 A®g N Algg A AT g g Y

g > A"®g—0. (2.107)
It remains to check that this sequence is exact. The 4-form i/ and the Hodge star are preserved
by G, and G, acts transitively on $® ¢ R7, so it suffices to check that Eq. zT07) is exact for
any (non-zero) choice of ¢, say & = (1,0,0,0,0,0,0). This is then an explicit calculation that

can be carried out using Eq. (2.18). O

Remark 2.108. A coordinate-free proof for the ellipticity of the complex in Eq. (2.106)) is given

in [RC98| Section 3, Lemma 4].
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3 Resolutions of G,-orbifolds

We now turn to the construction of resolutions of G,-orbifolds, where we glue together the
orbifold G,-structure and the product G,-structure on R*xXgy, where Xgy denotes the Eguchi-
Hanson space as before. In particular, we will revisit the construction of [Joyg6b]. Starting
with the torus T7, we write down an finite group T that acts on T’ and preserves the flat G,-
structure thereon. Following this, we construct smooth 7-manifolds N; carrying a 1-parameter
family of G,-structures ¢’, which are close to the flat G,-structure, in a suitable sense. We then
give a new proof for the fact that ¢’ can be perturbed to a torsion-free G,-structure, and give

an estimate for the size of the perturbation. This is stated in the main result of this section,

Theorem[3.84}

Theorem. Choose a € (0,1) and B € (—1,0) both close to 0. Let N, be the resolution of T’ /T
from Eq. @331) and ¢' € Q*(N,) the Gy-structure with small torsion from Eq. (3:33). There exists
¢ > 0 independent of t such that the following is true: fort small enough, there exists ' € Q?(N;)

such that ¢ = @' + dn' is a torsion-free G,-structure, and n' satisfies
¢ 7/2-p
2a/2 < CF .
s
In particular,

||$— (pt||Loc < ¢t and ||$— (pt”COﬂ/Z < ct¥2712 g5 el as ||$— (p"”Cm/2 < ctdlEal?,

As is common in gluing constructions in differential geometry, we obtain this result by fol-

lowing the three step procedure of

1. Constructing an approximate solution (cf. Section 3:2:1)
2. Estimating the linearisation of the equation to be solved (cf. Section[3:23)

3. Perturbing the approximate solution to a genuine solution (cf. Section[3:2:7)

This method was first employed in [Tau82l] for the construction of anti-self-dual connections

over 4-manifolds. A similar but slightly simpler proof of the same results is given in [DKgol
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Section 7.2]. An expository article about this principle, which is in spirit close to the matter of

this section, is [Doni2]].

3.1 Analysis on the Eguchi-Hanson Space
3.1.1  Harmonic forms on (C? \ {0})/{+1}

In this section, we will list homogeneous harmonic forms on (C? \ {0})/{+1} with decay.
Because (C? \ {0})/{%1} is the cone over SO(3), we will see that such forms correspond to

eigenforms on SO(3), and we will therefore review the spectral decomposition of the Laplacian
on $3 and SO(3).
We begin by defining cones and homogeneous forms on them.

Definition 3.1. For a Riemannian manifold (2, g5 ), the Riemannian manifold C(2) = = X R+

endowed with the metric gc = dr? + r?gs is called the Cone over X.

Definition 3.2. Let A € R. Then y € QF(C(2)) is called homogeneous of order A if there exist

a € QF1(%), p € QF(Z) such that

y:r’l+k(£/\a+ﬁ).
r

Remark 3.3. For t € R, denote by (-t) : C(2) — C(Z) the dilation map given by (-t)(r, o) =
(tr,0) for (r,0) € C(2). Then, if y € QF(C(X)) is homogeneous of order A, we have t)*lylge =

Ml)’lgc-

Homogeneous harmonic forms do not exist for all orders and we make the following definition:

Definition 3.4. For a cone C = C(X), denote by Ag ¢ the Laplacian acting on k-forms on C. The

set
Dpe ={AeR:Fye QF(C),y # 0, homogeneous of order A with Akcy =0}

is called the set of critical rates of Ak c.

It will turn out that critical rates are intimately related to harmonic forms on Eguchi-Hanson
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space. This is the content of the next section and we will see the set Dy, . appear again
there. The purpose of this section is to describe Dp, 505, and D, 5o (), Which is achieved
in Proposition We prepare the proposition by putting some results for harmonic forms

on Riemannian cones in place:

Lemma 3.5 (Lemma A.1in [FHNz0]]). Lety = r**k (dr Ao+ [3) be a k-form on C(X) homogen-

T
eous of order ). For every function u = u(r) we have A(uy) = r***=2 (% NA+ B), where
A:u(Aa— (/1+k—2)()t+n—k)o:—2d*ﬁ) —ru(2A+n—-1)a-ria,
Bzu(Aﬁ— ()L+n—k—2)()t+k)ﬁ—2do:) i (A4 n—1) -l b,
Theorem 3.6 (Theorem A.2 in [FHN20]). Lety = r**k (% Aa+ IB) be a harmonic k-form on
C(X) homogeneous of order A. Then y decomposes into the sum of homogeneous harmonic forms
Y =y1+y2+ys+ys wherey; = r*tk (% Ao+ ﬁi) satisfies the following conditions.
(i) B1 =0 and a; satisfiesdoy =0 and Aoy = (A+k —-2)(A+n—-k)a;.

(ll) ((Zg,ﬂz) € Qk_l X Qk

coexact X Qoxace Satisfies the first-order system

day = (/1+k)ﬁ2, d*ﬁz = (/1+ n-— k)O(z.

In particular, if (a2, f2) # 0 then A+ k # 0 # A+ n — k and the pair (ay, f2) is uniquely
determined by either of the two factors, which is a coexact/exact eigenform of the Laplacian

with eigenvalue (A + k)(A+n —k).

(iii) (a3, f3) € QK1 x Qk ; satisfies the first-order system

coexact exac
da3+()t+n—k—2)ﬁ3 IOZd*ﬂ3+(A+k—2)0(3.

In particular, if (a3, f3) # 0 then A+ k —2 # 0 # A+ n — k — 2 and the pair (as, fi3) is
uniquely determined by either of the two factors, which is a coexact/exact eigenform of the

Laplacian with eigenvalue (A+k —2)(A+n—k - 2).
(iv) aq = 0 and By satisfiesd* s = 0 and Afy = (A+n—k —2)(A+k)ps.
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n—2

The decomposition y = y1 + y2 + y3 + Y4 is unique, except when A = -

; in that case forms of

type (ii) and (iii) coincide, and there is a unique decomposition y = y1 + y2 + ys.

The previous proposition relates harmonic forms on the cone C(SO(3)) to eigenforms of the
Laplacian on SO(3). The group SO(4) acts via pullback on complex-valued differential forms
on S, and it turns out that the decomposition of this action into irreducible components gives
the spectral decomposition for the Laplacian on S°. This is made precise in the following two
theorems, and as S° is a double cover of SO(3), we will get the spectral decomposition of the

Laplacian on SO(3) from them.

Theorem 3.7 (Theorem B in [Fol89]]). The complex-valued L*-functions and 1-forms on S° de-

compose into the following irreducible SO(4)-invariant subspaces:

Here, @, ©1,1m, D]

Lm Y1,m are defined as follows: denote by j : S® — R* the inclusion map and

4

define z; = x1 + ixy, 2o = X3 + ixy, and or = ijl

x;jox;. Then let

Do = j*Comr1, where G, is the smallest SO(4)-inv. space containing 2!,

D1y = j F1.m, where Fq,, is the smallest SO(4)-inv. space containing z;”_lam(dzl A dzy).

Oy, = J Fi e where F1, is the smallest SO(4)-inv. space containing z""'dra(dz; A dz3).

W) m = j E1.m, Where &, is the smallest SO(4)-inv. space containing z;"_l dz;.

Theorem 3.8 (Theorem C in [Fol89]). Let @, P1,m, D7, Y1.1m as in Theorem[3.8 Then Dy ,,,, P1.1n®

1,m’

@1, and ¥y, are eigenspaces for the Laplacian with eigenvalues m(m+2), (m+1)?%, and m(m+2)

respectively.
Corollary 3.9. Let S® be endowed with the round metric and SO(3) = S®/{+1} be endowed with
the quotient metric.

1. Then, the spectrum of the Laplacian Agso(s) acting on real-valued L*-functions on SO(3)
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is:
Spec(Agsoes)) = {k(k+2) : k € Zso, k even} ={0,8,24,...}.

2. The smallest eigenvalue of the Laplacian A, so(3) acting on real-valued 1-forms with coef-

ficients in L? on SO(3) is 4 and has multiplicity 6.

Proof of Corollary[3.9,

1. This follows from Theorems [37] and [3.8] and the fact that functions in the space @,
defined in Theorem 377 are invariant under the antipodal map (-1) : $* — S if and

only if m is even.

2. By Theorem [3.8] the smallest eigenvalue of the Laplacian acting on complex-valued 1-
forms on S® is 3. We see from the explicit description of the eigenspace that the eigen-
forms are not invariant under the antipodal map. Thus, the eigenvalue 3 does not occur

on SO(3).

The next smallest eigenvalue is 4. It is realised, and it remains to check the dimension
of its eigenspace: for the complex vector spaces defined in Theorem 377 we have ®; ; =
)C

(A2)” and o, = (Az_)c, the complexification of (anti-)self-dual constant forms on R*.

Here is how to see that ®;; ~ (Ai)C, the other isomorphism is analogous. We have

d21 A d22 = dx13 — d.X'24 + ide3 + idx14 = w.

01 0 O
1 0 0 O
The element g = € SO(4) sends this to — dx3 + dxa4 + i dxo3 + i dxyg, sO
0 0 0 1
0 0 1 0

the smallest SO(4)-invariant space containing @ must also contain the self-dual form
dxyz — dxgy = %(a) — gw). Because A? is irreducible, this SO(4)-invariant space must
contain all of (A?)®. Contracting with the radial vector field or and restricting to S3

are SO(4)-equivariant operations, one checks that the result is non-zero, and therefore
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C
(I)l,l = (Ai) .
Altogether, ®;; and @, are representations of SO(4) of complex dimension 3. They

consist of 1-forms on S° that are invariant under the antipodal map, which proves the

claim.

We can now combine the results about harmonic forms on C(SO(3)) with the spectral decom-

position of the Laplacian on SO(3) to find the critical rates for the Laplacian on C(SO(3)):

Proposition 3.10.

1. There are no harmonic 1-forms on (C* \ {0})/{%1} which are homogeneous of order A for

A € [-2,0). In other words Dp -2,0) = 0.

] N
1L,(C2\{0}) /{1} [

2. There is a six-dimensional space of harmonic 2-forms on (C?\ {0})/{£1} which are homo-

geneous of order —2.

There are no harmonic 2-forms on (C? \ {0})/{x1} which are homogeneous of order A for

A e (=2,0).

Proof. 1t follows from point two in Proposition that C(SO(3)) and (C? \ {0})/{+1} are

isometric as Riemannian manifolds and we prove the statements on C(SO(3)).

1. Let A € [-2,0) and assume there exists a harmonic homogeneous 1-form of order A on
C(S0(3)). We show that the 1-form must vanish by showing that forms satisfying any
of the cases (i), (ii), (iii), and (iv) from Theorem|[3.6]are zero. Using the notation from the

theorem, we get the following:

(1) In this case, Aa; = (A — 1)(A + 3)a;. For A € [-2,0), the factor (A — 1)(A +3) is
negative, so our assumption implies that «; is a closed 0-form that is an eigenform

of Ago(3) for a negative eigenvalue, which implies a; = 0 by Corollary 39,

(i) In this case, B, is an exact 1-form with Ago3)f2 = (A + 1)(A + 3)B;. We have

(A+1)(A+3) < 8for A € [-2,0), and therefore f; = 0 as in case (i).
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(iii) In this case, B3 is an exact 1-form with Ago3)f3 = (A +1)(A = 3)p5, and 5 = 0

follows as before.

(iv) In this case, f is a co-closed 1-form with Aso(3)f3 = (A + 1)?fs. For A € [-2,0),

we have (1 + 1)? < 3, and because of Corollary 39 this implies 3, = 0.

2. Let A € [-2,0). Going through the cases (i), (ii), (iii), and (iv) from Theorem [3.6] we will
find that there are six linearly independent harmonic homogeneous 2-forms of order —2
in case (iii), but no other harmonic homogeneous forms. Using the notation from the

theorem, we get the following:

(i) In this case, we get a 1-form that is an eigenform of the Laplacian on SO(3) for the

eigenvalue A(A + 2) < 0, which must be 0 by Corollary 39,

(ii) In this case, we get a 1-form that is an eigenform of the Laplacian on SO(3) for the

eigenvalue (A + 2)? < 4, which must be 0 by Corollary 39}

(iii) In this case, we get a 1-form that is an eigenform of the Laplacian on SO(3) for
the eigenvalue A There are six of these by Corollary[39)for A = —2 and none for
A € (—2,0). In the case of A = -2 all six eigenforms give rise to harmonic 2-forms

of order A = —2 on C(SO(3)).

(iv) In this case, we get a 2-form f,4 that is an eigenform of the Laplacian on SO(3)
for the eigenvalue (A + 2)? < 4. The Hodge dual *f, is then a 1-form that is an

eigenform for the same eigenvalue, which must be 0 by Corollary 30

For an application later we will not only need to know how many harmonic homogeneous
forms there are, but also how many harmonic homogeneous forms with log(r) coefficients
there are. Often, these two notions coincide, and the following proposition asserts that this is

also the case in our setting.

Definition 3.11. Let X be a connected Riemannian manifold and C = C(X) its cone. For 1 € R,
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define

= 3™ (logr)/y; form > 0, y; € QP(C(2)), such that
_ y =X, (logr)'y; )

pC) =
Apc(s)y = 0, where each y; is homogeneous of order A

Proposition 3.12. Lety = 372, (log r)Yy; € K(=2)n,c5)» theny; =0 for j > 0.
Proof. Write y; = Atk (% A aj +ﬁj). Then, by Lemmagz] for j > 1,

- d
A(log(r)y;) = r2 (Tr ANA +B), where

A= log(r)j(Aaj —2d°p;) +2j log(r)j_lo:j -j(j-1) log(r)j_zaj, (3.13)
=0

B = log(r)/ (AB; — 2 da;) +2jlog(r) ™' ; = j(j — 1) log(r)/* ;. (3-14)

=0

Here, the terms Aa; — 2d*f; and AB; — 2da; vanish, because «; is coexact and satisfies
2p; = daj, and f; is exact and satisfies d*f; = 2a; according to the discussion of point 2 of
Proposition 310} The term Ay is a polynomial in log(r), and the condition Ay = 0 prescribes
that all coefficients of that polynomial vanish. Assume that m > 0 and check the coefficient
of log(r)™!: Eq. (313) implies that a,, = 0 and Eq. implies that §,, = 0, i.e. y,, = 0.
Repeating the argument, we find that y,,_1 =0, yp—2 =0, ..., y2 = 0, y1 = 0, which is what we

wanted to show. O

3.1.2 Harmonic forms on Eguchi-Hanson Space

In the previous section we looked at certain harmonic forms on (C?\ {0})/{+1}. The Eguchi-
Hanson space Xgy is asymptotic to the cone (C?\ {0})/{+1}, and we can say a great deal about
harmonic forms on Xgy just from knowing the harmonic forms on (C? \ {0})/{+1}. Thisis a
consequence of the work of Lockhart and McOwen (cf. [LM85|Loc87]]) and will be the content

of this section.

We will want statements about harmonic forms in certain weighted Holder spaces. These

spaces are defined in the following:
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Definition 3.15. Define the weight functions

W:XEH—>R20 W:XEHXXEH%RZO

x = 1+ [p(x)l, (x,) + min{w(x), w(y)}.

Let U C Xgy. Fora € (0,1), fe R,k e N,and f € Qk(XEH) define the weighted Holder norm
of f via

F) = FWly,,
[£] o rr = su w(x, y)* P =
f Cﬁ ) x,yepU Y dg<1) (x’ y)“
dg(l) (x’y) SW(x,y)

w, f

>

g = [wi ],

k
||f||c§“(u) = ]ZO ”ij“L;’_j(U) + [V]f]cﬁf‘j(u)

The term f(x) — f(y) in the first line denotes the difference between f(x) and the parallel
transport of f(y) to the fibre QX (Xgx)|, along one of the shortest geodesics connecting x and

y. When U is not specified, take U = Xgp.

Throughout the article we will set § to be a negative number. Informally, an element in the

CZ’“ Holder space decays like dy,, (-, p1(0))?, as dg, (- p71(0)) — oo,

We will now make the meaning of Xgy being asymptotic to a cone precise.

Definition 3.16. Let ¥ be a connected Riemannian manifold and C = C(Z) be its cone with
cone metric go. A Riemannian manifold (M, gy) is called asymptotically conical with cone C
and rate v < 0 if there exists a compact subset L € M, a number R > 0, and a diffeomorphism

@ : (R,o0) X3 — M\ L satisfying
|Vk(¢*(gM) = 90)|ge = O(Qv_k) forallk > 0asp — oo.

Here, V denotes the Levi-Civita connection with respect to gc and g : (0,0) X X — (0, 00) is

the projection onto the first component.

Proposition 3.17. The Eguchi-Hanson space Xpr endowed with the metric g(y) is asymptotically
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conical with cone C = C(SO(3)) and rate v = —4.
Proof. This is the second point of Proposition 10} O

We then have the following results about harmonic forms in L? on Eguchi-Hanson space:

Lemma 3.18.

1. We have Hszmg(XEH) = HseRham(XEH) = R. Fork > 0 define v € Q*(Xgg) to be

vk = fi(r)Crdr At = (N FE AR (3-19)

and endow Xgy with the metric g (k). Then vy € L*(A*(Xgn)), Aguy vk = 0, [vi] generates

H2

“eRham XEH)> and vy is the unique element in L2(A?(Xgg)) N [vi] satisfying A

9 Vk = 0.

Moreover, v; € C>(A2(Xgr)). Away from the exceptional orbit p~1(0) = S, we have that

Vi = Ay, where Ay = —fi.(r)"*p".

2. The L?-kernels of A,,,, acting on forms of different degrees are as follows:

9(k)

Ker(Agg,, : L*(A*(Xgr)) — LA(A*(Xgn))) = (vi),

Ker(A,,,, : L*(A?(Xgy)) — LA(AP (Xgy))) = 0 forp # 2.

9(k)

Fork =1 and € [—4, —2) they coincide with the C;’a-kernels.

Proof.

1. We have that Xgy = T*S? as smooth manifolds, therefore H2 (Xgy) = R. On smooth

sing

manifolds HZ (Xgn) = H;

sing

Rham (XEH) by de Rham’s Theorem.

One checks with a direct computation that v; from Eq. (3:19) is closed and anti-self-dual,
and therefore co-closed. The equality vy = dAx follows from a direct computation as

well.
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For k = 0, Eq. (319) still defines an element vy, € Q*(C?/{x1} \ {0}). One checks
through direct calculation that vy € C*(A%(C?/{£1})). Using the fact that Xy is
asymptotically locally Euclidean (cf. Proposition Z10), one gets the Holder estimate on

Xgy. Furthermore, CE’Z‘ cL% c L?, so vi is an element in L?(A%(C?/{%1})).

By Poincaré duality, we have H% (Xgy) = Hszin ¢ (Xgn) = R, where H (Xgy) denotes

the de Rham cohomology with compact support. [Loc87, Example (0.15)] and [Loc87,

Theorem (7.9)] give that the map

H*(Xen) = {€ € LA(N°T" Xpn) : dE = d*E = 0} — Im (HL (Xen) — Hioppam (Xen))

& [£]

is an isomorphism. Thus [vi] generates ngRham(XEH) and vy € [v] is the unique

element in L?(A%(Xgy)) N [vi] satisfying dvg = 0, d*vg = 0.

It remains to check that vy is also the unique element in L?(A?(Xgn)) N [vk] satisfying

Ay Vi = 0. The equations A, vk = 0 and (d+d*)vy = 0 are equivalent by the same

9 (k) 9 (k)

integration by parts argument as in the compact case, namely for M > 0:

/ ((dd* +d" d)vg, vx) dvoly,,
{r<M}

= / ((dd*) v, vi) dvoly,, +/ ((d" d)vg, vi) dvoly,,
{r<m} {r<m}

= / (d"v, d"vi) dvoly,, +/ d(d* v A xvg)
{r<m} {r<m}

+ / (dvg, dvg) dvoly,, +/ d(vie A xdwy)
{r<M} {r<Mm}

- / ((d" iy d*vie) + (v dvie)) dvoly,
{r<m}

+/ (d*vk AV + v A xdvg),
a{r<m}

where we used d(d*vx A #vg) = dd*vg A xvg —d*vi A dsvg in the second step, and Stokes’
Theorem in the last step. The last term tends to 0 as M — oo, because of the decay of

elements in CE’ZZ.(AZ(XEH)). So, Ay, vk = 0 implies that d*vx = 0, dvy = 0, and the

9(k)

converse implication is trivial.
2. The first line is a restatement of the previous point. The other lines are [Loc87, Example

62



(0.15)] with proof in [Loc87, Theorem (7.9)].

The L2-kernels coincide with the C;“—kernels, as CZ’“ (AP (Xgy)) embeds into L2 (AP (Xgy))
for B < —2 and the explicit description of the L?-kernels shows that all kernel elements

are actually in CZ’“ (AP (Xgn)) for f > —4.

Remark 3.20. Note that v from the lemma cannot have compact support by the unique con-
tinuation property for elliptic equations. We only have that [v] contains a form of compact

support.

The previous lemma makes statements about the L2-kernels of the Laplacian on Xy acting on
p-forms. Using the results from the previous section about harmonic forms on C?/{x1}, we
can rule out additional harmonic forms even in some of the weighted Holder spaces that do
not embed into L2. The key proposition that will be proved throughout the rest of this section

is the following:

Proposition 3.21. For f € (—4,0), the kernels of the A, acting on forms in Cz’“ of different

degrees are as follows:

Ker(Ag(,, : C5“(A*(Xem) — C3 (A% (Xpn)) = (v1),

Ker(Agg,, : C5“ (AP (Xer) — C%, (AP (X)) = 0 forp # 2.

The connection between the Laplacian on Eguchi-Hanson space and its cone is described in
the following results taken from [KL20| Section 4] which were developed in [LM85} [Loc87].
The theory works for a much bigger class of operators, but we will only reproduce it for the

Laplacian here.

Definition 3.22. Let M be asymptotically conical and let the notation be as in Definition
Denote by o : C(X) — Ry, the radius function, and use the same symbol to denote a map
from M to R that agrees with ¢..0 on #(R, c0) C M. Let E be a vector bundle with metric and

metric connection V over M. Then, for 1 > p > oo,[ > 0, 1 € R denote by Lf 1 the completion
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of CZ; (E) with respect to the norm

S

l

1/p
_ —Atjgj P -4
||Y||L€A = (Z/M|Q V'ylPo volM) .

