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Abstract: For applications in differential geometry and string theory one would like to
construct Calabi-Yau manifolds of complex dimension three with the following
property: it should contain a real submanifold of real dimension three that admits a
harmonic nowhere vanishing 1-form. Many examples are expected to exist, but none
have been proven to exist. The problem is that there is no explicit formula for the
Calabi-Yau metric which makes it hard to write down the “harmonic” equation, let
alone solve it. In the talk | will present numerical approximations of the Calabi-Yau
metric, and numerical approximations of harmonic 1-forms, obtained by neural
networks. This suggests some conjectural examples of harmonic, nowhere vanishing
1-forms. | will also show some proven non-examples, and explain the main long-term
motivation for this numerical work, which is to numerically verifiably prove that there
exists a genuine solution to the harmonic equation near the approximate solutions.
This is work in progress, joint with Michael Douglas and Yidi Qi.
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If (Y,g,J,w) Kahler, complex dim n with:

Q € Q™O(Y) parallel and nowhere 0

then ex. ¢ € C®(Y) s.t. wey = w + i0¢ has wly, = QA Q
(= induced metric gcy is Ricci-flat)

Example: Fermat quintic
Y ={z=[z::2) €CP*: 25 +--- 4+ z; =0}

has Q € Q™0(Y) = gcy exists
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Theorem ([Joyce and Karigiannis, 2017])

If there exists A € QY(L) harmonic w.r.t. gcy|, that is nowhere 0, then there exists a
resolution N” — (St x Y)/(G) with holonomy equal to G,.

» Goal: check if such a 1-form exists
> First Betti number — harmonic 1-forms. Nowhere 0?7 Must know the metrie!
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Y::{z:[zo:-~-:Z4]€(CIF’4:25’+~--+22:O}
U([ZO:"':Z4]):[7O:"':74]
RPPS L =fix(o) ={x=[xg::xs] ERP*: x5 +---

[x0: - :xa] — |:X02~"2X42—5X3—|-"-+X2:|
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Non-example 1: Fermat Quintic

Yi={z=[z::z)€CP*: 25+ -+ 2z =0}
o([zo: - za))=1[20: - : Za]
R]IﬁiL:fix((r):{x:[xo:---:X4]€RIP’4:X(?+---
[x0: - :xa] — |:X02~"2X42—5X3—|-"-+X2:|

b'(RP*) = 0 = no harmonic 1-form on L

+X4

0}
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sing(g) fix(o)

» [Tian and Yau, 1990] Calabi-Yau metrics on Z(f_) \ sing(g) and Z(v) \ sing(g)
» [Sun and Zhang, 2019] glue these to metric on smoothing Z(g)
» More non-examples from other cubics. Examples from other Fanos?
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Holomorphic volume form locally Q = dz' A dz? Adz3 ~ volg := QA Q € Q°(Y)
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Example: Y C CP* quintic, (O(1)|y)®*

s1,...,5y € HO(L®K) basis of holomorphic sections

= embedding s = (s1,...,sy): Y — CPN~!
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Kahler potential: K = Iogz h; ;s's/. Volume form: w} = vol, € Q°(Y).

i
If Y52 = 1, then Ricci-flat

volg

: | 2
[Donaldson, 2009]: choose h cleverly to minimise / (vo ho 1)
JYy VOlQ

volp 1H Comment

VO|Q
[Donaldson, 2009] 1072 n = 2, needs symmetries
[Headrick and Nassar, 2013] 1014 n = 3, needs symmetries
[Larfors et al., 2022] 1072 n=3, not C, complete intersections+torics

[Douglas et al., 2022]+ours  10~% n = 3, quintics+complete intersections
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Example: quintic X := Z(f) C CP*, L := fix(c) C X
1, &0 € QY RPY) closed 1-forms s.t. TYRP* = (&1(x), . . ., £10(x)) Vx

pi,---,pn polys, p; degree d;; for a = (a11,...,aon) € RIOV let
pi(x)
Aa(x) = Z Qi j |x |d §J’L( x) € Ql(’-)
P
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Numerical harmonic 1-forms