=0

The space L;D/1 is called the L?-Sobolev space with | derivatives and decay faster than A.

Theorem 3.23 (Theorem 4.10 in [KL20]). For A € R, denote by A,y : LZA(AP(XEH)) —
Lg,,l—z (AP(Xgn)) the Laplacian of the metric g(1) acting on p-forms. Then, Ker Ap 4, is invariant

under changes of A, as long as we do not hit any critical rates. That is, if the interval [A, 1] is

contained in the complement o then
P f D, oo oy’

Ker (Apgq, + L, (AP (Xe) — L, (AP (X))

=Ker (Mg, : L, (AP (Xex) = L, (AP (Xe) ).

Proposition 3.24 (Theorem 4.20 in [KL20]]). Let A; < Ay such that K(A;)a =0 fori € {1, 2}.

P2.C(%)

Then, the maps

72 2
Dpganid,, * Livan, (AP(Xgm) = Ly, o (AP (Xen))

2 2
and AP’9<1>’L§+2,AZ t Ly, (M (Xen)) — Ljy, o (AP (Xen))
are Fredholm and the difference in their indices is given by

ind (A ) _ind (A dim K (D),

N(ALAz)

p’9<1>’L§+z,A1) - o (325)

AeDp

P91 L0,
(€\(oh) /(1)

Combining everything, we get the following characterisation of harmonic forms with decay:
Theorem 3.26. For A € (—4,0), the Lg’/l—kernels of Dp.g,, acting on p-forms of different degrees

are the same as the L?-kernels, namely:

Ker(Ag,, : Lz , (AN (Xen) — Ly ,_,(A*(Xgn))) = (v1),

Ker(Ag,, : Ls (AP (Xgn)) = L, (AP (Xgn))) = 0 forp # 2.
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Proof. 0-forms and 4-forms: it follows from the maximum principle that every harmonic func-
tion that decays at infinity must vanish. The Hodge star is an isomorphism between 0-forms
and 4-forms that commutes with the Laplacian, so the statement for 0-forms implies that state-

ment for 4-forms.

1-forms and 3-forms: the kernel of the Laplacian is zero for rate —2 by the second point of
Lemma [3.18] By the first point of Proposition 10} there are no critical rates in the interval
[-2,0). So, Theorem 323 implies the claim for 1-forms. As above, we get the statement for

3-forms by using the Hodge star.

2-forms: by Proposition[31ojthe only critical rate in [—2, 0) is —2. The kernel of the Laplacian on
2-forms stays the same for rates A € (-4, —2) by Lemma[3.18] By Theorem3:23} the dimension
of the kernel of the Laplacian acting on 2-forms with decay A € (—4,0) may therefore only
change at 1 = —2. We know from Propositions and that the index increases by six
when crossing the critical rate A = —2. We will now check that the dimension of the cokernel

decreases by 6, which implies that the dimension of the kernel does not change.

The dual space of Lg 2 s L? Therefore, the cokernel of A

042" L3 (A (Xen)) — L _,(A*(Xen))

9(1)

isisomorphic to the kernel of the adjoint operator A? A

o = P L3 o (A*(Xen)) — L _,(A*(Xen)).

9(1)

Here we used that elements in the cokernel of A, ., are smooth by elliptic regularity, so it does

9g(k)

not matter how many derivatives we demand for sections acted on by the adjoint operator.

We now explicitly write down six linearly independent harmonic forms in Lg 0 (A?*(Xgn)): three

of them are the (self-dual) Kihler forms wfl), wél), and wél) defined in Proposition 25}

Analogously, we can define three harmonic anti-self-dual forms with respect to g(x) for allk >
0. To this end, extend n', 5%, * € $0(3) from Propositionz5]to right-invariant forms on SO(3),

denoted by 7y, iz, fi3. These forms satisfy dfj; = —4% A /> etc. In analogy to Proposition 25
define

e'(r) = rf ' (Na', &(r) = fil(ni’, &(r) = fillnp®
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and

2 3

A&, !

o =drné® -8 né, 2

oM =drne - oM =drn e - A&

One checks through computation that (Z)l.(k) are closed and anti-self-dual, and therefore har-
monic. A priori, they are defined on R.¢ X SO(3), and it remains to check that they extend
to all of Xgiz. We have & = d(r4?) and &\ = d(r#%), where rij? and r4? are well-defined
1-forms on all of Xgy, because they vanish as » — 0. Therefore, (Z)ék) and (Z)gk) are well-defined

on XEH~

We have that cbfk) = rf 2(r)dr A = £72(r)* A 7%, where the first summand vanishes as
r — 0, and the second summand is a multiple of the volume form on SO(3) Xso(2) {0} =~ S?

pulled back under the projection

SO(3) Xso(z) V — SO(3) Xso(z) V

(g.x) = (g,0).

Thus cbfk) is also defined on all of Xgy. The forms 5!, 7% 5°, A1, 4%, #° are linearly independent

which implies that a)fk), a)ék), a);k), c?)l(k), d)ék), d)g(,k) are linearly independent.

Last, note that for each g € SO(3) we can express 7}’ () as a linear combination of 5’ (g). Each 5’
decays like r'/2 as r — oo, which shows that the c?)l.(k) have the same decay as the Hyperkéhler

triple wl.(k), which is covariant constant. Thus, we have that wl.(l), cbl.(l) € Lg,o (A?(Xgn)), but

¢ Lg’_E(AZ(XEH)) foralle > 0andi € {1, 2,3}.

Therefore, the dimension of the cokernel of Ay, : L2, (A*(Xgn)) — L ,_,(A*(Xgn)) changes

g(1) 0,A-2

by six when crossing the critical rate A = —2, and the dimension of the kernel stays the same.

O

Proposition 323 is now an immediate consequence of Theorem [3.26]

2
2.p’

from Theorem|[3.26] O

Proof of Proposition[3.23 For € > 0 we have that C;’f‘e is embedded in L? ,, so the claim follows
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3.2 Torsion-Free G,-Structures on the Generalised Kummer Construction

In the two articles [Joy96bl], Joyce constructed the first examples of manifolds with holonomy
equal to G,. One starts with the flat 7-torus, which admits a flat G,-structure. A quotient of the
torus by maps preserving the G,-structure still carries a flat G,-structure, but has singularities.
The maps are carefully chosen, so that the singularities are modelled on T° X C?/{+1}. By the
results of Sectiong, T3 x C?/{+1} has a family of resolutions T> x Xy — T>xC?/{%1} of one
real parameter, where Xgpy denotes the Eguchi-Hanson space, and the parameter defines the
size of a minimal sphere in Xgp. We can define a smooth manifold by gluing these resolutions

over the singularities in the quotient of the torus.

The product manifold T X Xgy carries the product G,-structure from Eq. (27). That means
we have two torsion-free G,-structures on our glued manifold: one coming from flat T, and
the product G,-structure near the resolution of the singularities. We will interpolate between
the two to get one globally defined G,-structure. This will no longer be torsion-free, but it will
have small enough torsion in the sense of Theorem [2.26l This is the argument that was used
in [Joyg6b] to prove the existence of a torsion-free G,-structure, and the construction of this

G,-structure with small torsion is the content of Section Gz

Sections 322 to 324 give an alternative proof of the existence of a torsion-free G,-structure

on this glued manifold.

3.2.1  Resolutions of T7/T

We briefly review the generalised Kummer construction as explained in [Joy96b]. Let (x1, . . ., x7)
be coordinates on T7 = R”/Z7, where x; € R/Z, endowed with the flat G,-structure ¢, from

Definition[z17 Let @, B,y : T — T’ defined by

a:(x1,...,x7) B (=X1, —X2, —X3, —X4, X5, X6, X7),
1
B:(xt,...,x7) = |—x1, o T X2 X3, X4, = X5, =Xe, X7 |, (3-27)
1 1
}/ : (xli"'5x7) d E _x15x255 _x35x49 _XS,X6, _x7 .
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Denote I := {a, f, y). The next lemmata collect some information about the orbifold 77 /T

Lemma 3.28 (Section 2.1 in part I, [Joy96bl)). a, B,y preserve ¢y, we have a’ =B = y2 =1, and

a, B,y commute. We have that ' ~ Z;.

Lemma 3.29 (Lemma 2.1.1 in part I, [Joy96b]). The elements fy, ya, af, and afy of T' have no
fixed points on T”. The fixed points of a in T” are 16 copies of T>, and the group (B, y) acts freely
on the set of 16 3-tori fixed by a. Similarly, the fixed points of B,y in T’ are each 16 copies of T°,

and the groups (o, y) and (a, B) act freely on the sets of 16 3-tori fixed by B, y respectively.

Lemma 3.30 (Lemma 2.1.2 in part I, [Joyg6bl]). The singular set L of T’ /T is a disjoint union of
12 copies of T*. There is an open subset U of T’ /T containing L, such that each of the 12 connected
components of U is isometric to T> X (Bg/{il}), where Bg is the open ball of radius { in R* for

some positive constant { ({ = 1/9 will do).

We now define a compact 7-manifold M, which can be thought of as a resolution of the orbi-
fold T7/T, and a one-parameter family of closed G,-structures ¢’ thereon. We can choose an

identification U ~ L X (Bg / {il}) such that we can write on U

3
1
¢O:51A52A53_Zwi/\5i’ *QD():E(/J]/\(/J]— Z (/Jl'/\éj/\ék,

i=1 (1,j,k)=(1,2,3)
and cyclic permutation

where 41, 8,, 3 are covariant constant orthonormal 1-forms on L, and w1, w,, w3 are the Hy-

perkébhler triple from Definition[2:g} cf. Section[z:3:2}

As before, denote by Xgy the Eguchi-Hanson space and by p : Xgg — C?/{%1} the blowup
map from Remark 213} Define 7 := |p| : Xgg — Ry5o. For t € (0, 1), let U=U, =Lx{x¢e

Xy : F(x) < {t7'}. Define

Ne= (MDA LU T) /~, (331)

where for x = (x4,x,) € U € LX C?/{#1} and y = (yp, yo) € U c L X Xgy we have x ~ y if

xp =ypand t - p(y,) = x,. The smooth manifold N; also comes with a natural projection map
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7 : Ny — T7/T induced by p, and we extend 7 to a map on all of N; via

f:Nt—)Rzo

lp(x)| ifxeU,

X —

t1¢ otherwise.

Write r; := t7 and choose a non-decreasing function y : [0,{] — [0, 1] such that y(s) = 0 for

s <{/4and y(s) =1fors > {/2, and set

& = o) - d()((rt)ffl)) : (332)

The Tl.(l) were defined in Propositionz10] and are the difference between the flat Hyperkahler
triple on C?/{+1} and the Hyperkihler triple (a)fl), a)él), a)gl)) on Xgx. On U we have &; = o;
where r; > {/2,and 0; = wl.(l) where r; < /4. Now define a 3-form ¢’ € Q3(M) and a 4-form

9t € Q*(Ny) as follows: on (T7/T) \ U € N, set ¢! = p and 9 = #¢. On U C L x Xgy let

3
(pt = 51 A 52 A 53 — l’z Z 5,' A\ 51', (333)
i=1
1_ —_ —~
9 .= t4§(/)1 AWy — t2 Z w; N\ (Sj A (Sk. (334)
(i.j,k)=(1,2,3)

and cyclic permutation

This definition mimics the product situation explained in Section[z-3-2} For small ¢, the 3-form
@' is a G,-structure and therefore induces a metric g*. Both ¢’ and §' are closed forms, so,
if xp! = 9, then ¢’ would be a torsion-free G,-structure by Theorem zzz1 However, this
does not hold, and ¢’ is not a torsion-free G,-structure. The following 3-form ’ is meant to

measure the torsion of ¢:

!t = 0 (") - 9. (3.35)

Its crucial properties are:

Lemma 3.36. Let /' € Q3(M) as in Eq. (3:35). There exists a positive constant c independent of t

69



such that
d*¢t =d* t, ||¢t||cl,a < Ct4,

where the Holder norm is defined with respect to the metric g' and its induced Levi-Civita con-

nection.

Proof. The equality d*y’ = d*¢’ follows from Eq. (3:35) and the fact that 9’ is closed.

The operator * is parallel, so the covariant derivative Vx and * commute for every vector
field X on Ny, therefore it suffices to estimate =i/’ rather than y/*. Write (p)(é)HxL =01 Ad A
85 — t? Zf’ 1 wl.(l) A 6; for the product G,-structure on Xgyy X L and denote the induced metric,

which is the product metric, by g(t)

xerx- Recall the linear map T and the non-linear map F

from Proposition z27] satisfying O (¢ + £) = x¢ — T(€) — F(&) for a G,-structure ¢ and a small

deformation &. Using this notation, we get:

O(p") -9 =0 ((p;(tE)HXL -85 A d(X(rt)Tl(l)))

(1) 2 (1)
— *g;éHquDXEHXL +t 52 A 53 A d()((rt)fl )

=T (t251 A d()((rt)fl(l))) _F (—t251 A d()((rt)fl(l)))
+ 128, A S5 A d()((rt)fl(l)) .

(k) _

1 W) = drl(k) from Proposition 10 in the first step and the

Here we used the equality o

definition of T and F in the second step.
Note that @(¢p’) — 9 is supported on {x € M : ({/4)t™! < F < ({/2)t7}. Therefore, by

Eq' (m)y

t x(re) dfl(l)

t? d()((rt)rl(l))’ <

t2g(1)

2 x|+ 2
291 1791

)]

< ctltr; +c ‘tz)((rt) dTl(l)

291 £2g(1)

=t0(GF3) + O < et
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Using the estimates for T and F from Proposition z-zg we get the claim. O

3.2.2 The Laplacian on R® X Xgy

In the next section we will prove an estimate for the Laplacian on 2-forms on N;. We will
use a blowup argument to essentially reduce the analysis on N; to the analysis on T7/T" and
R3X Xgy. In this section we will cite a general result for uniformly elliptic operators on product
manifolds R” x Y from [Wali3b]], where Y is a Riemannian manifold, and use this to find that
harmonic 2-forms on R> X Xz are wedge products of parallel forms on R and harmonic forms

on XEH~

Definition 3.37 (Definition 2.75 in [Wal13b]]). A Riemannian manifold Y is said to be of bounded
geometry if it is complete, its Riemann curvature tensor is bounded from above and its injectiv-
ity radius is bounded from below. A vector bundle over Y is said to be of bounded geometry if
it has trivialisations over balls of fixed radius such that the transition functions and all of their
derivatives are uniformly bounded. We say that a complete oriented Riemannian manifold
X has subexponential volume growth if for each x € X the function r — vol(B,(x)) grows

subexponentially, i.e., vol(B,(x)) = o(exp(cr)) as r — oo for every ¢ > 0.

Lemma 3.38 (Lemma 2.76 in [Wali3b]]). Let E be a vector bundle of bounded geometry over
a Riemannian manifold Y of bounded geometry and with subexponential volume growth, and
suppose that D : C*(Y,E) — C*(Y,E) is a uniformly elliptic operator of second order whose
coefficients and their first derivatives are uniformly bounded, that is non-negative, i.e., (Da,a) > 0
foralla € W*2(Y, E), and formally self-adjoint. Let p : R™ X Y — Y be the projection onto the

second component and a € C*®(R" X Y, p*E) such that

(ARH +p*D) a=0

and ||a||;~ is finite, then a is constant in the R™-direction, that isa(x,y) = a(y). Here, Agn acts on

a sectiona € C*(R" XY, p*E) by using the identification C*(R" XY, p*E) = C*(R",C*(Y, E)).

Corollary 3.39. Let Y be a manifold of bounded geometry and with subexponential volume
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growth. Ifa € Q*(R3 x Y) satisfies ||a|| .~ < o and

A9R3®g(1) a = 0,

then a is a sum of terms of the form a; A ay, where a; € QF(R3) is parallel, and a; € Q(Y)

satisfies Ay, az = 0.

Proof. We can view the vector bundle of 2-forms over R® X Y as a pullback bundle pulled back

from Y via

AR*XY) = p* (AZ(Y) ® AL(Y) ® A (R?) @AZ(R3))

where AF(R®) denotes the trivial vector bundle over Y whose fibre at each point is A*(R?).
Under this identification, Apsyy = Aps + p*(Ay + A), where A is the canonical Laplacian on

trivial vector bundles.

So, if a € Q*(R* x Y) with |[a||;~ < co and Ay e, @ = 0, then a is the pullback of a section

of A2(Y) @ A'(Y) ® A'(R?) ® A%(R?) over Y which is in the kernel of Ay + A by Lemma[3:38

Elements in the kernel of Ay +A over Y are of the form a; Aay, where a; € QF (R3) is harmonic,

and a, € Q!(Y) satisfies A, a; = 0. Bounded harmonic k-forms on R? can be identified with

9(1)
tuples of harmonic functions on R® which are constant by the maximum principle. This means

that the bounded harmonic k-forms are parallel which proves the claim. O

3.2.3 The Laplacian on N;

We now move on to the heart of the argument: an operator bound for the inverse of the
Laplacian on N;. The Laplacian on 2-forms has a kernel of dimension b?(N;), so we can only
expect such a bound for forms which are not in the kernel. Standard elliptic theory would
give an estimate for forms orthogonal to the kernel. This estimate would depend on the gluing
parameter ¢, but we want a uniform estimate, i.e. an estimate independent of ¢. Proving such

an estimate is the content of this section.
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Stating the estimate We first define weighted H6lder norms analogous to the previous sec-
tions. These norms have the following two important properties: far away from L, they are
uniformly equivalent to ordinary Holder norms, and near L they are uniformly equivalent to

the weighted Hoélder norms on R* x Xgy, after applying a rescaling map.

Definition 3.40. For t € (0, 1) define the weight functions

Wg Nt — R>0 ( )
3.41
X t+ry,

WR3xR4 * RS X R4 - R>0

(x,y) = lyl,
Wrisog | R X X — Rso

xH—1+7F

and for k € N, @ € (0,1), f € R the weighted Holder norms ||| s on N; and |[|-|| sk« on
pit p

R3 x R* and R® X Xy respectively as in Definition 315

We now define a way to decompose elements a € Q?(N;) into a component 7, that looks
like v; € Q*(Xgy) from Eq. (319) on every fibre {y} X Xgy C T° X Xgy, and a remainder,
denoted by p;. The reason for this is the following: the Laplacian on Im 7, is approximately
the Laplacian on L, and its inverse has operator norm of order O(1) uniformly in t as a map
C;’;‘: (A%(Ny)) — C%;‘: (A%(N;)). Notice that the weight does not change when applying the
Laplacian. On Im p;, it will turn out that the Laplacian has operator norm of order O(1)
uniformly in t as a map Cz’;‘: (A%(Ny)) — Cz’f‘z; ,(A*(N;)). Here the weight changed in the
same way as it did on the non-compact asymptotically conical space Xgy, cf. Section[31:2} In

order to prove an estimate of the form ||a|| < c||Aal|| we will define norms that incorporate

these two different scaling behaviours in this section. The idea is taken from [Wal17].

Let v € Q?(Xgn) be harmonic and with unit L2-norm with respect to the norm g(1) on XgH.

As a shorthand, write y; := y(2r;). Define 7, : Q*(N;) — Q%(L) via
(77.'[»(1) (y) = <a|{y}><XEH9 XtV>L2,t2gXEH for y € L9 (342)
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where v € Q%(Xgy) is a multiple of v satisfying (y,v, XtV>L2’tngEH = 1. This is equivalent to
(XeVs XtV)12 gy = 1, 1e. in the metric gy, rather than t*gxyy» because the L2-norm on 2-forms

is a conformal invariant. Define 1; : Q°(L) — Q?(N;) via

(119) = Xt " P19 * Py V> (3-43)

where g € Q%L), and py : L X Xgy — T°, pxgyy © L X Xgg — X are projection maps. As
written, (1;g) is an element in Q?(L X Xgg), but because supp(1;9) C U, we can view it as an

element in Q?(N;). Then
mi1:9 = g for all g € Q°(L). (3.44)

Last, define 7; := 1,71;, as well as p; := 1 — 7.

Proposition 3.45. For allk € N and 8 > —4 there exists ¢ > 0 independent of t such that for all

g € Q°(L) we have that

ll1egllcke < ct 2 gll ot - (3-46)

Proof. For the L*-norm we have that

ng .P;{EHV”Lz;t’gNt <c | Pfg : P;(EHV‘ (t + tf)4||Lw,gR3 Yy

9IXEH

sc ”ng ) p;(EHV ) (1 + ’V‘)4t4t—2||L°°,9R3 ®gxpy

Sct2|

il

where we used that v = O(#™*) and therefore

v -7l (3.47)

IXpn

in the last step. For f > —4 we have that || ;|| e, < ct™* P, which proves the claim for the
4—

weighted L -norm. The proof for higher derivatives is analogous. O

Proposition 3.48. For allk € N, < 0 there exists ¢ > 0 independent of t such that for all
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a € Q%(N;) we have that
||77.'ta| |Ck,a < t2+ﬁ_a_k ||a| |C]E_f‘ . (349)

Proof. We first estimate the L*-part, i.e. ||7;al|;~. To this end

< .
ratal = '/{xeXEH:f(x)<t‘1§} |a|t2gXEH |V|tngEH VOltngEH

IA

2 .
P lall, [ (470 Pl voloy,
" J Xen

IA

ct?*P ||a||L;t/ (1+HF - (1+F) " volyy
" J Xgn

IA

ct*P / (1+7) ™ . 7 dF
0

<c

IA

24P
et lally .

where in the second step we used the definition of ||-|| LS, and switched from measuring in
t2gxy; to measuring in gx,,, which introduces the factor of %; in the third step we used |v| Ixpy S
¢(1+7)7%; in the fourth step we used polar coordinates to switch from integrating over Xgy to
integrating over [0, c0). The estimates for the Holder norm, derivatives, and for other weights

are proved analogously. O

We are now ready to define the composite norms which weigh the 7; and p; components

differently.

Definition 3.50. For a € (0,1) and € (—1,0) let

-3/2

llallx, = llpealleze + 7 |lmeall o

-3/2

lally, = llprallcge, + 2| Imal o

In the following, we will always assume that « and f are close to 0. The most restrictive
estimate in which this fact is used is Eq. (3.81). For concreteness, one may choose @ = 1/16

and f = —1/16.
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Definition 3.51 (Approximate kernel). Let Cy, ..., Cy, be the connected components of U and
let yc, be the characteristic function of the set C;. Then define the approximate kernel of A on

N; to be

K :={(1~-y;)n"a:aeKerAry} ®span ()(t PxeyV Xci)i—l o’

where 7 : N, — T’ /T is the projection map from the previous section.

Proposition 3.52. There exists ¢ independent of t such that for alla € Q*(N;), a L K we have

llallx, < cllAally, - (3.53)

The proof of this proposition will extend over the rest of the section. This linear estimate
perpendicular to the approximate kernel is one thing we need. The following proposition
states that by restricting to the orthogonal complement of K we are not forgetting about any
important 2-forms — the image of the Laplacian remains the same when restricted to this

orthogonal complement.

Proposition 3.54. The operator

A: Kt > ImA

is surjective, where Im A denotes the image of the Laplacian on all of Q*(N;).

Proof. Step 1: Show that the L?-orthogonal projection q : Ker Ay, — % is an isomorphism.

Assume there exists 0 # a € Q?(N;) with Aa = 0 such that g(a) = 0,i.e. a L K. Then Aa # 0 by
Proposition[352} which is a contradiction. Now note dim(Ker Ay,) = b°(L)+b*(T7/T) = 12+k,
which is proved using the Kiinneth formula (see [JK21, Proposition 6.1]). By construction,
dim(K) = 12+k, so q is a surjective linear map between vector spaces of the same dimension,

and therefore injective.
Step 2: Check Im (A|g+) = ImA.

It suffices to check thatIm A C Im (A|4-). Lety € Im A, and Ax = y. Denote the L?-orthogonal
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projection onto K by projy. Let

z:= q_1 (projg(—x)).

Then A(x + z) = y, and projy(x + z) = 0 because of projqog~* = Id, i.e. x + z L K which

completes the proof. O

Comparison with the Laplacian on L The embedding 1, : Q°(L) — Q?(N,) is defined using
a cut-off of v € Q?(Xgn). If not for this cut-off, we would have that Ai; = ;;A, where we
use the symbol A to denote the Laplacian on N; as well as the Laplacian on L. In our actual
situation, we still have that A and i; nearly commute, and that is the content of the following

proposition.

Proposition 3.55. For any 8 < 0 there exists ¢ > 0 independent of t such that for all g € Q°(L)

we have

(AL = 1 A)gllcoe < et |lgll e - (3-56)

Proof. Define the map1; : Q°(L) — Q*(T° X Xgn) via1;(g) = 19" p;‘{EHV, where v € Q%(Xgp)

is harmonic and has unit L*-norm with respect to gx;,,. Then
(At; =1 A)g = 0. (3:57)
We aim to estimate

(A = 1tA)g = (A1 = Ai)g + (At =1 A)g + (1A — 1 A)g -

= =II =111

We begin by estimating I, where it will be convenient to estimate on two regions separately:

Q= {x € L x Xgy : F(x) <t71/8},
(3-58)
Q= {x € Lx Xgyy : t1{/8} < F(x) <t7'C/4}.
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Then

I Ned S -1 2,
Mllge, < 11Ge =gl s

<

pL - p;{EH (v— V)”C;o;

PLY " Py (V = V)”cgfg(szl) +lpig - b, (v - V)”C;;’;U;(Qz)

We will estimate the two summands separately. The first summand is defined on the region

Q; = {x € L X Xgy : F(x) < t71{/8} where neither v nor v is cut off. We have that
|v(x) — V(x)|l.zgxEH < ct? for x € Xgy with #(x) < t717/8 (3.59)

for the following reason: (v, V)2 ,2 ey = 1 by definition, thus

- = - = =2
T 22y > O~ [ 2, Vol
EH B xeXpnr(o) =018y 9% EH

\Y%

1 —/ (1+r)783dr > 1-ct.
/8

If #(x) < t71¢/8 we have that v(x) = V(x)/{y:V, )(ﬁ)Lz,tngEH because the cut-off is applied

where 7(x) > t71{ /8. This implies, at the point x,

l’4
S|V
‘ 1—t*

_ _ 1
|[v =7V <pll-———=
[
o v, XtV>L2’tngEH t2gx, g3y
EH

Using this for our estimate of the first summand of I, we obtain:

* — 2 * 2
19 P (7= Plcss ) < gl < et gl
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For the second summand we get:

lpig - 113, (v = Pllese

< ”P%g“q’f;f‘ ||ti§(EH (v - V)”C;;;O;(QZ)

Ed pa—
||PT3g||C§;f‘ ||Xt||c§;f‘ : ||1||c§f4;t(92) (”V”ci*zt(gzz) + ||V||CE’Zt(Qz))

IA

2
ct” |gllcea »

where in the last step we used ||1]] 2« (@) S 6 which holds because far away from L, the
P+4,05t

weight function wgy4, is uniformly bounded. We also used

Pli2gsy, =t Vlgngy < et 2(1+F) 7 < ct?(1+t7)™ < e’ on Q,, (3.60)

Together with Eq. (359) this shows that [v] 2y, < ct? on Q.
Altogether [|1|] coe < ct?||gl|cea- Furthermore, I = 0 because of Eq. (357). Lastly, III is
—2;t

estimated like I, which shows the claim. O

The goal of this section is to prove an estimate for the operator norm of the inverse of the
Laplacian with respect to the norms ||-||x, and ||-||y,. The purpose of these norms is to essen-
tially split the problem into an estimate on Im ; and remainder. The following proposition

contains the estimate on Im ;.

Proposition 3.61. There exists ¢ > 0 independent of t such that for t small enough and for all

g € Q°(L) satisfying g L Ker AL we have that

l9llcea < cllmAugllcoa - (3.62)
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Proof. We have

||g||c2,a <c ||Ag||c0,a
= c ||t Ag|| o
< cl||mAegl|coa + ¢ || ALrg — m11: AG|| 0.

< cllmAugllcoa +ct”“|lgll e,

where we used elliptic regularity for the operator A on L in the first step, and Propositions|3.48]
and [355) in the last step. At this point, the last summand ct* * ||g|| 2« can be absorbed into

the left hand side for t small enough. O

The model operator on R® x Xgy

Definition 3.63. For j € {1,...,12} let C} be a connected component of U, but made slightly

smaller, explicitly
C]’~ = Cj N {(xp, xy) € L X Xgy : F(xp) < t1C /4.
For f € R let

sipe s QY(Ny) = QF(R® x {x € Xgn : F(x) < 17'¢/4})
a9 2(p o (01" (aley).
where p : R® — T° denotes the quotient map.

Then:

Lemma 3.64. Forj € {1,...,12}, B € R we have that for all a € Q*(R3 X Xg) we have

lsseall et = Naller - and

(Sj,ﬁ_z,tANta - AgRS @g(l)sj,ﬁ’ta) |C} =0.

Here Ay, aq,,, denotes the Laplacian on R? X Xgy with respect to the metric ggs & g(1).
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Proof: The map ((-t) o p,1d) : C} — R® X {x € Xgg : F(x) < t71{/4} pulls back the metric
t2(grs ®g(1)) to the metric induced by ¢’. The extra factor =2 cancels out the factor t* when
changing the metric from t*(grs @ g(1)) to grs ® g(1) on 2-forms and cancels out the factor th

coming from the definition of ||-|| k.- O
Bit

Estimate of p;a In Proposition [3.61 we essentially proved an estimate for the inverse of the
Laplacian on Im 7;. In order to get an estimate with respect to ||-||x, and ||-||y, we need to
estimate the inverse of the Laplacian on Im p;. Recall the projection 7; onto the fibrewise
harmonic part from Eq. (3:72) and its complement p,. The two operators satisfy z,;p; = 0, so
the following proposition implies an estimate for the inverse of the Laplacian for elements

a € Imp; C Q*(Ny).

Proposition 3.65. Write K" := {(1 - y;)a : a € Ker A7 p} C Q?(Ny). Then there exists c > 0

independent of t such that for a € Q*(N;) satisfying a L K’ we have
2,00 S A Ned + T oo ) . .
lallege < ¢ (I1Aallcge +[[Frallyy, (3.66)
Proof. The Schauder estimate
o < c(llalloe + lallgs | 6
lallcze < ¢ (I1Aallcge +lalls, (3.67)

can be derived as in [Wali7, Proposition 8.15]. It then suffices to show that there exists ¢ such

that

o < a T o |. .
lallgg, < ¢ (IlAallcae, +1Frally (368)

Assume Eq. is false, then there existt; — 0, a; € Qz(Nti) satisfying a; L K’,and x; € N,

such that
llallcze < |wpet, (xi)ai (x;)| = 1, and 18aillcse =0, ||Etiai||L;t. — 0. (3.69)

Here, we got ||a||-2« < c from Eq. (3.67). Without loss of generality we can assume to be in
Biti
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one of three following cases, and we will arrive at a contradiction in each of them.

Case 1: the sequence x; concentrates on one ALE space, i.e. t;'r;, (x;) — ¢ < oo (see Fig. ).

Ny R3 x X

Figure 2: Blowup analysis near the associative is reduced to the analysis of the Laplacian on
R3 X Xgx.

By passing to a subsequence and translating in the R*-direction if necessary, we can assume
that x; concentrates near one fixed connected component of L. Let C; C L X Xgg be the
connected component U containing an accumulation point of the sequence x;. Define @; :=
sjpeai € QX(R?x {x € Xgp : F(x) < t;71{/4}) and let X; be a lift from C; to R? X Xgp. The new

2-form a; then satisfies
||5i||c/23,a <c, (1+#) P |a(x)| = ¢, and ||A5i||c%f2 — 0,

which follows from Lemma|3.64] Now the weight function no longer has ¢; in it and distances

and tensors are measured using the metric ggs © g(1).

By the assumption of case 1, we have F(x;) — ¢ < co. By passing to a subsequence we can
assume that X; converges, so write x* := lim; ,o X; € R®> X Xgy. Using the Arzela-Ascoli
theorem and a diagonal argument, we can extract a limit a* € Q?(R*® x Xgp) of the sequence

a; satisfying:

IIa*IIL;; <c, and (3-70)
AgRa ®g(1) a* =0, and (3.71)
(1+7(x) P la* (x7)] > c. (3.72)

By Corollary 3:39] (applied to the case R*® x Xgp), we have that a* is independent of the R*-
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direction. By Proposition[3:z1, the only harmonic forms on Xgy that decay like #* are multiples

of v;. Thus a* is the pullback of a multiple of v; under the projection px;,, : R3 X Xgg — Xen.

Because ||Etia,~ — 0, we have that a* is perpendicular to v on every {y} X Xgz C R®X Xgg.

s,

Here is how to see this in detail: let y € L, then we calculate on {y} X Xgy:
(@, vy =(a’v — yev) +(a" —ai, xev) +€a, xv) = I+ 11 + 111 (3.73)
Here,

1] < (a7 = XeV) (rexemi (o <1278} + €05 T = X0V) (xexeni (o) 20128}

where we have for the first summand

717/8
|(a*, V= Xtv>{x€XEH:f(x)§t‘1§/8}| < / |a*|g(1) : |V - Xl’v|g(1)r3 dr
0
/8
< c/ P dr <ot ? >o.
0

Here we used Eq. (370) and Eq. (359) (after changing from | - 25, to | - |4, ) in the second

step. For the second summand we find

(o9

|(a*,V - XtV){xeXEH:f(x)zrlg/gﬂ < c‘/g/ 1 rPrivddr < et —o,
8t~

where we used v = O (¥ %) and v = O(#7*) in the first step.

In order to estimate II, let [ > 0. Then

1] < [{a" = @i, xoV) (wexn (o 20| + (8" = @i X V) (rexur (o) <1} »

and we find for the first summand

|<a* - E,){tV>{xeXEH:f(x)zl}| =c (||a*||L;> + ||Elvi||L;’) ‘/l P dr < ol
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for a constant ¢ independent of . For the second summand we have

!
[Ka* = @, xev) (xexaro <iy| < lla* - ill Ly ((xrexerrir o) <1) - / P+ dr
0

<clla” - a||L;({xeXEH:f(x)sl}) —0
as i — oo by definition of a*. Last,
11| = 2P| () ()] = 5P| (ragmean) ()] < e [Fraills, — 0,

where we used Proposition [3.48|for the estimate.

Altogether we see that, by taking lim; ., in Eq. (3:73), we have that (a*,7) < cI?, where the
constant ¢ was independent of [. This is true for any ! > 0, therefore (a*,v) = 0. But thisis a

contradiction to Eq. (372).

Case 2: the sequence x; concentrates on the regular part, i.e. r;,(x;) — ¢ > 0 (see Fig.[3).

Ny Y

Figure 3: Blowup analysis away from the associative is reduced to the analysis of the Laplacian
onT7/T.

Using the Arzela-Ascoli theorem and a diagonal argument, we extract a limit a* € Q(T7/T'\L).
Denote, furthermore, lim;_,o, x; = x*. We have |a*| < ¢ - d(-, L)?, so we have that a* is a well-
defined distribution on M/(1) acting on L?-sections because § > —2. We also have Aa* = 0, so

a” is smooth by elliptic regularity, e.g. [Folgs, Theorem 6.33].

Furthermore,

(@, (1= x(2d(- 1)) - aiyyyr = lim(a;, (1= ye(r2)) - 7" ai)w,, = 0. (3.74)
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By the unique continuation property for elliptic PDEs, the inner product

(+.(1=x)o(2d(.L))-)

is non-degenerate on harmonic forms. The 2-form a* is a harmonic form that is orthogonal to
all harmonic forms with respect to this inner product, therefore a* = 0. But this contradicts

a(x*) > c.

Case 3: the sequence x; concentrates on the neck region, i.e. 7(x;) — oo, but r;(x;) — 0 (see
Fig. [@).

N, R3 x R?

Figure 4: Blowup analysis in the neck region is reduced to the analysis of the Laplacian on
R x R%.

Define ; € Q?(R3>xXgy) and X; € R3>xXgy as in case 1. In this case, we have that [p(X;)| — oo.
In order to be able to obtain a limit of this sequence, let R; — oo be a sequence such that
Ri/|p(x;)| — 0. Cutting out the exceptional locus of the Eguchi-Hanson space, we can consider
{(xp, %) € R® X Xgiy : Ri < |p| (xp) < {71} as a subset of R® x C?/{£1}. On R? x C?/{+1},

we have the rescaling map (- |p(x;)|).

We now define:

& = (PG (@l gepprecey) 1o GI 7
€ Q*(R® X {x € Xen : Ri/ IpG)| < Ip()| < 17/ 1p )1}, (3.75)
X =%/ lp(E)].
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This sequence satisfies

o < cand ‘5,- (f,-)‘ > c. (3.76)
The data Ei and ?i are defined on (subsets of) R3 x C?/{+1}. We use the same symbols to

denote their pullbacks under the quotient map C* — C?/{+1}.

As before, we extract a Clz(’)i/z—limit a* € Q?(R® x R*\ {0}) satisfying
Ag7a* =0, and ||a*||L;;(R3><R4) <c.

We see as in case 2 that a* defines a distribution on all of R7, and is smooth by elliptic regularity

on all of R7.

We also get an L®-bound for a* as follows: away from R* x {0}, this is given by Eq. (3.76). To
see that a* does not blow up in the R*-direction near R* X {0}, consider any y € R3 x {0}. Let
1 < p < —4/p, then ||a*|| (B, (y)) < ¢, independent of y, by Eq. (3.76). So, by elliptic regularity
”a*“Lfn(Bl(y)) < c for any m € N, and by the Sobolev embedding we have ||a*||;~ < ¢, where

all of these estimates were independent of y.

By Corollary 3:39] (applied to R* x R*), a* is constant in the R® direction. The limit a* is
therefore the pullback of a harmonic, decaying form of R* and must thus vanish, which is a

contradiction to the second part of Eq. (3.76). ]

Cross-term estimates We have now established uniform estimates for the inverse of A on
Im 7; and Im p,. As it stands, it could happen that the operator norm of p,A%; or m;Ap; is
very big. It will turn out in our proof of Proposition [3:52] that in such a case one would be
unable to deduce anything about the inverse of the operator norm of A with respect to ||-||x,
and |[|-||y,. Fortunately, it turns out that the operator norms of p;As; (and therefore p,A7,,

because 7; = 1,7;) and m;Ap,; are small, which is the content of the following proposition.

Proposition 3.77. There exists ¢ > 0 independent of t such that for all g € Q°(L) and for all
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a € Q%(N;) we have

IA

||PtAlt9||C%‘f et ||gllcza if f <0, (3.78)

IA

e prallcne < et~ ||prall e if =2 < f<0. (3.79)

Proof. We first prove Eq. (3.78). We have p;1; = 0 and therefore

||PtAlt9||c%_0; = [|lp:(Aurg — ltAg)Hc%_v;

< ||Aug - ltA9||c%_0; + ||epe (Arrg — ltAg)Hc%j

< ||Auig - ltAg||c%_0; +ct 2P 17 (Atrg — 1:Ag) || coa

< |Atrg = 1:Agl| o + ct™ [|ALrg — 1:Ag]| 0.

Bit Bit

< Ctz_a ||g||Cz,a 5
where we used Proposition in the third step, Proposition in the fourth step, and
Proposition 355]in the last step.

Now to prove Eq. (3779): assume without loss of generality that a = p;a. Define

7 QAT X Xgn) — Q°(L)

(ma)(x) = {a, V)tngEH )

The difference between 7; and r; is that they use v and y;v in their definition, respectively: v
is not cut off, y;v is, and both are rescaled to have unit norm. It suffices to prove the claim for
a € Q%(N;) which is supported near L. We can view such a as an element in Q*(T°® X Xgy)
and apply 7; to it. Also define; : Q°(L) — Q*(T3 X Xgn) as;(g) = Py P, V- Then 7,1, = 1d

and we also define p; := 1 =1, 7.

We have m;A = Ar;, thus 70 = 0 = 7;Aa = 0, and therefore 7;Ap; = 0. Hence

n'tApta = (ﬂ.'t - Et)Apta+EtA(pt - (1 - ltﬁt))a'i'ﬁtA((l - ltﬁt) - ﬁt)a .

=TI =T =111
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We first estimate I:

+71Z/8
Apra,V = xev)iz gy < ct*tP / (llApta| |C%a2_ (1+ r)_2+ﬁ) rdr
0 -2t

<ct?B||psal |20 if —2<B<0
pit

+ctﬁ/ ||Pta||C2,a (1+r)—2+ﬁ—4r3 dr .
t1g/8 pit

SCtzllptallcé;ott
Here we applied Eq. (359) on the region {x € Xgy : F(x) < {t"!/8} and we used
V= XeVlegyy, < Vlizgx, + Xevligy, < c(t+i)™'
on the region {x € Xgy : 7(x) > {t1/8}. Thus
||(7r: = 7)) Aprallp < ct?tP ||Pta||c§;0;

and the C%%*-estimate follows analogously.

For estimating II we need the estimate
~ 24f-a—k
allore < 275 lal s (3.80)

which is proved like Proposition[3.48 Then

||7?tA(pt -(1- w?t))allco,a [|7re Ay — ltit)a“COﬂ

IA

ct™® ||A[t(7'[t - it)aHCO,a
—2it

IA

et (1A = Fall o + 2211 = Tallca |

IA

et (1+ %) ||(m — 7 all e

IA

et (1+t*)t*||al| e
Bit

IA

2—a
et ||psal |Cfs”§
where in the first estimate we used Eq. (3.80), in the second estimate we used Proposition 355}
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in the third estimate we used the estimate for the operator norm of 1; from Proposition [3:35]
and in the fourth estimate we did the same calculation as when estimating I and we again used

—2 < f < 0. In the last step we used the assumption that a = p;a.

It remains to estimate III. We find

Il AC(L = 1e7m2) = pr)allcoa = | Ay = 1) mral|coa

IA

ct™ P || Ay - T) Tral| o
p-2;t

IA

et || ~T)ATalloa + 177 || Ta]| o
B-2;t

where we used Eq. in the second step, and 1;A = Ai; together with Proposition [3:55)in

the third step. Here we find for the first summand

IA

—a+p VAT —a+p = Aar A .
ct I (e [t)Aﬂta”C%fz;t ct |1 xzv V”Cgf ||PLA7Tta||Cg;? HIHC%Z;t

< ct™F 12 || AT al| o
< ct* | 7,a]| cra
< cp220+2p

a ,
lallcge

where we used Egs. (359) and in the second step; we used ||pzA7?ta||Co,a = ||ATal|cox
0;¢t

which holds because pj A7;a is constant in the Eguchi-Hanson direction, so the derivative in

the Cg;‘f—norm is just a derivative in the L-direction; in the last step we used Eq. (3:80). For the

second summand we have
2 | Frall e < 1272 |lal| g

by Eq. (3.80), which proves the claim. ]

Proof of Proposition 352

Proof of Proposition[352 By definition, ||a||x, = ||psal| 2« + t73/2 || m1a|| 2w . We treat the first
Bit
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summand first:

IIptallcgg < IIApta||C%f2;t

< (IFedprallce, +llpdallcae +llpebTrallcae, .

where we used Proposition[3.65|in the first step and in the second step used 1 = 7, + p; twice.

Here, the first summand satisfies

IA

||EtAPta||c%§2_t t_'B||7TtAPta||c0a

IA

tﬂ+2—2(x al| e,
e ”Cfgf

where we used Proposition[3.48]in the first step, and Eq. (3-79) in the second step. The resulting
term can be absorbed into the left hand side of Eq. (353).

For the third summand we get from Eq. that
||ptAEtallc%f‘2_t < et? || mal| cee

which can be absorbed into the left hand side of Eq. (353) if « is sufficiently small. Regarding

the m;-term, we find that

IA

32 | mal o < 732 || At mial | cow

IA

732 (|| Aall o + |7 Apral | coa)

where we used Proposition [3.61)in the first step and 1 = 7; + p; in the second step. Here we

have for the last summand
32 | mApral| coa < 1732 || pya| coa (3.81)
Bt

which can be absorbed into the left hand side of Eq. (353). The remaining terms, i.e. the ones
that have not been absorbed into the left hand side of Eq. (3:53), exactly sum up to [|Aally,,

which proves the claim. O
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3.2.4 The Existence Theorem

We will now prove the theorem which guarantees the existence of a torsion-free G,-structure

when starting from a G,-structure with small torsion.

Theorem 3.82. Assume there exists ¢ > 0 such that ' € Q3(N,) satisfies d*¢' = d*y’ and

d*r,bt”;yt < ct?,

9l < e,

Then, for small t, there exists n* € Q?(N;) such that ¢' + dn is a torsion-free G,-structure and

t 4
l7*lly, < et*.
To ease notation, we write ¢ = ¢’, ¥ = ¢/, and = p' throughout the proof.

Proof. We will construct € Q?(N,) satisfying

An= A"+ d'(fY) + 5 d(F(dn)), where f = ~(p.dy). (3.89)

Set 7o = 0 and, if n;_; € Q*(N,) is given, let n; € Q*(N,) be such that

Al]j = d*l// + d*(f]_llﬁ) + * d(F(dI]j_l)) , where fj—l = £<¢’ dl]j_1>,

and such that n; L K. This is well-defined, i.e. such 7; exists, because Ind* C ImA and
restricting A to K+ does not change its image by Proposition3:54} We aim to show by induction
that ||17 j”%t < ct*. For j = 0 this is true by definition, and we will now derive the estimate for

j>0.

By definition of 7; together with Proposition [3:52 we have that

Inslly, < cllanslly,
< c(lldylly, +|

=c(I+IT+III).

& (69 ly, + I+ d(F(dn;-0)ly,)

91



By assumption we have I = [|d*¢[[y, < ct?.

Now to estimate II:

& (F1)ly, < lldfi-19lly, +[fi-1d'v

|y, = LA+ILB.

Here

1LA = [|pe (159l cae -+ 72 me(dfj-19) | o
< (70D [ldfiray o

< (% + t—3/2_0‘+ﬁ) ||df}_1||C%$.t ||¢||Cg?

< ct4,

where for the first estimate we used Propositions and and for the last estimate we
used the induction hypothesis ||17 1‘1”361 < ct*, which implies ||dfj_1|| o < ct’/?, together
-2t

with the assumption [[{/|| 0e < ct?. The estimate I1.B < ct* is derived analogously.
0,0;¢

It remains to estimate III:
I = ||pe ( d(F(dqj_l))HC%:_t + 732 || (+ d(F(dnj-1))|| cow = III.A + IIL.B.
The summand IILA is estimated as
A < ct™ ||*d(F(dn;- a s
< et~ ||+ d(F(dn; 1))||c%_2;t
where we first estimate the L*-part of the C®*-norm. Namely, by Proposition z-24

leatrn s <l I9dn . o

e ||dr]j_1||:?*l;t ||d*¢| |L,°3072;t t_2+2ﬁ

< ct?.

The [-]coa-part is estimated analogously. To estimate III.B = t73/2||m, (+ d(F(dp;-1)))|| co.e-
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we again estimate the L™-part first. Fix some y € L and compute 7, (* d(F(dn;_1))) (y) by

computing an integral over Xgy =~ {y} X Xgg C L X Xgu. By Proposition 224 we have

e (+d(F(dn;1)))| <

(xd(F(dn;-1)) ,XtV>t29xEH

< [ dnal 19 dnel vl voleg,
XEH

II1.B.1

ve [ ldnalTdnal 1491 vl voleg,
Xen

II1.B.2

Here,

B 7 = C/X | d(@mj1 + penj-)| - IV A(@nj—1 + penj-0)| - [xev] VOltngEH
EH

¢
< C/ ((t+ r)_7 ||dﬁﬂ]j_1||co,3a ||V dﬁtl]j_lnco,f ) ((t+r)_4t2) r3dr
0 —3;¢ o

<c||menj1 || setz 4302

¢
N C/O ((t 1) ||dpt’71'—1||cj’3’f‘1;t v dpmj_1||c%f2;t )((t + r)—4t2)r3 dr

<c||penj | |ZC%3 et

¢
+c/ ((t+r)ﬁ—5 |07 71| s [V dpenjoi]] o )((t+r)‘4t2)r3 dr
0 -3t B2t

<c||menj-1|| czellpemj-1] |c2,a Scrtd/2ed
Ha

¢
+ C/ ((l’ + r')ﬁ_5 ||dpmj_l||€%au ||V dﬁﬂ’]j_lnco,f ) ((t + r)_4t2) r3 dr
0 -5 —4t

Sc| |77.'t77j71 | |c2,a | |Pt'7j—1 | |c;50: <cpi+3/zHe

<ec (tz'(4+3/2)t_7t2 + 24y2B-342 +2t4+3/2+4tﬁ—5t2)

< ct6,

thus III.B.1 < ct*. The part III.B.2 and the C%*-parts of III.B.1 and III.B.2 are estimated

analogously. Altogether, this gives IIT < ct?.
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The sequence 7; satisfies

||]’]J||C;otz < ||Pt’7j||c§;vtc + ”Etﬂj”CEi‘

4 2h3l2

< Inills, [

< ct’* P,

As usual, the constant c is independent of ¢, but in particular independent of j. Thus, there
exists, up to a subsequence, a C>%/2-limit lim;_,, 7; =: 1 by the Arzela-Ascoli theorem. This

limit solves Eq. and satisfies

Il s < 727,
Bit

By [Joyoo|]][Theorem 10.3.7], ¢ + dy is a torsion-free G,-structure, which proves the claim. O

Taking everything together, this gives us:

Theorem 3.84. Let N, be the resolution of T’ /T from Eq. (3:31) and ¢' € Q*(N;) the G,-structure
with small torsion from Eq. (333). There exists ¢ > 0 independent of t such that the following
is true: for t small enough, there exists n' € Q?(N;) such that ¢ = @' + dn’ is a torsion-free
G,-structure, and n' satisfies

Il = e
In particular,

5/2 5/2—a/2 3/2-a/2

||$— qot”Lw < ct’’“ and ||$— qot”CO,a/Z <ct as well as ||$— qot”Cw/Z <ct

Proof. By Lemmal[3.36] we have that ||i/|| v« < ct*. Combined with Propositions[345|and(3.48|
0;t
we also have [[/]lg, < ct*. Thus, Theorem[3.82] can be applied, which gives the claim. O

Remark 3.85. The power 7/2 — f in Theorem can be improved to 4 — € for any € € (0,1)
by defining the norms ||-||x, and ||-||¢, with a factor of t™* instead of t73/2 for k € (0, 2) close

to 2.

Remark 3.86. In [Joy96al], compact manifolds with holonomy Spin(7) were constructed. In
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the simplest case, one constructs Spin(7)-structures with small torsion by gluing together
the product Spin(7)-structure on T* X Xgy and the flat Spin(7)-structure on T8. This gluing
construction is analogue to the definition of the G,-structure in Eq. (3:33). In contrast to the
G,-situation, however, Joyce’s theorem about the existence of torsion-free Spin(7)-structures
cannot immediately be applied, because the torsion of the glued structure is too big. He over-
came this problem by constructing a correction of the glued structure by hand which has
smaller torsion, to which the existence theorem can be applied. The same can be done in the
G case. In fact, one gets a correction in the G,-case from the Spin(7)-case by considering the
Spin(7)-orbifold T7 /T x S!. Using this corrected structure, one would get even better control
over the difference between glued structure and torsion-free structure than what is known

from Theorem|[3.84]

3.3 Torsion-Free G;-Structures on Joyce-Karigiannis Manifolds

In [JK21]], the authors constructed new examples of compact manifolds with holonomy G,
by generalising the construction that was described in Section As in Section 37} they
first use a gluing procedure to construct a G;-structure with small torsion. They then apply

Theorem [2.26]to perturb this G,-structure into a torsion-free G,-structure.

The main difference to Joyce’s original construction is the following: if one uses the cutoff
procedure from the T7/T case in the new setting, one produces a G,-structure that does not
satisfy the necessary estimates to apply Theorem [2.26] The authors of [JK21] overcome this
problem by constructing a G,-structure with even smaller torsion, to which Theorem [2.26] can

be applied.

3.3.1 Ingredients for the Construction

Let Y be a compact manifold endowed with a torsion-free G,-structure ¢. Write g for the
metric induced by ¢. Let 1 : Y — Y be a Gy-involution, i.e. satisfying /2 = Id, 1 # Id, i*¢ = o.

We then have:

Proposition 3.87 (Proposition 2.13 in [JK21]). Let L = fix(:) and assume L # (. Then L is a

95



smooth, orientable 3-dimensional compact submanifold of Y which is totally geodesic, and, with

respect to a canonical orientation, is associative.

Assumption 3.88. We assume that L is nonempty, and we assume we are given a closed,

coclosed, nowhere vanishing 1-form A on L.

Such a 1-form need not exist, and cases in which its existence can be guaranteed are discussed

in [JK21, Section 7.1].

3.3.2 Gy-structures on the Normal Bundle v of L

The metric defined by ¢ defines a splitting
TY|, =ve&TL (3-89)

which is orthogonal with respect to g. Write gy for the metric on L induced by g and ¢g|; =
h, ® gr. Write V" for some connection on v. For now, we may think of VY as being the
restriction of the Levi-Civita connection of g to v — L, but later we will need the freedom to
choose another connection. We write elements in v as (x, &), where x € L, ¢« € v,. ForR > 0

let
Ur={(x,a) €ev:|aly, <R}

Write & : Ug — L for the projection (x, ) — x. We will make use of amapY : Ug — Y
satisfying the following:

1. Y is a diffeomorphism onto its image,

2. Y(x,0)=xforx €L,

3. Y(x,—a) =10 Y(x, a) for (x, a) € Ug,

4. the induced pushforward Y, : TUr — TY restricted to the zero section of TUy is the

identity map on I,.L @ vy.
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For example, Y = exp would satisfy these four conditions for small R. But later on we require

Y to satisfy an extra condition that exp need not satisfy.

Write (-t) : v — v for the dilation map (x, @) — (x,ta), and for t # 0, define Y; = Y o (1) :

U|t|71R — Y

The connection V" defines a splitting

Tv=V@®H, whereV ~7x"(v)andH ~ x*(TL), (3.90)

where V and H are the vertical and horizontal subbundles of the connection. Combining

Egs. and (3:90), we have that Tv ~ 7*(TY|). Denote by
0" e Q*(v), ¥ € Q*(v), and g¥ € S*(v) (3.91)

the structures obtained from ¢, ¥, and g via this isomorphism and for ¢ > 0 write ¢, = (:t)*¢",
as well as ¢ = (-t)"¢”, and g} = (-t)*g". Note that this definition implicitly depends on the

choice of V". The main result of [JK21, Section 3] is then:

Proposition 3.92. There exist R > 0, a connection V'onvanda map Y : Ugp — M satisfying

1. Y is a diffeomorphism onto its image,

N

. Y(x,0) =x forx € L,

3. Y(x,—a) =10 X (x,a) for (x,a) € Ug,

ky

the induced pushforward Y, : TUg — TY restricted to the zero section of TUy is the identity

map on T,,.L ® vy,

and fort > 0 a closed G,-structure ¢, on v/{+1} and closed 4-form 1,2" € QY (v/{x1}) satisfying

the following properties: first,

o)~y =0 and Y -y} = O(tH). (3.93)
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Second, there exist n € Q?(v),{ € Q3(v) such that

= 0(r"),

Inlgw = O(r) and | dnlg = [T*0 - 9" ug
Y*IP - l;V|UR

gv

. o(r?).

I{lgv = O(r?) and |d¢ |y =

g

3.3.3 Gg-structures on the Resolution P of v/{+1}

The G,-structure ¢ € Q3(Y) defines for all x € Y a cross product X : T, Y X T, Y — T,.Y as in

Definition[Z19] We then have a complex structure I € End(v) given by

A
(V) = DTk VforV € vy,x € L. (3-94)

Recall the metric h, on v defined by g|;. = h, & g1, cf. Section[3:3:2] Then I and h, together

define a U(2)-reduction of the frame bundle of v. Denote by Xgy the Eguchi-Hanson space

with Hyperké&hler triple wfl), wél), a);l) from Proposition zIal Denote by p : Xgg — C?/{+1}

the blowup map of the blowup with respect to the complex structure induced by wfl) from

Remark[z13]and let
P = Fr Xy(2) Xgn- (3-95)
Denote by o : P — L the projection of this bundle. Analogously, we have
v/{x1} = Fr Xy C*/{£1}.

Let L’ c L be a nonempty, open set on which we can extend e; := ﬁ € T*(L') to an or-
thonormal basis (e, e,, e3). Then there exist &, &/, @K € Q?((v/{%1})|r/) such that ¢" from

Eq. (3:97) has the form

0 =erNeshes— D' Aep— ) Aey— X Aes. (3.96)
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We define &, &/, 0% € Q*(P|1/) as follows: For x € L/, let f € Fry such that f : (v/{#1}), —

C?/{+1} satisfies

F(0 20 0") = (6], & |1 6510,

where (a)l(o), wéo), wéo)) denotes the Hyperkihler triple on C?/{+1} from Propositionz1al This

choice of f defines isomorphisms of complex surfaces Py ~ Xgy and (v/{#1}), =~ C?/{+1}.
Let &', &/, oK € Q%(P,) be the pullback of wil), wél), wél) € Q?(Xgy) under this isomorph-
ism. This is independent of the choice of f, and therefore defines ol, o), ok € Q*(Py). The

following diagram sums up the situation:

(Pe, &', & |p., &K|p.) = y (KXo 0, oY, oY)

lp lp (3.97)

(/£ O a1 & Ly DK Ly a1y) —— (CH{£1}, 0, 0, o)

Here, by abuse of notation we denoted the map P, — v,/{x1} which makes the diagram
commutative also by p. Horizontal arrows pull Hyperkéahler triples back to one another, Hy-
perkéhler triples connected by vertical arrows are asymptotic in the sense of Proposition 101
A complicated point is the actual definition of &', &/, »* as 2-forms on P|;,. Equation (3:97)
tells us what they look like fibrewise. To make sense of them as global objects on P, one needs
to choose a connection on P. In [JK21], the horizontal subspaces H were defined to this end
which allows us to decompose forms on P into vertical and horizontal components, much like
for forms on v. There are then unique vertical 2-forms which restrict to &’|p_, &/ |p_, ®* |p, on

every fibre.
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We are now ready to define ¢f' € Q3(P|,), yf' € Q*(P|y) via

q’f = Qo3+ f2¢2,1
(3-98)
:=ﬁ%AQAQ%%%&@OAJ—&@ﬁAM—f&QA&»
¢f = ty0 + P,

1
= EJ)I Aol —o*(es Nes) Al —o*(es Aer) A — o™ (er Aey) A K.
These expressions are independent of the choice of (e, e3), and therefore define forms qof €
Q3(P),yf € Q*(P), not just forms over L’ C L. Let also gF’ denote the metric induced by ¢F.

As in the previous section, we add terms to ¢! and ¢ to define closed forms on P, and we

have the following control over how they are asymptotic to forms on v/{£1}:

Proposition 3.99 (Section 4.5 in [JK21]). There exist &2, &3 € Q*(P), 111 € Q*({x € P : F(x) >

1), such that

@f = @f + 128+ 128

is closed and satisfies

14

o1 = p o) +t2dryy (3.100)

where ¥ > 1. These forms satisfy the following estimates:

o ot ), F<l,

‘V (t°612)| , =
ok, E s

o O(t¥7%), F<,

[V (260)] , = (3.101)
o o@rkieky, E s,

hWﬂquzou“W**y (3.102)
9

Proposition 3.103 (Section 4.5 in [JK21]]). There exist 13,031,025 € Q*(P), 015 € Q3({x € P :
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F(x) > 1), such that
gZP =yl + iy + 1405, + 140, (3.104)

is closed and satisfies
%P = p*lﬁv +t* doy o (3.105)

where ¥ > 1. These forms satisfy the following estimates:

O(1k), F<,
’Vk(tz)(l,s) b= (3.106)
o RERR), F s,
. o), r<1,
[V tt0s0)| , = (3.107)
o, Pl
O(1*k), F<,
‘Vk(t492,2) o= (3.108)
ook, F s
‘vk(tzol,z) L= O(t ki), (3.100)
9t

3.3.4 Correcting for the Leading-order Errors on P

Armed with the G,-structures ¢ on Y and ¢f on P, we could define a glued together G,-
structure just as we did in Section3:2} However, in this case it would turn out that the torsion
of the glued together G;-structure is too big and Theorem cannot be applied. We thus
make use of the following correction terms which will make the torsion of the glued together

Gy-structure small enough.

Theorem 3.110 (Theorem 5.1 in [JK21]). There exist atgz, azg € Q*(P), o3, P21 € Q3 (P), satis-

fying for allt > 0 the equation

(Dyr®) (t*[daos]iz + t*[dagolso + t°812) =12 dfos + ' [dBaalss + 1% x13 + 11051
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Moreover, fory > 0 sufficiently small and for allk > 0, these forms satisfy the following estimates

O(t*7F), F<l,

’Vk(tzao,z) b=
o lo@rkkery g >,
O(t*7%), F<,

|Vk(t4052,0) b=
9 O(tz—kf—z—kﬂ/)’ P>,
o(t*7%), F<,

’Vk(tzﬂo, 3)| , =
ok p s,
O(t*7F), F<,

|v’<(t4/52, |, =
9t O(t2—kf—2—k+y)’ P> 1,

3.3.5 Gy-structures on the Resolution N; of Y /(1)

We are now ready to glue together P and Y /(i) to a manifold, and define a G;-structure with

small torsion on it.

Definition 3.111. Define
Ne= o Uz | [0\ D/O)] 1~ (3112

where x ~ Y; o p(x) for x € p~ 1 (Up-15/{£1}).

Definition 3.113. Let a : [0,00) — R be a smooth function with a(x) = 0 for x € [0,1], and
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a(x) =1 € [2, o). Define then

of +d[tPag + tra ], if F <71/,
af + d[l’zao’z + l'40(2’0 + a(t1/9f) . Y*I]], if t_l/g <7< 2t_1/9,
N_)_ .
¢ =9 +d[tPagy + t1ag + Lun), if 21719 < 7 <745, (3.114)

a;/ + d[(l — a(t4/5f))(t21'1,1 + tzao’z + l'40(2’0) + Y*I]], if t_4/5 <r< 2t_4/5,

o, elsewhere,
yF +d[12fos + t*fal, if 7 < t71°,
YP + d[t2fos + t4foy + a(t19F) - N0, if 9 < <271/,
v = yF +d[t2fos + t4Bor + {1, if20719 < <745, (3.115)

Ur +d[(1 — a(t*57)) (Poyy + t2os + 1for) + Nu01,  if 745 < F < 267405,

U, elsewhere,

The important properties of these forms are that ¢ and ¢/ are closed, and that /Y is close
to being the Hodge dual of ¢N. That is, the 3-form ¢ — * (pfnﬁv satisfies the assumption of
Theorem[.26land ¢ can be perturbed to a torsion-free G,-structure. This yields the following

theorem:

Theorem 3.116 (Theorem 6.4 in [JK21]). For small t there exists n; € Q*(N;) such that aiv =

@N +dn, is a torsion-free G,-structure, and

1/18

@ = ol < et (3:117)

for some constant ¢ > 0 independent of t.
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4 The Gluing Construction for Instantons

We now turn to constructing G,-instantons on the resolutions of Y /(i) explained in the pre-
vious chapter. Much like explained in the introduction to Section 3} we will follow again the
three step process of (1) constructing an approximate solution, (2) estimating the linearisation

of the equation to be solved, and (3) perturbing the approximate solution to a genuine solution.

In Section [f we explain how a section s of a moduli bundle gives rise to a connection s(A)
on the bundle of Eguchi-Hanson spaces P from Eq. (3:95), cf. Theorem [£15} If the topological
compatibility condition Assumption[gTjis satisfied, we can glue s(A) to a G,-instanton 6 on the
orbifold Y/(1). The resulting connection A; is close to being a G;-instanton and in Section[F=Z]
we will quantify this. We will see that this error is small in a suitable norm if s satisfies a first
order partial differential equation, the Fueter equation. Section [73]is the difficult part of the
analysis, where we give an estimate for the inverse of the linearised instanton operator. In
Sections [£-4] and [f:5) we complete the argument and construct the perturbation that turns the

approximate solution from before into a genuine solution to the G;-instanton equation.

Throughout we will use the notation from the previous chapter. That is, Y is a G;-manifold
with G,-involution ¢ : Y — Y, and N; is the resolution of Y/{1). The resolution N; is obtained
by gluing in the Eguchi-Hanson bundle P over the singular locus L = fix(1). On P we have
the G,-structures ¢f and ¢!, and on N; we have the G,-structure ¢ with small torsion and
the torsion-free G,-structure @V . In the case that N; is a resolution of T7 /T, we also defined
the G,-structures ¢’ and ¢’. These two will also be denoted by ¢ and @V respectively and
the special case of T7 /T will need no special treatment most of the time. The exception is the
pre-gluing estimate for resolutions of T /T, Corollary @57, which is better than in the general

case. In the case of resolutions of T’ /T, our main result is Theorem 131

Theorem. Let N — Y’ be the resolution of the orbifold Y’ = T’ /T from before. Assume that the
connection 0 used to define the approximate G,-instanton A, from Proposition[g.27 is infinitesim-

ally rigid and that s is an infinitesimally rigid Fueter section.

There exists ¢ > 0 such that for small t there exists an a, = (a;, &) € CH(Q% @ Q(AdE;)) such

that A; == A; + a; is a Gy-instanton. Furthermore, a, satisfies ”%”xt < ct? %@,
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Here, || - [|x, is a complicated composite norm similar to the norm denoted with the same
symbol from Section[g} and @ € (0, 1) is a number close to 0. In the general case of resolutions
of Y/(i) we only have a weaker result. Namely, we require the Fueter section to be pointwise

rigid. This is Theorem [£-130}

Theorem. Assume now that the section s is given by a rigid ASD-instanton in every point x € L,

and assume that the connection 0 used to define the approximate G,-instanton A; from Proposi-
tion[gz is infinitesimally rigid.

There exists ¢ > 0 such that for small t there exists a, = (as, &) € C**(Q° & Q' (AdE,)) such

that A; == A, + a; is a Gy-instanton. Furthermore, a, satisfies ||g < ct!/18,

|| lLa
t Cfl,ﬁ;t

We will use this theorem in Section [4.6] to construct a new example of a G,-instanton on the

resolution of (T3 x K3)/ Zg.

4.1 The Pregluing Construction
4.1.1 Moduli Bundles of ASD-Instantons

Let  : Ey — Y /(1) be an orbifold G-bundle with connection 0, i.e. a G-bundle with connection
over Y together with a lift { of ¢ such that i = Id and such that i*0 = 0. As before, fix(1) = L
and we now set Eo, = Ey|r, which is a G-bundle with Z,-action, and A, = 0|g_. Denote by
M the framed moduli space of ASD instantons on a bundle E over Eguchi-Hanson space Xgy
from Section 22} The homomorphism p : Z, — G used in the definition of M defines a Z,

left action on G. We then ask for Ej and M to be compatible in the following sense:

Assumption 4.1. For all [ € L there exists an isomorphism of manifolds with G right action and

Z, left action ¢ : Ee|; — G.

Proposition 4.2. LetG, C G be the stabiliser of p as in Eq. @43). Then there exists a G, -reduction

E of Ew such that A, reduces to E.

Proof. As before, let p : Z, — G be the representation that defines the asymptotic limit for
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connections in M. Define

E:={u€Ey:u-p(-1) =i(u)}. (4.3)
To see that this is a G,-bundle, fix | € L and let ¢ : Ew|; — G be the isomorphism from
Assumption g3 Then u € E|; if and only if ¢ (u) € Gp.

It remains to check that A, reduces to E. To this end, let y:I— E be a curve. Then

A (7(0)) = " A (7(0))
d
= Aw E(Y(t) - p(=1)) =0 (4.4)

= Ad(p(-1)) (A (7(0))) .

In the first step we used i*6 = . The second step is the defining property of E from Eq. (@3).
Now, for any subgroup H C G we define the centraliser of HinGas Z(H) ={g € G: hgh™' = g
for all h € H}. Then

Lie(Z(H)) = 31 = {V € g : Ad(h)V = V for all h € H}. (4.5)

This equality holds, because for X = ¢(0) € Lie(Z(H)), whereg : I — Z(H) is a curve, we have
that Ad(h)X = % (hg(t)h™1)|;=0 = X by definition of Z(H). Conversely, for V € 3y, we have
that g(t) := exp(tV) is a curve with §(0) = V in Z(H), because hg(t)h™! = exp(t - Ad(h)V) =
exp(tV) = g(t) forallh € H.

Therefore, by Eqs. (@7) and (75), we have that A | takes values in Lie(G,), i.e. restricts to a

connection on E. O

Definition 4.6. Define the moduli bundle

M = (FI' XE) XU(Z)XGP M (4~7)
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and its vertical tangent space

VIR == (FrxE) Xy@)xc, TM. (4.8)

4.1.2 Fueter Sections and Connections on Bundles over P

In the following, we will study sections s : L — 9. It will turn out that such a section s
gives rise to a connection that is almost a G,-instanton, if it satisfies a first order differential

equation, the Fueter equation (cf. Definition [f:13).

Definition 4.9. Let s : L — I be a section. We define its covariant derivative Vs € Q! (L, VIR)
as follows: forx € L, X € T, L let f € C*(Fr) and e € C* (E) be local sections around x such
that AYC df(x) = 0 and A, (de(X)) = 0, where A is the Levi-Civita connection of Y. Let

B: L — M be alocal section around x such that s = [(f, e), B]. Then
Vx(s) = [(f> ), dB(X)] € (FrxE) Xu()xc, TM.

Definition 4.10. Let s : L — 9 be a section. Fix x € L and let ey, ez, e3 be an orthonormal basis

of T,.L. The G,-structure on Y defines a map

ANT L) — A*P,
(411)
e — d)i|Px = Wj.

The w; correspond to complex structures on P, and therefore, by Theorem [Z51 to elements

I; € End(V, ). We thus have a Clifford multiplication given by

e : V.M — V, M

(4.12)
a— Ii(a).
Definition 4.13. A sections : L — I is called a Fueter section if
3
s = Z ei- Ve, s =0 € T(s"VIN), (4.14)

i=1
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where (ey, e,, €3) is a local orthonormal frame.

The following is an extension of [DS11, Theorem 1]:

Theorem 4.15. Denote by P — M X Xgy the tautological bundle with tautological connection
A over M X Xgr from Proposition [2.59) and assume that there exists a lift of the U(2)-action on
M x XEH to P preserving A. Lets € C* (M), and denote P =Fr XU(Z)XEH- Then there exists a
natural G-bundle s(E) over P with connection s(A) € o (s(E)|p) together with an isomorphism

of G-bundles with Z, left action ® : s(E)|p\P — E so that:

(i) The pair (s(E),s(A))|p, represents s(x). That means: if s(x) = [(f,e), [B]] for f € Fry,
e € (Ey)x, [B] € M, then under the diffeomorphism Xgy =~ Py, y — [f,y], the G-bundles

s(E)|p, and E are isomorphic, and B and s(A) are gauge equivalent.
(ii) The map ® identifies Ao, and s(A) over the fibre at infinity, i.e. ®* Ao = s(A)|p\P.

(iii) The connection s(A)|p is a (y)*-instanton if and only if s is a Fueter section. Here, s(A)
being a (Y©)*-instanton means that Fs 4y A (YP)* =0, where (y)* = 3 0" (e) A o™ (e/) A

@F. Here o : P — L is the projection of the bundle Eq. (3:95).

Proof. Construction of s(E), s(A), and ®: together with the connections V*© on Fr and A, on
E, the connection A induces a connection « on the principal G-bundle (Fr xE) XU(2)xG, P—

(Fr xE) Xu(2)xG, (M X Xgy) via the formula
a([(U,V),T]) = A(T), (4.16)

where U € TFr, V € TE are horizontal vectorsand T € TP. By assumption, A is left-invariant,

which makes the definition of a independent of the chosen representative.

Consider the map

(s xId) : P = Fr xy)Xen — (FrXE) Xy(2)xc, (M X Xgn)

[f.yl = [(f.e), (By)],
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where s(o(e)) = [(f,e), B] € My (). Then
S(E) = (s x1d)" ((FrxE) xu(zxg, P).  s(A) = (s x1d)*«
and the trivialisation ¢ : P| Mobx oo} GxM°™ from Proposition[zzgjinduces an isomorphism

© : s(E)|p\p
= (5 XTd I x)" ((FEXE) 002156, Plaaxgeo}) = 5* (B xE) xugapna, GX M) (4:17)

2EXGPGZEOO.

The last point of Proposition[z:59]states that ¢* Aproduct = R| Mx {eo} Which implies that ®*A,, =

$(A)|p\p-

s(A) is a (yF)*-instanton if and only if s is a Fueter section: for easier notation, assume that
the bundle Fr is trivial and V€ is the product connection. The proof of the general case works
the same. In this case, LX Xgyy = P and s(E) = (s xI1d)*(E XG, ﬁ) Then fix (I, x) € Lx Xy = P,
an orthonormal basis (ej, e;, e3) of ;L and denote by (e, e?, €?) its dual basis. Around [, write

s(x) = [e, B] with the property that de(V) is parallel for all V € T;L. Then, for Z € T Xen:

Fs(a)(ei, Z) = ((s X1d)"Fq) (€1, Z)

= Fo ([de(e;), (dB(e;), 0)], [de(e;), (0, 2)])

= Fz(dB(e;), Z)

(418)

= dB(e;) (2).

In the first step we used that the curvature of a pullback connection is the pullback of its
curvature. The third step is the definition of @ from Eq. (4.16), and in the last step we used
the curvature properties of the tautological connection A from Proposition 259, As before,
denote by I, I, I the Hyperkahler triple of complex structures on Xgy and wy, ws, w3 the cor-

responding symplectic forms. The Fueter condition from Definition f-13] for s is equivalent to
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the following equation of elements in Q! (Xgy, Ad P):

3 3 3
0= > Ii(dB(er) = ) i(dB(er),) = ) wi(Fycay (er), )
i=1

i=1 i=1
3
= * (Z w; A Fya) (e '))
i=1

where * denotes the Hodge star on Xgpy. The first equality is the Fueter equation, the third
equality is Eq. (4.18), and the second and fourth equality are linear algebra computations that

can be computed in standard coordinates.

Applying * to both sides gives

3
0= (Z w; A F(a) (e, ‘))
i=1

which in turn implies

0= Z wi Nel A ek A [Fsayl11)s
i,j,k cyclic

where [Fs(4)](1,1) denotes the (1, 1)-component of F(4) according to the bi-grading on A*T* (LX
Xgy) induced by T* (L X Xgy) = T*L @ T*Xgy. On the other hand, [Fy(a)](02) € Q% (Xgy, AdP)

is anti-self-dual by Proposition 259} thus

0= Z wi Nel A ek A [Fscalco2)-
i,jk cyclic

Last, 0 = 2.; j k cyclic @i A e/ Nek A [Fs(a)](2,0), because this is a sum of forms of type (2, 4) which

must vanish as L has dimension 3. O

41.3 Gluing Connections over P and Y /(1)

We will define here a further modification of the Holder norm.
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Definition 4.19 (cf. Section 6 in [Wali7]). For 6,1 € R, let

wise : Nk = R

Ot +r(x)0, ifr(x) < Vi (4.20)
X —

r;l+5 if re(x) > V.

Note that w; 5., is not continuous, but that does not cause any problems. For a metric g on
N, define the weighted Hoélder norms ||-|| ke g as in Definition where we use parallel
transport with respect to the Levi-Civita connection induced by the metric g, and measure
vectors in g. If no metric g is specified, we take g = gN. For the instanton analysis, we need

d€(-1,0),x €(0,1), ¢ < |5], for example § = —1/64, a = 1/256 will work.

Proposition 4.21 (Proposition 6.2 in [Wali7)]). If (f,g) — f - g is a bilinear form satisfying

If - gl < |f1lgl, then

. < . .
U gllege, . < Ufllete - llgllese

We have shown that s(A) is a (¢/)*-instanton. It is, however, in general not a G,-instanton
with respect to i because of the (2, 0) part of its curvature. We will later estimate the failure

of s(A) of being a G,-instanton.

Definition 4.22. For | € L choose a neighbourhood I € V; c L over which E is trivial. Use
the identification ® : s(E)| pp — Eo and parallel transport with respect to s(A) to get a
trivialisation of s(E) around 13|Vz \ Ply;, say on a neighbourhood U; C P. Using this, we can
view the pullback of s(A) |13\P under the projection U; — V; as a connection A_ool € A (s(E)|y,).
This definition is independent of the choice of I € L, and therefore defines some connection

A € A (s(E)|y), whereU c Pisa neighbourhood of the points at infinity P\P.

Now is the first time we cite a non-trivial result from [Wal17|]. Therein, Fueter sections into a
moduli bundle of ASD-instantons on R* were considered, while in this chapter ASD-instantons
on Xgyy are considered. At some points this changes the analysis, and these results are reproved
in this new setting in the coming sections. At some points, results carry over without having

to change the proof. The following proposition is the first such result:
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Proposition 4.23 (Proposition 7.4 in [Wali7]). There exists ¢ > 0 such that forallt € (0,T):

[Fscaylao = Fa|| L. <ct?, (4.24)
H S( ) A CE’Z,O;t(U)’gf‘
”[FS(A)]1,1||c2>;‘0_t(U),gf <ct’, and (4.25)
2
”[FS(A)]O’ZHC(_)’fo;t(U),gt < ct”. (4.26)

Proposition 4.27. Let Ey — Y/{i) be an orbifold bundle with connection 0 satisfying Assump-

tiong3, L = fix(1), and s : L — IN be a Fueter section.

Then there exists a G-bundle E; over N; and a connection A; on E; such that

(Et, AD) INAY (U1 ) = (B0, O)IN\v, (U, ) and

(Et, A v,y = (S(E),s(A)) |1 (1y)-

Proof. Construction of E;: By Theoremg-15we have a bundle isomorphism @ : Eco — s(E)|p, p-
Let U C P be a neighbourhood of P \ P. Now use radial parallel transport with respect to 6
on E, and parallel transport with respect to A, (the pullback of ®*A,, to a neighbourhood of
P\ P defined in Proposition[g:2z3) to extend @ to the neighbourhood Y(Ug) C Y of L, denote the

extension by ¥. The conditions i*6 = 6 and Assumption £ ensure that this is well-defined.

As in Section [3:3:3 we use the symbol p to denote the map p : P — v/{+1} induced by the
blowup map Xgg — C?/{+1} on Eguchi-Hanson space. For small enough t we have that the
overlap O := U;-1g N p(U) is non-empty. Use this to define E; by gluing together Ey and s(E)

via ¥ over O, i.e.

Et = Eoly\1,(U,-1\0) Y S(E) | p-1(U, - ) [~ (4.28)

where v ~ ¥ (v) for v € Eyly,(0)-

Construction of A;: Let y; : N; — [0,1] and y/ : Ny — [0, 1] be rescalings of a smooth
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Xt

b

Xt

2t R/2 R

Figure 5: The cut-off functions y; and y; from Eq. (7:29) for small z.

cut-off function such that

Xe lre<ey = 0and x|, 226y = 1,
(4.29)

X:|{rtSR/2} =1 and X;l{rtSR} = 0.

Similar to the definition of Ae € o (s(E)|v), define A € I (EOlYt(Ut—lR)) by pulling back
A € d(Es). By definition of E;, we have that Ao and 1& are both connections on E;. The
map @ identifies A, and s(A) by the second point of Theorem[g:15] Because ¥ is an extension
of ® defined by radial parallel transport, and A, and A are also defined via radial parallel

transport, we have that Ao = A, as connections on Etly,(0)-

We then have o € Q! (Ads(E)|p) and b € Q'(Ad Ey|p) such that

s(A) = A + 0, 0=Asx+b overO. (4.30)
Define then
s(A) onr; <t
A= Ao+ )x;b+ xfo ont<r <R (4.31)
0 onr; > R.
O

The following proposition follows immediately from Definition
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Proposition 4.32. Let y; and /| as in Eq. (329). Then there exists ¢ > 0 such that for all

t e (0,7T):

IA
n

x lleog, +lldxellcos

1,0;¢

IN
o

lxFllcos, + lldx? ]l coa.

The following proposition is proved like Proposition 23] with the proof from [Wali7] directly
carrying over to this setting. The estimate for o holds because of the fast decay of the curvature
of ASD connections on ALE spaces, see Proposition[z5} The estimate for b holds because over
L we have that As, = 0, not just in the L-direction. That is because A is defined using parallel

transport with respect to 6 as in Definition {22}

Proposition 4.33 (Proposition 7.6 in [Wal17])). Let 0 € Q'(Ads(E)|o) and b € Q' (Ad Ey|o) as

defined in Eq. (d30). Then there exists ¢ > 0 such that for allt € (0,T):

< ct? and

CU . (t<ri <R)

lollcos reryem *+ [0

< ct?.

Coq,(re<R)

4.2 Pregluing Estimate

The goal of this section is to derive an estimate for F4, A l;tN . This is achieved in Corollary 454

in the general case, and in Corollary :57)in the special case of resolutions of T7/T.

4.2.1  Estimates for the G,-structures Involved

We have constructed a connection A; that looks like s(A) near L and looks like 6 far away
from L. The connection s(A) is close to being a G,-instanton with respect to /¥, so in order to
control the pregluing error, we will need to estimate the difference /¥ — ¢ This will be done

in Propositions 34 and {-37

On the other hand, 0 is a G,-instanton with respect to i/, so we will need to estimate the
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difference /¥ — . This will be done in Proposition g39}

Proposition 4.34. There exists ¢ > 0 independent of t such that

N p -1
[[AR ||c§;g;(UR) set (4-35)
Proof. We have
N p
|¢l’ - lpl’ |g£\7
d[tzﬁ(),g + t4ﬁ2,1+] tz)(l’g + t493,1 + t402’2 if 7 < t_1/9

d[tzﬂo,_g + t4ﬁ2’1 + a(tl/gf) . Y*g] + l'z)(l’g + t493’1 + l’492,2 if t_l/g <r< 2t_1/9
d[tzﬁ(),g + t4ﬁ2,1 + Y*g] + t2X1,3 + t403’1 + t462,2 if 2t_1/9 < F < t_4/5
d[(1 = a(t**F)) (£2fo3 + t*Bo1) + Y01+

if 145 < F <2745

tz)(l’g + t493,1 + t492’2 - a(t4/5f)t201’2

d(X.0) + 2 y1s + 14051 + 14025 — 1201 5 if 26745 < F (4.36)
o(1) ifr <t
O(t773) ift <i<t1/?

O(tF 2 +127%)  ift Y9 <f <o 1/®
O(tF 3 +127%)  if2t7 /9 <y < ¢4°
O+ if ™45 <y <o s

O+ ifatr™5 <,

where we used Propositions and[3.103]and Theorem [3.110]in the second step. Multiplying

with the weight function (¢ + r;) 2 gives the estimate for the LS, ,-norm, and the estimate for
g g 2,05t

0, .
the C,7.,-norm is proved analogously. O

Proposition 4.37. Let N, be the resolution of T’ /T from Section[3:2, There existsc > 0 independent

of t such that

”Wﬁv - lﬁf“co""

2,05t

Up) = ctt. (4.38)
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Proof. This is a restatement of Lemma[3.36] In the case that N; is the resolution of T7/T we
have that ¥/ is closed, so the forms t2 y; 3, 051, t46, , from Proposition[3:103|can be chosen to
be 0. Furthermore, in this case {p:.V =Y/ (*¢), so { = 0. Using this and that the cut-off happens

where {t71/2 < ¥ < {7, the same proof as for Eq. (z=35) shows the claim. ]

The following estimate holds in general, not just for resolutions of T7/T:

Proposition 4.39. There exists ¢ > 0 independent of t such that

||¢,{V—¢||Co,a ({(xeN,#(x)21)) = ct?. (4.40)

—2,0;¢

Proof. Using Propositions[3.92 and [3:103]and Theorem [3:110} the proof is analogous to Propos-
ition 434} O

Last we need an estimate comparing JtN and ¢/~ in a Holder norm. In Theorem [3:110] we had
this estimate for the L*-norm, but not for the Cg’g.t—norm. Going through the proof of [2.26]
one can improve this to a Cg’g‘.t—estimate as stated in the following proposition. For the case of

resolutions of T7 /T, this was done in [Wal13al Proposition 4.20], and the proof carries over to

resolutions of Y /{1).

Proposition 4.41. There exists ¢ > 0 independent of t such that

AR < ct!/18, (4.42)

0,cx
0,0;¢

4.2.2 Principal Bundle Curvature Estimates

For our pregluing estimate we will want to estimate *(Fj4, /\QEN ). This is done in Corollaries£:54]
and [F57] Most of the heavy lifting is done by the following Proposition 43} here we get an

estimate for *(Fa, A ¥/) which then is combined with the estimate for gZN —yN.

Proposition 4.43. There exists ¢ > 0 such that for allt € (0,T) we have
N
[[#(Fa, A Y| coa < ct. (4-44)
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Proof. We will estimate *(Fa, A ) separately on some regions:

1. Onr; < 2t we have
- - 1 _ -
Fa, = Fsa) + xr dacb + X Lo.b] + 2 () [b,b] + dy; AD.
Thus by Proposition [:21, Proposition [4-32} and Proposition 33

”FAt — Fsa) ”cﬁﬁ‘o;t(rt <2t)

< ||1||C0’§‘0;t(rt§2t) ”Xt_”cg:gft(r,szt) ”dAoob”cg;gft(r,szt)

+ ”Xt_”Cg:gft(rtgzt) ||0||Cf‘§‘0;t(rt52t) ||b||cf:”ft(rt52t)

(4-45)

1 12 2
+ 5 ||1||C9‘§0;t(rt§2t) ”Xt “cg;gt(rtszn ||b||cf:g;‘t(rtgy)

+ ||1||C2’§0;t(rt§2t) ||dXt_||Cg‘fO;t(rt52t) ||b||Cf:gft(rt§2t)

< ct?

< ctl if I > 0, which follows from

where we also used the fact that ||1]] e (rp<an S

Definition 19| using r; < 2t.

Remember that [Fy4)]20 A 1//f = 0 by the ASD condition and [Fs(4)]1,1 A t,bf = 0 by the
Fueter condition (cf. Theorem [£:15). By Proposition[g:23, we therefore have:

”FS(A) A Wf“c‘)’go;t(rtszt)

< IFscnlioz) A7 llcos ,<n

S ”[FS(A) - F9|L](0,2)||C°’Z‘O;t(rt <2t) ”lﬁ)“CO’”‘ (4.46)

+
0.0 (T2 <21)

||F9|L||Cg:§ft(rt§2t) ’ ||¢f||cg:gt(rt§2t) ' ||1||C2’Zo;t(rt52t)

< ct?,

where we again used Proposition[£:21} Last, note that by Propositiongz3 and Eq. (:45)

we have ||F At” < t? because the weight function in this region is uniformly

CO (re<t)
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bounded from above and below by ct?. Thus, by Proposition gzz1and Eq. (#35):

||FAt A (1//?] - ¢f)”c0>§0;t(rtgzt) < ”FAtHCO’“ <2r) ||¢EN - 1//;3”00’”‘

a0 (Tt 20 (re S28)

(4-47)
< ct.

Putting the estimates from Eqs. (7-35) to (@-47) together, we get

|| (Fa, Ay )||cﬂs§0;t(rt32t)

S ”FS(A) A l//f)”CO’ZO;t(rtSZt) + ”(FS(A) — Fa,) A l/’f”co’”‘

0. (re <21)

+ ||FAt A (1//?] - l//f)“CE’ZO;t(rtSZt)

<c(t*+t2+1) <ct.

2. On 2t < r; < R/2 we have A; = Aw + 0 + b and therefore
Fa, = Fg+ [0,b] + F5(a) — Fa... (4.48)

First,

(| (Fscay = Fa) A9y || o

o (2t<r: <R/2)

< ||[Fs¢ay = F AyP
||[ s A“]Z’O 4 o (2t<ri<R[2)

(4.49)

IA

|| [Fs(A) - FAm]z,o ||¢f||C0’g;‘t(2t5rt <R/2)

% (2t<r,<R[2) 0,

ct?,

IA

where we used point (ii) of TheoremZ:15)in the first step and Proposition[f.23]in the last

step. We also have

||(F3(A) —Fa.) A (#\l - 1//f)||c°’§‘0;t(2t3rt <R/2)

IA

”(FS(A) h FADO)”CO‘EO;t(ZtSrt <R/2) ”%{V - wf”cg:{ft(msn <R/2) (4.50)

IA

ct
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where we used Proposition[gz3 and Eq. (@-35), therefore

”(FS(A) —Fa.) A ¢?’\[||c°’go;t(2t3rt <R/2)

< ”(FS(A) —Fa ) A wf”cg‘go;t(ZtSrtsR/Z)

(4.51)
N P
+ ||(Fs(A) —Fa,) A (1//t - )”cﬂiz'{‘o;t(msn <R/2)
< ct.
Second,
N
”[G’ bl A Yy “cﬂ;‘o;t(ztsnsR/z)
N
< cllo] |c2>§50;t(2t5rt <R/2) |b] |Cf:gft(2tsrt <R/2) ||¢t ||C8:gft(2t5rt <R/2) (4'52)
< ct*
by Proposition [{:33}
Third,
N
||F9 A Y ||c(_”;fo;t(2tsm <R/2)
< ||[Fo A ¢||CE’;"O,t(2t3rtsR/2)
0 (4-53)

+1Follcas, ar<r, <rpm 192 = Vlcas

50 (20 <re <R/2)

< ct?

where we used the fact that 6 is a G,-instanton with respect to i as well as Eq. (F-70) in

the second step. So, altogether

”*(FAt A l//?[)||cg’z""0;t(2t§rtsR/2) < ||F9 A w?[”cﬁvgo;t(msm <R/2)

+|[o, b1 A Y| o

72Y0;t(2t5rt <R/2)

+ ”(FS(A) —Fa ) A wf,”cf’z"fo;t(msn <R/2)

<ct

by combining Egs. (4.48) and (751) to (F53).
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3. OnR/2 < r; < Rwe have A; = 0 + y/ o and therefore
1
Fa, = Fp+ x; dgo + E()(;')z[a, ol +dy; Ao
Therefore, we find that

”FAt - FG”C?’ZOJ(R/ZSH) < ”)(;”CO’“

o (Rj2<rs) ||d90-||C8‘fo;t(R/25rt) 11l coe (R/2<ry)

2,05t
il llo]|? 1] 00
o WXelleys, (rpzsr WM coe (rpz<ry T, (R/250)

+
+ ”dXt ||C8:gft(R/2§rt) ||U||C9’fo;t(R/25rt) 1]l coa (R/2<ry)

1,0;¢

<ct?

where we used Propositions and [£-33)in the second step. Using this, we see

”FAt A %\]”CQ”‘

—2,0;¢

(Rj2<ry) = [|(Fa, = Fo) A ¢§V||CE‘§O;t(R/25rt)

+ ||F0 A lﬁiV”Co,a

—2,0;¢ (R/Z Srt)

< ctz,

where we used the fact that ¥ = ¢/ where r, > R/2 and that 0 is a G,-instanton with

respect to .

We have that F4, A /N = 0 outside the three considered regions, which proves the claim. O

Corollary 4.54. There exists ¢ > 0 such that

*(Fa, A YY)

o S ct!/18, (4.55)
—2,0;¢
Proof. First, observe that

1Fa [l cas: | <c. (4.56)

This follows from estimating F,4, separately on the three regions from the proof of Proposi-
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tion Then

#(Fa, AYY)

e <o A e+ B A G -0

—2,05t —2,05¢

<o CEs AV N, e, [ - 9

0,0
CO,O;t

< c(t+t/18) < /18

where we used Proposition f-43]to estimate the first summand in the last step, and Eqs. @42)

and (4.56) to estimate the second summand in the last step. |

As promised, we now turn to the special case of resolutions of T’ /T, rather than general G,-
orbifolds. We get a better pregluing estimate here, which is due to the following two facts:
first, we get a better estimate for *(F4, A ¢/V) on the resolution of T7/T, because near the
associative, A; is close to s(A), which is close to being a G,-instanton with respect to t,bf ,and
Proposition g:37] says that N — y/f' is small. Second, the difference @N — ¢ is smaller on

resolutions of T7/T than in the general case.

Corollary 4.57. Let N; be the resolution of T’ /T from Section[3.2 Then there exists ¢ > 0 such

that forallt € (0,T) we have

A

+(Fa, A YY)

e S ct”. (4.58)

—2,0;¢

Proof. We first prove

||*(FAt A lﬁv)ncggo;t ct”.

IA

(4.59)

as in Proposition {43} the only difference being that Eq. in Egs. and gives a
factor of t? rather than ¢, yielding Eq. (#59). For small enough « € (0, 1) we have that

by Theorem Taking Eqs. ([#59) and together gives Eq. as in the proof of
Corollary g5 ]

vy -y o < ct®? (4.60)
0,0;¢
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4.3 Linear Estimates

We now arrived in the second step of the three step process of (1) constructing an approxim-
ate solution, (2) estimating the linearisation of the instanton equation, and (3) perturbing the
approximate solution to a genuine solution. The estimate in question is Proposition 77 It
makes use of the norms |||, and [|-||g, that are defined in Section 3.1, and the analysis is

analogous to Section[3:2-3

The idea of the proof is this: near the resolution locus of the associative L, the linearisation of
the instanton equation is approximately equal to the linearisation of the Fueter equation. De-
formations of the approximate solution and deformations of the Fueter section live in different

spaces, so some work will need to go into making this statement precise.

Over the course of Sections to [4-3.5 we work out an estimate for the linearised operator
modulo deformations of the approximate instanton that come from deformations of the Fueter
section. This estimate is given in Proposition {105} Its proof is very similar to the proof of
Proposition we use a Schauder estimate for the linearised operator, which is given in
section Section[3:4} together with analysis on the local models R* X Xgy and R3 x C?/{+1},

which is explained in Section[f-3-3}

So we have estimates for the linearised operator on instanton deformations that come from
deformations of the Fueter section from Section[f-3-2]and on the other instanton deformations

from Section [-3:5] In Sections [4.3.6] and 3.7 we combine both and complete the proof of

Proposition
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4.3.1 Stating the Estimate

In the previous section, we constructed a connection A; € & (E;). The linearisation of the

G,-instanton equation together with the Coulomb gauge condition is

Ly =Lya, : (Q°® QY)(M,AdE) — (Q° @ Q') (M, AdE)

£ 0 d;, £

H —_~
a dAt *(lﬁi\] /\dAt) a

5

cf. Eq. (z103). We introduce the following notation for the constant part and the quadratic
part of the G,-instanton equation: for a = (£, a) € (Q° ® Q!)(N;, AdE,) define e; as well as

Q:(a) € Q°(N;, AdE,) via

* (FAt+a A l;Z“I\]) + dAt+a§

e (Fa, AP 4% (daa A Y +da 64~ 5 ([ana] AJN) +[Ea]. (a6
N — 2

=0¢(a)

In this section we will study the operator L; and derive an estimate for the operator norm of
the inverse of L;. This operator norm will be taken with respect to the complicated norms

[|-lx and [[-||y, taken from [Wal17, Section 8], which we will explain now.

We need a way to decompose elements in Q!(N;, AdE;) into a part coming from a section of

s*(VIM), which is nonzero only near the gluing area, and a rest:
Definition 4.62. The section s gives rise to a connection s(A) € & (s(E)) by Theorem 15, A
section f € T'(s*VIN) analogously defines an element in Ty 4) (s(E)) = Q' (P, Ads(E)), say
i f. Use this to define

10 : T(s"VIR) — Q' (N, gg,)

(4.63)
f e xf-if.
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Further define 7; : Q'(N;, AdE;) — T'(s*VI) for a € Q'(N;, AdE;) and x € L by

(mra)(x) = Z‘/P {a, ltK>gf' VOlgﬂPx ‘K, (4.64)

where k runs through an orthonormal basis of (V) () with respect to the inner product
{1+, tt->g;. Here the integral is taken with respect to the metric induced by (pﬁD restricted to Py.

Let further El’ = 1Ty and ne == Id —Et.

The following proposition states that 1, and 7; are bounded operators. The proof of these

estimates is similar to the proofs of Propositions[3:45)and [3.48] and [Wal17, Proposition 6.4].

Proposition 4.65. Forl < —1and§ € R such thatl —a+6 > -3 andl+ 6 < —1 there is a

constant ¢ > 0 such that for allt € (0,T) we have

-1-1
e fllcas < et™ 7 |fllcos and

1+l-a
l|7eallcoa < ct ”“”C?;;t(v[o,m,t) .

Proof. The first inequality is proved like Proposition 345}

To prove the second inequality, note that by PropositionZ50)we have for x € L,x € (VI)(x)
|i*’<|gf <ce(147)7°

for a constant ¢, depending on x € L and on k. Because (VIN)s(y) is a finite-dimensional

vector space we can take ¢ = max|| |,» p=1Cx to get the estimate
,gl
. -3
|Z*K|g119 <c(1+7) ||K||glP’Lz (4.66)

for a constant ¢ independent of k. By compactness of L, we can assume c to also be independent

of x € L. By measuring in g} instead of g© we get from Eq. (3.60):
, -1y; 2 =3
|l*K|gf =t |1*K|gf < ct*(t + tr) ||K||glP’L2 . (4.67)

For some interval ] C R and x € L we denote Pyj := {u € Py : #(u) € J} and similarly for
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(v/{£1})x . By abuse of notation we write vol o for vol oFlp, € Q*(Py) and similarly for volgy.

/ (a, xf - ixk)gp volgp < / |a|gf|)(;' ixk|gp vol
Py Pyx
t .
= C/P [0.1] (t+—tf)3Wl’5;tVOIng ”aHLiﬂ&;t’gf ||K||L2’91P
X, 10,

2
-1
+c/ ——3 Wi Volgr lallps ’P||K||L2’p

Px,[l,Rt—l] (t+ tr)3 ” It 189t 91

IA

-1
CVOIgf(PXa [07 1]) -t ||a||[,;”°(‘;;t’g£7 ||K||L2,gf

t* .
+c ———wi L volyr [lallpe e lIK]lz e
/<v/{+1}>x,[o,Rt-1] (t+1tF)3 bt T Lot 9

IA

143
et Jlallpy gr 1K1z 0

:
2-8 1+6-3 .3
+c‘/0 0 (t+r) r’dr ||a||L;’f5;t,gf||K||L2,gf

R
2 1-5 -3.3
+c‘/\/? et +r)r’dr - ||a||L(l>,05;t’gf ||K||Lz’gf.

(4.68)

Here we used Eq. in the second step. In the third step, we switched from integrating

over P, 1 ge-1] to integrating over v, [; g;-1]. We could do this because 7 on P corresponds to
. . P .

the radius function r on v, and g, | Poiiri1) pg;| Py = 0 measured in g, as t — 0 by

Eqgs. 3:93) and (3100). The latter implies that we can change VOlgf to volyr by Proposition[A.4}

We used the definition of w; s,; and changing into sphere coordinates in the fourth step.

We now treat the two integrals separately.

v 1+6-3 3 svl | 3t t*
t Spidr = D -
/0 (t+n)™rdr=1(r+1) (5+1 240+ D)(r+ 1)
3t? ret |V
+ +
(=1+6+D(r+t) 1+5+1), (4.69)

C(t5+l+1 + t5/2+l/2+1/2)

IA

Ct5+l+1,

IA
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where we used a computer algebra system to compute the integral in the first step and used

d +1+1 < 0 in the third step. For the second integral we find that

R R
/ ot + ) dr < / r+1=0 qp
Vi 4

[rl+1—6]R
\G (4.70)
[ 1282172 1

IA

IA

+c

ctl+1

IA

where we used the fact that -] — § — 1 > 0 to estimate the first summand in the last step, and

the fact that [ < —1 to estimate the second summand in the last step.

Combining Egs. to we get

. 3+l
[ G i volyy < o lallyy el w7
X

If k1, k2 € (VIR;)s(x)» then

<X:- - LK1, X:- : i*K2>L2,gf ~ <i*’<1, i*K2>L2,gf
(4.72)
~ t2<i*K1, i*K2>L2,gf’

where ~ means comparable uniformly in ¢. Here, in the second step we used the fact that

volye|, = tt volyr, - and (k1 (y), k2(y))gr = t‘z(xl(y),xz(y))gf for y € P,. Equation

implies that if k¥ has unit length with respect to the inner product {i;-, 1;-) e then

il 2 g < et L. (4.73)

Because ||| 12gP and ||| L gP r€ Norms on a finite-dimensional vector space, they are equi-

valent, and thus

il gp < et (4.74)

Combining Eqs. (7-71), (@73) and (7-74) and recalling the definition of 7; from Definition [4.62]
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gives

||7ral| Lo < . ||K||Lm’gf

Z ‘/P (@ 1e1)gp volgr),
K x

l
< ct™ lallLs, -

The estimate for the ||-|| 0« H6lder norm follows analogously. O

We are now ready to define the norms which we will use to prove estimates for the operator

Lt:

Definition 4.75. Denote by X, and 9), the Banach spaces C**(Ny, (A’ ® A') ® AdE;) and

CO%(Ny, (A ® A') ® AdE;) equipped with the norms

lal, = elcss +t e and

(4.76)
— 0/2

lally, =" [Ineallcoq, -+t lrallcoc

respectively.

Using these norms, we can now state the main result of this section:

Proposition 4.77. Let N; be the resolution of T /T from Section[3:2 Lets be the Fueter section and
0 be the G,-instanton used in the construction of A; (cf. Proposition[gz7). If s is infinitesimally
rigid and 0 is infinitesimally rigid and irreducible, then there exists a constant ¢ > 0 which is

independent of t such that for small enough t and alla € (Q° ® Q') (N, AdE;):

llall, < cl[Leally, - (4.78)

Unfortunately, we are restricted to the case where N is a resolution of T7/T. The reason
for this is that in this case we have improved control over the G,-structure Y as proved in
Proposition 37]and Theorem[3.84] The proof of the proposition extends over the rest of this

section.
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4.3.2 Comparison with the Fueter Operator

Given an element v € I'(s*VIN) one may do two different things to it: either embed it into
QY(Ny, AdE,) first, and then apply L,. Or apply the linearised Fueter operator first, and then

embed it into Q' (N;, AdE;).

Compare this situation with Section[3:z-3} there we considered an element in Q°(L) and could
either embed it into Q?(N;) first, and then apply Ay,. Or we could apply Ay first, and then

embed it into Q?(N;). In that case it turned out that the two are the same up to a small error,

cf. Proposition[355]

In this new situation this still turns out the be true with a similar proof. In [Wal17|], Fueter
sections into a moduli bundle of ASD-instantons on R* were considered, and the following
proposition was proved in that setting. In this chapter ASD-instantons on Xgy are considered,
but the proof works essentially the same way. That said, we do need that T,Z;N —yF is small. This
is true on resolutions of T” /T by Propositiong-371and Theorem[3.84]but not proved for general
resolutions of G,-orbifolds. Consequently, we only know the following two propositions to

hold on resolutions of T7/T.

Proposition 4.79 (Proposition 8.26 in [Wal17]). Let N; be the resolution of T’ /T from Section[32
There exists a constant ¢ > 0 such that for all t € (0,T) and all v € T(s*VIR) the following

estimate holds:

[|Leteo — 1 dsg‘UHcﬁZaO_t < ct? [[o]|cre - (4-80)

The following proposition is a consequence of Proposition that is proved like Propos-
ition It essentially provides the estimate for the inverse of L; on the space Im7, C

QY(N;, AdE,).

Proposition 4.81. Let N; be the resolution of T’ /T from Section[3:2 If s is infinitesimally rigid,

then there exists a constant ¢ > 0 such that forallt € (0,T) and allv € T (s*VIN) the following
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estimate holds:

llollcra < ellmiLeteo]lcoa - (4.82)

4.3.3 The Model Operators on R® x Xgg and R® x C?/{+1}

As before, let Xgy be the Eguchi-Hanson space. To prove the estimate in Proposition 77, we
will compare the operator L; with the linearised instanton equation in the model case of a

pulled back ASD instanton on R? X Xgy.
Properties of the Model Operator

Let A be a finite energy ASD instanton on a G-bundle E over Xgy. The infinitesimal deforma-
tions of A are then governed by the operator 64 from Eq. @31). Denote by px;,, : R* X Xgg —
Xgy the projection onto the second factor. By a slight abuse of notation we denote the pull-

backs of A and E to R® X Xgy under DPxqy by A and E as well.

Denote by L be the linearised G,-instanton operator from Eq. (z:105). We can define the map
EDLEVE pﬂzaT*R3 5 p}EHAJ’T*XEH, which takes a 1-form, dualises it, and plugs it into the
product G-structure ¢ from Eq. @27). It maps dx; to —w;. Using it, we can relate §4 and Ly

as follows:

Proposition 4.83 (Proposition 2.70 in [Wali3b]). Under the identification
() g TR > pi AT Xep
and accordingly
Q% @ Q'(R® X Xgy, AdE) = Q°(R® X Xgp, pi,, [(R @ AT Xy @ T"Xp) ® AdE])

the operator Ly can be written as Ly = F + D4 where

3
F(§0,a) = ) (~(3i0, 0:), & - i, ;i) and Dy =
i=1 o
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Moreover,

5a5"
Lila=Ags+| 4 . (4.84)
55

A
Recall the weighted Holder norms ||-|| cye on R? x Xgy from Definition 370} The following

proposition is then a consequence of Lemma(3.38}

Proposition 4.85 (Proposition 2.74 in [Wali13b]). Let X be an ALE space. Let f € (=3,0). Then
ac C}’a is in the kernel of L; : C}’“ — C%’f‘l if and only if it is given by the pullback of an element
of the L? kernel of 5; to R? x X.

Comparison with L;

We now explain two maps s* and s": the first for "zooming into” the resolution locus of the
associative L, the second for “zooming into” the gluing region of N;. Fix a point y € L, a scaling
parameter d € Z, a gluing parameter ¢t € (0, T), and two positive real numbers €y, €; defining

the scale of the region into which to zoom in.

Let

Ve};,ez;t(y) ={xeP:o(x) € Im(expy |(_€1,€1)3), F(x)t < e} C P,

Ug/t,ez/t;t = {(.X', Z) € R3 ><)(EH ‘X € (_el/t: el/t)Sa p(z) < 62/t}'

Here we implicitly used an identification T,L ~ R to have exp, acting on (—ej, €1)%. Choose
this identification so that it maps the orthonormal basis e;(y), e2(y), e3(y) € T;L from Sec-
tion 333 to the standard basis dx;, dxp, dx3 € A'((R?)*). Fix an element f € Fr, of the
unitary frame bundle of v around y € L. It induces an isometry Xgy =~ Py, and assume that
f is chosen so that w; is sent to @;| P, under this map for i € {1, 2,3}. Then, for small ¢;, we

define

P P P
E": Uel/f,ez/f;t - Vel,ez;t(y)

(x: Z) = Psb—>expy(l‘sx) (f(z)) €P.

(4.86)
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Here, s — exp, (sx) denotes the unique shortest geodesic from y to exp(tx) in L, and PsHeXpy( £x)
denotes parallel transport in P with respect to H along this curve, cf. the paragraph before
Eq. (3.98). For ¢; small enough, this is a diffeomorphism. The reason for this definition is the
following: because of our choices of identifications T,L =~ R3 and P, ~ Xgy we have that
(EP)*(¢F)(0, 2) is the standard G,-structure on R* x Xgy, for all z € Xgy, cf. Eq. (3.98). Let a
be a tensor field of valence (p, q), i.e. in index notation p lower indices and g upper indices,

on Veliez;t(y). We then define
s"(a) = SP € (a) = t7PU(EP)"q, (4.87)

which is a tensor on U, /4¢,/+¢- The point of this is the following proposition:

Proposition 4.88. There are constants ¢ > 0 and € > 0 such that for small t the following holds:

foralle;, e; € (0,€) and foralla € (Q° & Q) (N, E;):

|| o d+l|| || (
aty & ’ 4.89)
al . L
“ry Ll+é‘( 61/t62/tt) 151( elez(y))
P.ee g+l
S a al| ~k.« P s (490)
H o Clis 61/tez/tt) || ||C151(V\ﬁ,\ﬁ(y))

where ~ means comparable independently of t. Furthermore, using the Hyperkdhler isomorphism
Py =~ Xgy induced by f, we can view the connection s(A) over P, as a connection over Xgy,
denoted by f.(s(y)). Then

P\/—\/— PNLNE

< eVt ||al| e

Clss (Vi () Lo

. .91
wr Ly (@91

Proof. We first prove Eq. (4.89): for (0,z) € Ug,/t.c,/r.¢ the map d(o)E” (cf. Eq. (4.86)) is an
isometry for the metric t*(ggs ® g(1)) on Tjoz) (R® X Xgn) and the metric on Tgp g , P induced

by g¥. Because of the scaling factor t4*?~7 from Eq. we have that
P
Isrr2a(0,2) g g, = t41a(E7(0,2))] . (4.92)

The map E’ is not, in general, an isometry away from this one point, as exp, need not be an

isometry. Thus, Eq. (7:92) need not hold in points different from (0, z). However, using Taylor
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expansions in a neighbourhood of y in L for a and gf we get

P.e e
Hsd,t;y 4

d+l
~ all; o p .
L;i5(Uel/t,ez/t;t) ||_||L1,5;t (Vel,ez (y)),gt

Now Eq. (2.36) and Proposition g41 give the claim for the metric gV instead of ¥, which is

Eq. (4.89). Equation is proved analogously.

Now to prove Eq. (@91): as in Eq. @92), we see that for x € Py, #(x) < 1/,
-1
Lswa(x) - ((55,}5%) Lp;EHms(y))Sf}g’ﬁg) (x) = 0. (4.93)

And A; — s(A) = O(1) on Py, so

< cl||[As = s(A), a]||C8‘Z‘§;t({uePy:f(u)<1/\/?})

PENE\ ! PN
Ltg—((s ) Ly £Gs(9) Sty a)

2.ty XpH

Cg’f(s;t ({uePy:#(u)<1/Vt})

sc ||a||C2’f&t({u€Py:f(u)<1/\/?}) lA: - S(A)Hc?’“ {uePy:#(u)<1/Vt}) (4.94)

l,O;t(

< eVtllalleos (uep, v <iviy

< c‘/?”ﬂ”ciﬂ ({uePy:#(u)<1/VI})

1,5t

where in the third step we used A; — s(A) = O(1) to estimate the second factor as V. This

was possible because the weight function is bounded by vt on {u € Py F(u) < 1/+t}.
Equation (7Z91) now follows from using Taylor expansions for a, g¥, and s around y, and com-
paring g¥ and gV as in the proof of Eq. (3.89). O

We now define sV: let€; > 0, €, > €3 > 0, and

VY re(y) = {x € v/ {21} : 0(x) € Im(exp, |(—e ). € < r(x) < ez},

U’ ={(x,2) € R*x C?/{£1} : x € (—€1/t, €1 /1), &3/t < |p(2)| < &/t}.

ei/t.exftes/t;t

Just as in the definition of VEIIJ e,» We implicitly used an identification T,L ~ R® so that e’ is

sent to dx’ for i € {1, 2,3}. Recall also the frame f that sends w; to @ilp, fori € {1,2,3} under
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the isometry Xgy =~ P, induced by f. We see from Eq. (397) that a)l.(o) is sent to &, under

the isometry C?/{+1} ~ (v/{#1})y induced by f. For small €, €;, €3, the map

V.,TTV v
E": Uel/t,eg/t,eg/t;t - Vel,EZ,ea;t(y)

(5.2) > Pl sy (1o (f(2)) € v/ {21}

(4.95)

is a diffeomorphism, where £V denotes parallel transport in v with respect to the connection
V" from Proposition[3:92} Because of our choices of identifications T, L ~ R and (v/{1}), =
C?/{%1} we have that (E¥)*(¢})(0, z) is the standard G,-structure on R*xC?/{+1}, forall z €
C?/{#1}, cf. Eq. (3.96). We now define s" just as we defined s” in Eq. (1.96), only exchanging
E? for E”: for a tensor field a of valence (p, g) on Ve, eyt (Y) set

s"(a) = sy (@) = tPUEY) a, (4.96)

In the following we use the norms from Definition [3:420} So, the notation Cg’“ does not mean
zero boundary condition, but means that the weight function appears with powers of 0 and

0 + o in the two summands of the definition ||-|| 0.«. We have the following analogue of Pro-
0

position[4.88

Proposition 4.97. There are constants c > 0 and € > 0 such that for small t the following holds:

foralle;, e, € (0,€), €3 € (t,€) and foralla € (Q° ® Q) (N, E;):

v V,€1,€2,€3 d+l || ||
w5 .S ~t a (4.98)
Lot d,t; =70 =L, (VY >
Y Ly (Uevl/t,EZ/t,es/t;t) Lo (Vel.eres (9))
v V,€1,€2,€3 d+l || ||
w/ o s ~t al| ke (4.99)
L8:t7d t; =] k- =lCrs (VY >
y Gy a(Uevl/t,ez/t,es/t;t) 1,5;t( €1-€2-€3 )

where ~ means uniformly comparable in t and

roi-8 ifr <1/4t

14 —
Wise =

rTifr > 1/

Furthermore, using the Hyperkdhler isomorphism P, ~ Xgy induced by f, we can view the connec-

tion s(A) over Py as a connection over Xgy. By Eqs. @41) and (Z43), this connection is asymptotic
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to a flat connection, say Ay, on the orbifold C*/{+1} with monodromy representation p. Then

-1
_ V,€1,€2,€3 N V,€1,€2,€3
Lia (sz,t;y ) chonsLt;y a

Cg’zofg;t (Veq,ez,eg (y)) (4‘100)

scla+e+ t/e)) ldloe v,

where pc2 : R3 X C?/{+1} — C?/{+1} denotes the projection onto the second factor.

Proof. Equations (4.98) and (g:99) are proved as in Proposition [4.88]

We now prove Eq. (100). Adapting Eq. 99) to the area {u € P, : e3/t < F(u) < €/t} we

get
-1
Peel, Peei,
Lia - ((Szf;ifz) Lpsef (s(y»sl,f;ifzg) 0
C_’Z&t ({uePy:e3/t<F(u)<ez/t}) (4‘101)
< ce ||g||C1’f§;t({uEPy:eg/t<f(u)<eg/t}) :
We have | p;‘(EHf* (s(y)) — A coa = O((popxyy) ) by Eq. (z-23) and the fact that we use § = —2

0;0

in our definition of moduli space (cf. Propositionz-5). Thus, for x € P, with 3/t < F(x)t <R,

PENE) ! PENE
(SZ,t;y ) [LP};EHf*(S(y)) - LP;<EHA0] Sl,t;y a

(x) < c(t/e3)?. (4.102)
gy

Combining Eqs. (@101) and (g102) we get the desired Eq. (¢100) on P, N V. _, . (y). Equa-

tion (@100) then follows like Eq. (Z:91) by taking Taylor expansions of g, g, and s around v,
and this time comparing g} and gV using Eq. (3:93) and Propositions E34andgf41y O

4.3.4 Schauder Estimate

On Y/{i) we have the estimate

... < e (l1Eoalcor +all- )

from standard elliptic theory, e.g. [Bes87, Section H]. With some additional work, we get an

estimate for weighted norms on R® x Xy (see [Wal17, Proposition 8.15]), and can then glue
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these two estimates together to obtain:
Proposition 4.103 (Proposition 8.15 in [Wali7]). There exists ¢ > 0 such that for allt € (0,T)

the following estimate holds:

leller, < (ltagles, + el ) (w200

4.3.5 Estimate of n;a

The following proposition is the crucial ingredient in the construction of solutions to the in-

stanton equation:
Proposition 4.105. There exists a constant ¢ > 0 independent of t such that for t small enough

and for all a € (Q° ® Q') (N;, AdE,) the following estimate holds:

lallgs,,, < ¢ (lLeallcac. +[[Fealle ). (4.106)

Proof. Assume not, then there exist t; — 0 and g, such that

||gi||L‘i°1,5;ti =1 (4.107)
lim ||Lti£||c2:;&ti =0, (4.108)
ili)n(}o ||Eti£||Li°L6;ti =0. (4-109)
It follows from Proposition [£:103| that
”gi”Cff&t <ec. (4.110)
Let x; € Ny, such that
wor,00 (60 |a,] () = 1. (4.110)

Without loss of generality we can assume to be in one of three following cases, and we will

arrive at a contradiction in each of them.
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Case 1. “a; goes to zero near L and on the neck”, i.e. if z; € Ny, such that r;,(z;) — 0, then

w_1,6:¢(2i) |£,~| (zi) = 0.

Without loss of generality, the sequence (x;) accumulates away from L, i.e. lim; e 7, (x;) > 0

(see Fig.[q).

Ny Y

Figure 6: Blowup analysis away from the associative is reduced to the analysis of 8 on Y.

Without loss of generality assume that x; — x* € Y/(1), where we used that (Y \ L) /(1) C Ny,
cf. Definition 311} Now, using a diagonal argument and the Arzela—Ascoli theorem, we find
that a subsequence of g; converges to a limit a* € Q'((Y \ L)/(1), AdE,) in Cll(;'cx/z. Denote by
7, : Y — Y/{1) the quotient map, and denote by X; an arbitrary lift of x;, i.e. 7,(X;) = x;. By
passing to a subsequence we still have X; — X* for some x* € Y. Denote also a* := n''a* €

(Q° @ Q") (AdEy|y\1).

Equation (4.108) implies that this limit satisfies Lyga" = 0 on Y \ L. We can extend a* to all of Y
as a distribution, and we find that then Lya” = 0 on Y in the sense of distributions. By elliptic

regularity, e.g. [Folgs, Theorem 6.33], we have that @" is smooth.

Lastly, we note that Eq. @@111) implies a” (x*) # 0. By assumption, 6 is infinitesimally rigid and

irreducible, which is a contradiction.

Case 2. “The sequence does not go to zero near L”, i.e. there exists y; € N, such that

ti_lrti(yi) - o0, but W_l,a;t(yi) |£i| (yi) + 0.

Without loss of generality assume that this is the sequence (x;), i.e. lim;_e0 ;' (x;) < o0

(see Fig.7).
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N, R3 x X

Figure 7: Blowup analysis near the associative is, by means of the map s”, reduced to the
analysis of the pull-back of the ASD instanton defined by s(o(y*)) to R® X Xgy.

For gi = (é:l" ai) € (QO @ Ql)(Nt’ AdEt)’ let

by = sy (st (ap))

=i’ Lo(x;i)ti ’ sl,ﬂ(xi);ti

Proposition [4.88| then gives

=0.

0,0
C—2+§

Bl e y < cand lim HLp;(EHﬁswx,-))Qi

—1+6(UP

1/VENE

Without loss of generality we can assume o(x;) — y* € L. By a diagonal argument and

the Arzela-Ascoli theorem, we have b, — b € (Q° ® Q') (R? x Xgp, Adpy fis(a(y"))) in
Cl,a/z

loc

, satisfying Lp;(EH fis(o(ynl” = 0. Proposition [4.85] implies that b* = p3_ c, for some
c € KerLsg(o(y) C Q' (Xgn, fes(o(y*))). Equation (F109) implies that ¢ = 0 like in Case 1 in

the proof of Proposition [3.65]

This contradicts Eq. (Z111) as follows: denote by (z;) € R* X Xgy the sequence corresponding
VE1/VE

Lo ()" Then (z;) is a bounded sequence, as the R*-coordinate of all

to (x;) under the map s
z; is 0, and the Xgy-coordinates are bounded by the assumption that lim;_, e tl.‘lrtl. (x;) < oo.

Thus we can assume without loss of generality that z; — z* € R® X Xgy, and find that

1

W(Z*)l_a -
Cc

b'(z")

_1; v 1-6
= lliglo Wl,g;t(zi) |Qi(zi)| 2

by Proposition [4.88] which is a contradiction to b* = 0.

Case 3. “The sequence does not go to zero on the neck”, i.e. there exists y; € Ny, such that

re,(yi) — 0, ti_lrti(yi) — oo, but w_y 5./(y;) |2,-| (yi) +» 0.
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Assume without loss of generality that this is the sequence (x;), i.e. lim;_,q ti_lrtl. (x;) = oo and
lim; o 74, (x;) = 0 (see Fig.[8).

N, R3 x R%

Figure 8: Blowup analysis in the neck region is reduced to the analysis of the flat G,-instanton
defined on the pull-back of the framing at infinity defined by s(c(y*)) to R* x R*.

Let

(i)

062

such that eéi) — 0 and éz(i)/rt,- (x;) — oo,

. eéi) such that eéi)/rti (x;) = 0and eéi)/t,- — 00,

To ease notation, we write €, instead of ez(i) and &3 instead of !V in what follows. As before,

3

write a, = (&, a;) € (Q° ® Q') (N, AdE;), and set

b, = (G, bi) == (sv’\/t—i’ez’%(é{i) sv’\/t_i’ez’ﬂ(ai))

Lo(x;i)ti > L0(x:)5t

and denote by (z;) the sequence in R>xC?/{+1} corresponding to (x;) under the map s IV ;/(252:3
Equation (Z111) implies

|b;(z))] - w(zi) > c, (4112)

Proposition[g97/and Eq. (-110) imply that
wa& ts;,’f;ll’fz’q_ - <c (4.113)

0 ( 1/\/7,52/t,e3/t;t)

Propositiong97]and Eq. imply that

||Wl‘:5;tLp;(EHAOS;/’f;ly’ez’esg - | — 0asi— oo. (4.114)
0 1/Vt.ey[t.es/tit
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We will now conclude the argument as in case 2. The only difference is that, as it stands, the
points z; tend to infinity. Because of this, we cannot directly conclude that a limit of b, would
be non-zero. That is why we rescale by |z;| first. By passing to a subsequence we can assume

without loss of generality to be in case 3.1 or 3.2 as below:

Case 3.1.: |z;| < 1/+/f;. In this case let
b = (G b0 = (12" Cla) G I Clail) i) (4115)

Equation (Z112) implies |El~(zi/|2i|)|"‘1_5(Zi/|2i|) = |El~(2i/|2i|)| > ¢, and Eq. (Z113) implies that
on the sets B3(0,1/vt) x [B4(0, &5/ |xi|) \ B*(0, €3/ |x:|)], which exhaust R? x (C?/{x1} \ {0}),

we have:

br'™? ifr <1/(Vi-|zi)
<c.  (4.116)

brez® i r > 1/ (Vi -z | |
Cy ™ (B3(0,1/ V)X [B* (0,€2/ |xi ) \B* (0,e5/ |x: ) 1)

Here is how to arrive at the exponents of the weight function for Z in the area {(u,v) €

R*x C?/{=1} : r(v) > 1/ (Vi - |zl }:

éfir1+5t5|zi|25 — ('|zi|)*§ilzi|1+5rl+5t5

=l |G+,

and {;r'"*%t® was bounded by Eq. @1r3). The exponents of the weight function on the area
{(w,v) € R®x C2/{1} : r(v) > 1/(Vf - |zi])} and also for the 1-form part b; are computed
analogously and precisely give Eq. (4.116). Now, because of Eq. (4.116), we can use the Arzela-
Ascoli theorem and a diagonal sequence argument to extract a limit b* on R*x (C?/{£1}\{0}).
We denote the pullback under the quotient map R*® x (C? \ {0}) — R3 x (C?/{«1}\ {0}) by
the same symbol and end up with a tensor b* on R® x (C? \ {0}). Again, by passing to a
subsequence we can assume without loss of generality that we are in one of the following two

cases:

Case 3.1.1: V1;|z;| > 0 asi — oo.
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In this case, the area {u € R3x C?/{+1} : r(u) > 1/(Vt-|z|)} disappears as i — oo, and from

Eq. we get the estimate

b*rl—5

<ec. .
O (R3X(RA\{0})) ‘ (4:117)

The element b* defines a distribution on all of R® x C? and is smooth by elliptic regularity, e.g.
[Folgs| Theorem 6.33]. As in the proof of Proposition[3.65} we get an L*-bound for b*. Thus,
by Corollary 339, we get that b* is independent of the R*-direction. Because of Eq. (4.84) we
have that b* is the pullback of a harmonic form of mixed degree (in degrees 0 and 1) on C2. So,
b* is harmonic and bounded on C? by Eq. (g-17), therefore vanishes by Liouville’s theorem.
That contradicts Eq. [@112).

Case 3.1.2: V1t;|z;]| = x € (0,00) as i — oo.

In this case, after passing to a subsequence, Eq. (4.116) gives the estimate

b'r'=0  ifr<1/k
<ec. (4.118)

br*eifr > 1/k.
Cy* (R (C2\{0})

Here is how to obtain this estimate: the assumption v/t;|z;| — x implies that V/;|z;| > ¢, at

least up to a subsequence. Thus, we have t° - |z;|*® < ¢, and Eq. (4.116) becomes

H b0 ifr < 1/(Vi-|zi)

br*ifr > 1/(Vi- |z | |
Cy® (B?(0,1/VE)x [B*(0,€2/ x; [)\B* (0.€3/ |x: ) 1)

Here, taking the limit i — oo gives Eq. (4.118). In this case, we arrive at a contradiction as in

case 3.1.1.

Case 3.2.: |z;| > 1/+/t;. In this case let

b= (Gobo) = (12 Clail) G 01z Clal) b (4119)
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This gives us the following analogue of Eq. (4.116):

br 0z ifr <1/ (Vi Jzi)
<c. (4.120)

b, ifr > 1/(Vi-lzil). |
Cy*(B?(0,1/VE)X[B*(0,€2/ |x; [)\B*(0,e3/ |x: ) ])

We can extract alimit b* as in case 3.1 and are, without loss of generality, in one of the following

two cases:

Case 3.2.1: \/; - |z;]| = o0 as i — oo. In this case we have the estimate

b* 1+6 ' < )
=7 Cy** (R3x(R1\{0})) ¢ (4121)

and arrive at a contradiction as in case 3.1.1.

Case 3.2.2: Vt; - |zi] = k € (0,00) as i — oo. In this case we have exactly Eq. (1.118) and can

conclude the proof as in case 3.1.2. O

4.3.6 Cross-term Estimates

In the beginning of Section 3] we explained the idea for the proof of the linear estimate.
Namely, we want to separately consider two parts of the linearisation of the instanton equa-
tion: the first part near the resolution locus of the associative L, which is approximately equal
to the linearisation of the Fueter equation. The second part is the linearised operator modulo

deformations of the Fueter section. These parts were estimated in Sections [£:3:2]and [£-35]

However, it is not true that the linearised instanton operator neatly decomposes as a sum of
these two operators. We can take a deformation of the Fueter section, apply L; to it, and then
project it onto the part that does not come from a deformation of the Fueter section. In an
ideal world, L; near the resolution locus of the associative is exactly equal to the linearisation
of the Fueter equation and the result is 0. In reality, we do not have that the result is 0, but we

have that it is small. That is Eq. (7123). There is also, roughly speaking, the converse of this,
which is Eq. (71273).
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This proposition is the analogue of Proposition 377 from the estimate of the Laplacian on
the Generalised Kummer Construction. A crucial difference between the present case, i.e.
Proposition and Proposition is that we now get a worse cross-term estimate for
7;L¢7;. For the Laplacian, we had a factor of roughly #?, while now we have a factor of roughly
1. The reason for this is that z; and A are very close to commuting. The reason they do not
exactly commute is because of a cut-off that happens far away from L. For the linearised
instanton operator L, the situation is different: the connection A; was defined to look like 6
already very close to L. Thus, 7;L; and d;§ 7; are far from being equal, which manifests itself

in this worse estimate.

Like the results from Section [£:3:2} this proposition has been proved in a slightly different
setting in [Wal17]. Again, the proof given therein carries over to our situation if we only have

that I,ZN —yF is small, which is true on resolutions of T7 /T by Propositiong-37)and Theorem[3.84}

Proposition 4.122 (Proposition 8.29 in [Wal17])). Let N; be the resolution of T’ /T from Section[32

There exists a constant ¢ > 0 such that for all t € (0, T) we have
||’7tLtlt0||c(_’:Z”‘0.t < ct”||ollcre (4.123)
as well as

lreLneallcon < ot [Ineal|cra - (4.124)

4.3.7 Proof of Proposition £=77

Proof. Assume that the claim does not hold, and let t; — 0, g, € (Q° & Q')(N;, AdE;) such

that ||gi||£t =1, but ”Ltﬂz'”sg]t — 0.

We first prove that

ti_a/z ||Uti£i||Ci,iz§;ti — 0. (4.125)
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We have that

Inegillere < Lenuglcon
iZ C—l,(‘i;ti it C—Z,5;ti
< ||’7fiLfi’7fi£i||c°v“ + ””fiLfi”figi”CO*“
-2,8:t; —2,55t;

< || t-Lta” 0, +|| t-Lt.Et.a-” 0, +||EtLl' l"a'” 0,0t
el C*Zﬁ;ti Tttt sz,s;ti il C—z,s;ti

IA

7 = |
||77t,-Lt£||Cg,Z§;ti + ||1||cg:§;ti ||’7t,-Lt,-7T l'igi”Cg’Zo;ti +i 71, Le; N, a; coa

IA

c(Innteallens,, + et v+ -2 e

IA

[4 (”Ut,-Ltﬂ”CO,a + 0(t5/2+1—zx) + O(t1—2a+(5/2))
—2,55t;

where we used Proposition in the first step; we used 7;, + 1;, = 1 in the second and
third steps; Propositions and in the fourth step; and Proposition [f-122] together with
[[1] |ng,§;” < ¢t%/% in the fifth step. Multiplying the last line with tl._a/ ?_the last two summands
tend to zero as they are bounded by positive powers of ¢. The first summand tends to zero by

the assumption ||Lt£i||2]t — 0.

It remains to prove that

— 0. (4.126)

ti ”ﬂtigi”CW

We have that

IA

lim ¢; ””figinclﬂ lim #; ””fiLfi‘fi”fiQi”COﬂ
1—00 1—00

IA

tim t (gl + oo

IA

lim t; (||Leal|cn + et [l ).

where we used Proposition in the first step, 7, + 1, = 1 in the second step, Proposi-
tion 122 in the third step. Here, the second summand tends to zero by Eq. (@125), and the
first summand tends to zero by the assumption ”Ltgi”‘l)t — 0. Altogether, || gi” M ad which

is a contradiction. m]
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4.4 Quadratic Estimate

We state an estimate for the quadratic form Q; from Eq. (4.61), where we denote its associated
bilinear form by the same symbol. This statement is taken from [Wal17] and the proof can be

directly adapted to our slightly different setting.

Proposition 4.127 (Proposition 9.1 in [Wali7]]). There exists a constant ¢ > 0 such that fort €

(0,1) we have

||’7tQt (a. a,) ”ch;&t
<ot (Imallor, - Ingllcae +lImgllcoe -llmallce (4128

+ ””fﬂlnc&a ) ||’7f22||c°’“5 + ””fﬂluc&a ) ””l‘Qz”cﬁﬂ)
-1,6;t

and

t”ﬂ:tQt(gli gz)HCo,a
<et™ (||’7t21||c2’1”,‘5;t ) ||Ut£2||cg,35;t + ||Ut£1||cg,35;t . ””th”co,a (4.129)

+ ””fﬂlnc&a : ||’7f22||c2’f§;t +i ””fﬂlnc&a : ””fﬂzncoﬂ) :

4.5 Deforming to Genuine Solutions

In this subsection we will complete the construction of G,-instantons and show that in two
favourable situations the G,-instanton 6 and the Fueter section s can be glued together to a

G,-instanton on N;. The favourable situations are:

1. The Fueter section is a section of rigid ASD-instantons (cf. Theorem[130). This implies,
in particular, that the Fueter section is infinitesimally rigid. In this case the map 7, from
Definition[4.62]is just the zero map, which leads to better estimates of the quadratic part

Q; of the instanton equation.

2. We are in the special situation of Eq. (4.58), where we resolved the orbifold T7/T.

The main reason we are confined to these two favourable scenarios is the following: in Corol-
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laries @52) and @57 we proved a pregluing estimate with a good power of t!/1® in the general
case and a good power of t? in the case of T”/T, roughly speaking. In Proposition 127 we

stated an estimate for the quadratic part of the instanton operator which in particular implies

”Qt(ﬂpﬂz)”‘g} < ol ”21“35 ”92”35 :

To apply the inverse function theorem, we would need the bad power t~2-%=%/2 from this
estimate to be absorbed by the good power from the pregluing estimate, but the pregluing
estimate is only good enough to do this in the case of the orbifold T7/T. If the Fueter section
is actually the constant section of a rigid ASD-instanton, then we have a better estimate for

the quadratic part of the instanton equation.

Theorem 4.130. Assume now that the section s is given by a rigid ASD-instanton in every point
x € L, and assume that the connection 0 used to define the approximate G,-instanton A; from

Proposition[g.27 is infinitesimally rigid.

There exists ¢ > 0 such that for small t there exists a, = (as, &) € CH(Q° @ QY (AdE,)) such

that A; := A; + a; is a Gy-instanton. Furthermore, a, satisfies ||£t||cl,a < ct'/18,
-1,8;t

Theorem 4.131. Let N — Y’ be the resolution of the orbifold Y’ = T” T from before. Assume
that the connection 6 used to define the approximate G,-instanton A, from Proposition is

infinitesimally rigid and that s is an infinitesimally rigid Fueter section.

There exists ¢ > 0 such that for small t there exists an a, = (a;, &) € C**(Q° & Q'(AdE;)) such

that A; == A, + a; is a Gy-instanton. Furthermore, a, satisfies ”%”3& < ct??e,

The proof of the theorems will use the following lemma:

Lemma 4.132 (Lemma 7.2.23 in [DKogo|]). Let X be a Banach space and let T : X — X be a

smooth map with T(0) = 0. Suppose there is a constant ¢ > 0 such that

1T = Tyl < c([lx][ +[lyl]) [lx =yl
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Then ify € X satisfies ||y|| < 1—(1)c, there exists a unique x € X with ||x|| < 5—1c solving
x+Tx=y.

The unique solution satisfies ||x|| < 2||y||.

Proof of Theorem In the case that s is a section of rigid ASD instantons, we have that the

projection map r; is zero. Therefore, Propositions and [:1o5| give
« <c|L a . :
lalcre < cllLeallcas (4.133)
This means that
L : CH((Q" @ Q1) (N;, AdEy)) — CH((Q° @ Q') (N, Ad Ey))

is injective. Because L, is formally self-adjoint, it is also bijective. Denote its inverse by L; .

Furthermore, using 7; = 0, and therefore 7, = Id, Proposition 127 gives
R ey P U P (4330
Set T; := Q; o L;'. We then have

”Tf@l) - Tt(éz)”cﬁ&t = ||Q(L_lél - L_léz’ L_lél + L_léz)”cﬂrzﬂf&t

2||C°’”‘

et ”L_lél - L_IQZHCO’“ ”L_lél +L7'b
-1,8;t -1,5;t
B DR TS N TS W
-1,05t -1,05t

Sct™® ”21 - Qz”cﬂrg&t (”21”@;‘5;1 + ||Ql||C(}Z‘5;t)’

where we used Eq. in the first inequality and Eq. in the last inequality.

For e; we have

. < ctl/18
llecllcoa <c

by Corollary g57} For small ¢, we have that t'/18 < (¢79+%/ 2)_1 due to our choices of @ and 6
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in Definition Thus, by applying Lemma [£132] to the map T;, we get a solution b, to the

equation b, + T;(b,) = —e; for small t, satisfying the estimate ||b,|| 0« < ct!/!%.
—2,0;¢

Letting a, := L;'(b,), this means precisely L;(a,) + Q:(a,) = —e, so A; = A +a; is a G,-

instanton, and g, satisfies ||a < ct'/18 by Eq. (@133), which proves the claim. mi

|| lLa
t C*l,b\;t

Proof of Theorem131 As in the proof of Theoremg:130} set T; := Q; o L;!. Then

IT:(8y) = T (By)ly,
= [0, = L7, L7, +L7'B,)ly,
= 7P I, = L7y, L7y + L7y cne
| mQ(L by = L7 by L7y + L7y cuc
< o702 (|l 17 (b, - bolllcosr - lIneL™ By + By)l| o
el ™ @y = y)lcosr - [l ™ By + 8] e
# L™ By = by)lleoe - I7eL ™ By + b)) o
L @y = Bl e By + )|
wet™ (k™ @ = Bl el By 4 ) ens,
el @y = Bl ene - llmeL™ By + bl on
L By = Bl - el By + )| cor
#tmL ™ By = ) - 177 By + 8w
< ot 420N (t“S |lneL7" (b, - QZ)Hng&t |meL ™t By + Qz)”cﬁf&t
7 el (B = Bl e By # ) o
72 | L7 (B, = by)leow - el 7 By + By o,
2| By = b - L7 By + ) o
< et ORI by = by) [y, [[L7 (01 + B2,
< ot P02 by — bylly, |[b1 + b2y,

< et 00 by — by Iy, (I1b1llg, +11Eally, )
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Here we used Proposition 127 in the third step, and Proposition [7777]in the second to last

step.

We have
lleelly, < ct*,

by Corollaryg571 Applying Lemma[g:132]as in the proof of Theorem[Z130,shows the claim. O

4.6 An example Coming from a Stable Bundle
4.6.1 Review of the Resolution of (7> x K3)/T

Recall the G,-manifold constructed in [JK21, Section 7.3]: consider the sextic
C = {[20, 21, 22] € CP?: 2§ + 28 + 25 = 0} c CP?

and let 7 : X — CP? be the double cover of CP? branched over C. Then X is a complex K3
surface with a Hyperkahler triple of Kahler forms o/, o/, 0¥, cf. [Huy16, Example 1.3]. On X
we can define the following two maps: first, the map « : X — X which swaps the two sheets
of the branched cover. Second, there are two lifts X — X of the complex conjugation map
o : CP? — CP?. One of these two lifts acts freely on X, the other one does not. Denote the

lift that does not act freely on X by f : X — X, which has fix(8) = 77!(RP?) ~ S2. The

Hyperkihler triple !, o/, oX can be chosen to satisfy

Let o, f act on T° via

1
a(xlax25x3) = (xli _x29 _x3)a ﬁ(x15x23 x3) = (_xlax25 5 - x3) .
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Denote I’ = (a, B). Then a, B : T> x X — T3 X X preserve the product G,-structure ¢ on T> x X
defined by equation Eq. (z27). Furthermore, fix(a) = 4 - (S' X C), fix(B) = 4 - (S§! x §?), where
the S%-factors are the double cover of fix(¢) = RP? ¢ CP?. Therefore, L = fix(a) U fix(p)
admits a nowhere vanishing harmonic 1-form, namely the parallel 1-form in the S!-direction
of each component. Thus, this orbifold is of the type considered in Section[gand its resolution
N; — (T® x X)/T admits a 1-parameter family of G,-structures with small torsion, inducing

metrics g;, which can be perturbed to torsion-free G,-structures inducing metrics g;.

4.6.2 A Connection on the Orbifold (T° x K3)/T' coming from a Stable Bundle

We will now make use of the SO(3)-bundle F over CP? from Section 252} To this end, we
first recall its definition. The tangent bundle E of CP? is a complex vector bundle of rank
2, which induces an SO(3)-bundle F by Proposition The Levi-Civita connection on E
is a Hermite-Einstein connection by Proposition and induces an ASD instanton on F by
Proposition 290} denoted by A. We denote the standard Kihler structure on CP? by (J,g =
grs, @), where gpg is the Fubini-Study metric. The pullback 7*A is then an ASD instanton on
the bundle 7*F over (X, 7*g), but it need not be ASD with respect to the Calabi-Yau metric
on X. We will show in Corollary [4.136] that 7*F also carries an instanton with respect to the

Calabi-Yau metric.

Proposition 4.135 (Lemma 9.1.9 in [DK9o|)). The bundle ©*E is stable with respect to w.
Corollary 4.136. The bundle *E is stable with respect to the Calabi-Yau Kdhler form .

Proof of Corollary[4.136 Denote by & = m*w the pullback of the Kahler form for the Fubini-

Study metric on CP? to X. By Yau’s proof of the Calabi conjecture we have that ! = & +i99¢

for some ¢ : X — R. In particular, » and & are in the same de Rham cohomology class.

By Proposition[g-135) 7*E is stable with respect to . The Kéhler form enters into the definition
of stability only through the definition of slope. But slopes do not change when switching
between o’ and & as they are in the same cohomology class. Thus 7*E is also stable with

respect to ol O
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We also have the following:

Corollary 4.137 (p. 348 in [DK9o]]). Denote by np : F — CP? the SO(3)-bundle over CP? from
Section[z52 Let w : X — CP? be the branched double cover from Section[4.6. with Calabi-Yau

metric §. Then the bundle
F=nF={(x,u) € XXF:np(u) = n(x)} (4.138)
admits an infinitesimally rigid and unobstructed ASD instanton A with respect to §.

Proof. The bundle 7*E is stable with respect to !, and therefore admits a unique Hermite-
Einstein connection by Theorem [2.83} Thus, we get an SO(3)-bundle F with ASD instanton A

by Proposition zgo} Unobstructedness and infinitesimal rigidity of A are proved in [DKgo) p.

348]. m]

Pulling back (F, A) under the projection onto the second factor, p : T> x X — X, gives a
bundle with G,-instanton by Example Denote the bundle by Ej and the connection by
0. The connection A was infinitesimally rigid, and the following proposition implies that 6 is

infinitesimally rigid:

Proposition 4.139. Let I be an ASD instanton on a bundle P over a compact 4-fold Y with de-
formation operator 5;. Let p : T> X Y — Y be the projection onto the second factor. Then the

Gy -instanton p*1 is infinitesimally rigid if and only if I is infinitesimally rigid and unobstructed.

Proof. The pulled back connection p*I is a Gz-instanton by Example

We first prove that p*I is infinitesimally rigid if I is infinitesimally rigid and unobstructed. We

will use Lemma|[3.38]to derive an analog of Proposition [4.85]in this compact setting:

Suppose a € (Q° ® Q') (T° x Y, Adp*P) satisfies L,-;a = 0. Then 0 = Ly Lpra = (Ags +
D;Dp)aby Eq. (4.84), where D} Dy is an elliptic operator of second order. Because Y is compact,
it has bounded geometry, and D; Dy is uniformly elliptic and its coefficients and their first
derivatives are uniformly bounded. So, by Lemma [3.:38} a is independent of the T*-direction.

By Proposition [4.83] a is the pullback of an element in Ker §; or the pullback of an element
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in Ker §;. By assumption, [ is infinitesimally rigid (i.e. Kerd; = 0) and unobstructed (i.e.

Ker 67 = 0), which proves the claim.

The converse direction follows directly from Proposition[4.8 O

The gluing theorems Theorems[g.130|and T3 require a connection on the orbifold, (T°>xX)/T.

The following proposition states that  can be viewed as such a connection:

Proposition 4.140. There exist lifts oy : Ey — Ey of a and fy : Ey — Eq of B such that ag = ﬁg =

Id, a6 = B30 = 0, oy being the identity over fix(a), and ffy not being the identity over fix(f).

This relies on the following construction on X:

Proposition 4.141. There exists a lzﬁﬁ : F — F of B such thatﬁ2 =1d, ﬁ*A = A, andﬁ not being

the identity over fix(f).

Proof. Denote by o : CP? — CP? the conjugation map and E = TCP? as before. We can then

view do as a complex linear map E — E covering o. Define

(4.142)
v®@w+— —dow ® dow,

which is a complex linear map covering o : CP? — CP2.

The manifold CP? is Kahler, so the Levi-Civita connection V€ on E is a Hermite-Einstein
connection. The connection V€ on E induces the product connection V& on E ® E, which is
again a Hermite-Einstein connection. We have that ¢ is an isometry, so V® is preserved by &

in the sense of 6 0 6*V® 0 § = V©.

Let [§ be the lift of & to 7°E ® *E, i.e. ,B : m*E ® m'E — m*E ® m*E covering f : X — X
and satisfying pﬁ = &p, where p : 7°E ® 7°E — E ® E is the obvious projection map. Then

6*V® = V® implies f*(7*V®) = 1*V®.

If p € CP? and (uy, u,) is a unitary basis of E,, then (do(u1), do(u2)) is a unitary basis of Es(p)s

and writing elements of the trace-free unitary endomorphism bundle u,(7*E) in these bases,
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we see that ﬂA acts as

0 1 0 1
H b
-1 0 -1 0
0 i 0 i
'_> - b
i 0 i 0
i 0 i 0
H pa—
0 —i 0 —i

Thus, ﬂA induces a map on F = SO(uy(7*E)) that is not the identity over fix() and preserves

the ASD connection A on F induced by 7*V® according to Proposition zgo} O

Remark 4.143. This only works because we have a lift of complex conjugation o : CP? — CP?
to F in Proposition {143 It follows from Proposition [2:97] that no lift of ¢ to E exists, so it is

important to change from U(2)-bundles to SO(3)-bundles in this example.

Remark 4.144. Without the minus sign in Eq. (:142), [§ would not descend to amap on SO(u(7*E)).

That is because the map —1Id : uy(n*E) — 1y("E) is orientation reversing, because 1y(7*E)

has odd rank.

Proof of Proposition The bundle F from Eq. is the pullback of a bundle F from CP?

to X, thus we have the natural map

&:F—>F

(x,u) = (a(x),u)

covering a : X — X. The bundle E, is the pullback of F to T? x X, and we can canonically
extend the map & and the map [§ from Proposition [f147 to E, and find that they have the

required properties. O

Because of Propositiong-140} the connection 6 defines a connection on the orbifold (T3>xK3)/T.
The holonomy of  around the four S! x C ¢ (T°®x X)/T fixed by « is trivial, and the holonomy

around the four S! x S? fixed by f8 has order 2.
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4.6.3 The Resulting Connection on the Resolution of (T° x K3)/T

Corollary 4.145. For smallt, there exists an irreducible G;-instanton with structure group SO(3)

on the resolution N; of (T* x X)/T.

Proof. We make use of the a-invariant and f-invariant connection 6 from Proposition £:140]

over (T® x X)/T.

Next consider the product connection Ay on the trivial SO(3)-bundle over Eguchi-Hanson
space Xpy. The holonomy representation at infinity of the product connection is trivial, i.e.
po : I' = SO(3), po(£1) = Id, thus G,, = G, where G,, was defined in Eq. (z23). Ay is infin-
itesimally rigid, which can for example be seen from the dimension formula in Theorem 252}

so for each copy of S' x C c (T® x X)/T fixed by a we have that

S x C — FrxEp|gixe Xu@)x¢ M

x = [(f,uw), [Ao]] for f € Fry, u € (Ey)x arbitrary

is a well-defined map, parallel, and therefore a Fueter section.

Likewise, let Ag; be the ASD instanton over Xgy from Proposition z54} This is defined on a
U(1)-bundle and we view it as a reducible SO(3)-connection. This has non-trivial holonomy

pos : I — SO(3) at infinity, thus G,,,, & G. For each copy of S! x S fixed by f§ we find that

S'xS% = Fr XEO|51><S2 XU(Z)XGPm M

x — [(f,u), [Ao1]] for f € Fry, u € (Ey)y arbitrary

is a Fueter section. By Proposition[£:140} the connection 6 and the eight Fueter sections satisfy
the necessary compatibility condition from Proposition[g:z7} Thus, Theorem f130]applies and
gives a G,-instanton gf on N;. The connections gt converge to § on compact subsets of (T° x
X)/T \ fix(T) as t — 0. The connection 0 has full holonomy SO(3), as otherwise the Fubini-
Study metric on CP? would need to have reduced holonomy. Thus, A, has full holonomy for

small ¢ and is therefore irreducible. m]
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A Appendix

A The Isometry Group of Eguchi-Hanson Space

In Proposition 2.5 we defined the Eguchi-Hanson space Xgy and proved that it admits a Hy-
perkahler metric g(x). The following statement about the isometry group of Xgy is a standard

fact, but we could not locate a proof of it in the literature, so we provide it here:

Proposition A.1. Foranyk > 0,

1. the isometry group of the metric gy on Xgy is isomorphic to SO(3) X O(2),

k) .o .
) is isomorphic to

2. the group of isometries preserving the complex structure induced by “’1(

U(2)/{=1},

&) ) ond

3. the group of isometries preserving the three complex structures induced by w,"", w, ",

a);k) respectively is isomorphic to SO(3).

Proof. The space Xgy contains SO(3) Xso(2) {0} as a unique minimal surface which must be
mapped to itself by an isometry. Thus, an isometry must preserve the distance to this minimal
surface, i.e. preserve the Ro-factor of Ry Xso(2) SO(3). It thus suffices to find the iso-
metry group of SO(3) endowed with the metric (e!(r))? + (e?(r))? + (e3(r))? for some r > 0,
where e, €%, e* were defined in Proposition Z5 As r — oo, this metric converges towards
the metric induced by the round metric on S*. Through this, an isometry of Xgy induces an
isometry of R*/{+1}, which has isometry group SO(4)/{#1} =~ SO(3) x SO(3). This shows
that Isom(Xgm, gk)) € SO(3) X SO(3), where the first SO(3) acts by left multiplication, and

the second acts by right multiplication on the SO(3)-factor of Xgy.

A calculation in coordinates shows Isom(Xgn, g(x)) = SO(3) X O(2) < SO(3) x SO(3), where

0(2) < SO(3)

detA 0
A

0 A
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Regarding the second point, a computation shows that the subgroup of isometries preserving
the complex structure induced by wfk) and is exactly SO(3) x SO(2). This is isomorphic to

U(2)/{*1}, which is seen from the split short exact sequence
1 — SU(2)/{+1} ~ SO(3) — U(2)/{=1} S U(1) ~50(2) — 1. (A.2)

The last point is again a computation in coordinates. O

A.2 Measuring Vectors in Nearby Metrics

In Section [ we define several different metrics on a manifold, for example gf , gf?[ , and 'g‘f.v .
These metrics are all near to each other, in a suitable sense. In Section g we sometimes switch
between these metrics: an estimate with respect to g¢ gives rise to an estimate with respect
to gV, provided the two metrics are near enough to each other. To be precise, we use the

following result:

Proposition A.3. Let V be a vector space and let g and g be inner products on'V.

1. Letv € V such that |v|, < & and |g — gy < €, then |v]z < § + €.

2. Letw € V* such that |w|y < 8 and |g - gl7 < €, then |w|7 < § + de.

When integrating, we have the following estimate for switching from one volume form to

another:

Proposition A.4. Let M be an oriented manifold, and g, g, h Riemannian metrics on M. Then

‘/f-volg—/f-volg{s‘/|f|-|volg—volg~|h-volh (As)
M M M

forall f: M — R with the property that all the integrals in Eq. (A.s) are defined.

A.3 Rigidity of Finite Subgroups

Let G be a compact connected Lie group and I' be a finite group. In Sectionz-g-zjwe took I' to

be a finite subgroup of SU(2), thereby acting on B%. An orbifold G-bundle over B*/T is a G-
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bundle P over B* together with a lift of the action of T to P. In Eq. (z43) we extended elements
of G to elements of the orbifold gauge group €(P). We could do this, because we assumed
the lift of T to act in a standard way on P, see Eq. for the precise statement. In other
words: we used that up to gauge equivalence, orbifold bundles over B*/T are determined by
the homomorphism I' — Py ~ G induced by the lift of " to P. The proof of this fact was given
in Proposition[2:39} but used that the homomorphism I' — G is rigid, in some sense. We make
this rigidity precise here and prove that every finite group in a compact Lie group is rigid. The

proof is taken from [Badz1], where also the generalisation to non-compact G is explained.

Definition A.6. The set Hom(T, G) c Gl endowed with the restriction of the product topology

on Gl is called the representation variety.

Definition A.7. Let E be a I'-module. A map b € T' — E is called cocycle if

b(yd) =b(y)+y-b(d) forally,d €T.

We denote the set of cocycles by Z!(T,E). Amap b € T — E is called coboundary if there
exists v € E such that

b(y)=v—y-ovforally eT.

We denote the set of coboundaries by BY(TI',E) c Z!(T,E). The first cohomology of T with
coefficients in E is

HY(T,E) = Z\(T,E)/B(T, E).

Theorem A.8 (Point 3 in [Weib4l]). Fix a group homomorphismr : T — G. The group G is
acting on § through the adjoint representation, and together with r this gives T the structure of a
T-module. If H' (T, g) = 0, then there exists a neighbourhood U C Hom(T, G) of r in which each

element is conjugate tor, i.e. for all s € U there exists g € G such that

s:lgorgflor.

Here, ly,r4-1 : G — G denote left translation and right translation on G, respectively.

Definition A.g. Fix 7 : I' — Aut(E). An affine action of T on E is a group homomorphism

¢ : T — Aff(E). We say that x is the linear part of the affine action ¢ if for all y € T there
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exists vy € E such that

#(y)(v) = m(y)(v) +vo forallv € E.

Lemma A.10 (Lemma 2.1 in [DX16]). The map = : T — Aut(E) endows I' with an E-module
structure. We have H' (T, E) = 0 with respect to this E-module structure if and only if every affine

action with linear part 7 has a fixed point.

Corollary A.11. The finite group T with any E-module structure satisfies H (T, E) = 0.

Proof. Let ¢ : I' — Aff(E) be an affine action. Then the element

X =) $(6)(0) €E

Sel

satisfies ¢(y)(X) = X for all y € T. By Lemmal[A.10l this implies that H! (T, E) = 0. O

Corollary A.12. The representation variety Hom(I', G) has finitely many connected components.

For each connected component C there exists r € Hom(T, G) such that
C=U ={lyorg10r:g€G}.

Proof. Because I' is finite and G is compact we have that Hom(I', G) is compact and therefore
has finitely many connected components. Fix some r € Hom(I',G). Then U, is compact
because it is the image of G under the conjugation map. Thus, U, is closed. On the other hand,
U, is open by Theorem[A.8|together with Corollary[A.11l Thus, each connected component of

Hom(T, G) is of the form U, for some r € Hom(T, G). O

A.4 Removable Singularities

In Definition we defined a map from the moduli space of ASD connections over the
Eguchi-Hanson space Xgy into the moduli space of ASD connections over the one point com-
pactification of Xgyy. There, we used that every finite energy ASD connection that is defined
over the complement of a point can be extended over this point. This statement was proved

for Yang-Mills connections, not just ASD connections, in [Uhl82]]. This is called the Remov-
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able Singularities Theorem. Because our map between moduli spaces should be a map between
framed moduli spaces, we need a version of the Removable Singularities Theorem that respects

framings. This is Proposition[A.14]and we then apply it to our special case of connections over

Xgp in Corollary[A.17]

Theorem A.13 (Theorem 4.1 in [[Uhl82]], Theorem D.1in [FUo91]]). Let G be a compact Lie group
and A be a connection on the trivial G-bundle over B* \ {0}, A € o/ ((B*\ {0}) X G), which is in

Lfl and anti-self-dual with respect to a smooth metric on B*. If
Lloc

/ F(A)? < o,
B*\{o}

then there exists an injective bundle homomorphism & : (B*\ {0}) X G — B* x G and a smooth

connection A’ € of (B* X G) such that &*A’ = A over B* \ {0}.

Theorem [A.13asserts existence of an extension over 0, and the following proposition asserts

that this extension is essentially unique up to gauge:

Proposition A.14. The data & and A’ from Theorem are unique in the following sense: if
8 (B*\{0}) xG — B*xG and A’, A” € of (B* X G) are such that (§')*A’ = (£”)*A” = A,
then the map & o (£')~! : (B*\ {0}) X G — (B*\ {0}) X G can be extended to a continuous map

B*xG — B*xG.

Proof. We view the connections A’, A’ on the trivial bundle B* X G as elements in Q!(B*, g),
and view the gauge transformation £’ o (¢’)"! as a map B*\ {0} — G, denoted by s. Without
loss of generality assume that A’(0) = A”(0) = 0, which can be arranged by composing &', &”

with a suitable gauge transformation of B* x G. Then A” = s*A’ on B* \ {0}, thus
0=A"(0) = lin%) s7H(x) ds(x)
x—

and by taking norms we see that lim,_,o ds(x) = 0. This implies that lim,_,o s(x) exists: if
the limit does not exist, then we have two sequences x;,x; — 0 such that lim; . s(x;) #

lim; . s(x;). Without loss of generality assume that x;, x] can be joined by a line. The mean
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value theorem then gives a sequence 0; € B* \ {0} such that | ds(6;)| — oo, which is a contra-

diction.
Therefore lim,_,o s(x) exists and defines a continuous map s : B* — G, which in turn extends
£70 ()7, o
Viewing the map ¢ from Theorem|[A.13]as a map & : B* \ {0} — G, the limit lim,_, £(x) does
not exist in general. But in important cases it does, according to the following proposition:
Proposition A.15. Under the conditions of Theorem[A.13 assume that A is bounded, viewed as an
element in Q' (B* \ {0}, g). Viewing & as a map £ : B* \ {0} — G, we have that the limit

lim é(x) € G

x—0
exists.
Proof. Without loss of generality assume that A’(0) = 0. Then,

£ A (x) = A(x) for all x € B*\ {0}. (A.16)

Taking norms in Eq. (A.16) and using £*A’(x) = £ 1(x) d€(x)+A’(x) we see that d¢ is bounded

on B*\ {0}, and we can conclude the proof as in the proof of Proposition [A.14] ]

This can be applied to the case of ASD instantons on ALE manifolds:

Corollary A.17. Let P be a G-bundle over Xgy and denote by o/*%~2 the set of ASD-connections
on P as in Eq. Z43). Let Ao +a € A2 then there exists an orbifold G-bundle P’ over XEH
together with a connection A’ € o/ (P’) and an injective bundle homomorphism & : P — P’ such
that £*A’ = Ay + a. Denote by f : B*/T — V the chart of Xgyy around oo from Proposition 233
Fixing a trivialisation of P over V' \ {co} induces a trivialisation of P’ over V and we can view &

asa map V \ {oo} — G. Then the limit limy_,, é(x), where co € Xpp, exists.

Proof. The assumption Ay + a € &/*%~2 means that a = O(r~?), measured in the ALE metric.

By inspecting how the inversion f acts on 1-forms, we find that a = O(1), measured in the
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orbifold metric, and Proposition[A.15| gives the claim.
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