Example: quintic X := Z(f) C CP*, L := fix(c) C X
1, &0 € QY RPY) closed 1-forms s.t. TYRP* = (&1(x), . . ., £10(x)) Vx
pi,...,pn polys, p; degree d;; for & = (a1 1,...,a10,n) € c RION |et

h)= S Rl e o'

For x1,...,x100000 € X find min / ‘d/\a‘ + ‘d*)\u|
a s.t. H/\l\HL2:1v ..... ,X100000

Stone-Weierstrass = best approximations converge to harmonic form as N — oo
Ansatz for pj: A;j : R" — R™+1 linear, sq : RK — R¥ square each coordinate

p(xo,...,xa) = Ago---osqo AyosqoAi(xo,.--,xs)

Equivalent: neural network with activation function x — x?
Approximate metric 565K smooth-+explicit = explicitly compute

(ldXal (xi) + 1d*Xal(x1))/v/IA(x1)[? + - - + [A(x100000) |2
= minimise with tensorflow




Experimental results: 1-forms and their zeros

1. Fermat: non-example 1; no harmonic 1-form.
2. Random Quintic: non-example 2; harmonic 1-form must have zeros
3. CICY1: conjectural example 3; large perturbation € = %, harmonic 1-form may

have zeros

y-axis: min ||

X-axis:
harmonic loss

[ 1 +[ld"All 1

[IAll 2

4. CICY2: conjectural example 3; small perturbation € = Wlo'
.CICYZ

0.8

0.6

0.4 A

0.2 4

0.0 4 OCICﬂ o Random Quintic .
0.0[‘)00 0.0602 0.0E)O'Q 0.0E)OG 0.0E)OE 0.0610 0.0612

conjecture no zeros

rmat




Experimental results on quintic

> g = v - f_ singular quintic from before, ¢ = 0.84xg + ... random quintic

Train Loss Curve for the CY metric
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Experimental results on quintic

> g = v - f_ singular quintic from before, ¢ = 0.84xg + ... random quintic
» Find € > 0 such that g := g + €£ has Zg(g.) diffeo to Zg(g)

Train Loss Curve for the CY metric

Train Loss

I o o o
= N N W
v o v o

o
-
15}

o
o
@

0 500 1000 1500 2000 2500 3000 3500 4000 00 02 04 06 08 10
Epochs



Experimental results on quintic

> g = v - f_ singular quintic from before, ¢ = 0.84x5’ + ... random quintic
» Find € > 0 such that g := g + €£ has Zg(g.) diffeo to Zg(g)

»
| 4
>
>
Train Loss Curve for the CY metric
0.30 0.6 q
0.5 4
0.25
[ 0.4 4
8 0.20
S
c
w 0.3 4
= 0.15
0.2 1
0.10
0.1
0.05
0.0 1
0 500 1000 1500 2000 2500 3000 3500 4000 00 02 04 06 08 10
Epochs
Average of |voly, / volg —1| while [vol, /volg(x) — 1| over

iteratively improving volp, max{v(x)/ ||x|[*, - (x)/ [|x|F}



Experimental results on quintic

Neck formation 1-form has even number of zeros

160

140 4 2.0001232 4
1201 2.0001230 4

100 +
1.0001228
804

60 2.0001226

401 2.0001224 1

204
2.0001222 4

0.0 0.2 0.4 0.6 0.8 10

MaAXye Ty ps=1llvll, OVEr k-medoid clustering loss of 500 points
max{v(x)/ ||x||?, f-(x)/ |x|]*} with smallest |w|(x) over number of

clusters (heuristic: "elbow” k =4 is
optimal number of clusters



Experimental results on quadric N quartic

e=1 e— 1
4 100
Train Loss Curve for the CY metric Train Loss Curve for the CY metric
e 0
E :
@ & 107t
2 2
3 3
% p
g 5
2 3
£ £
=107 =
1072
0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000
Epochs Epochs
1 Training loss J Loss over distance from singularity
0.08
0.07 0.4
0.06
0.05 03
0.04
0.2
0.03
0.02
0.1
0.01
0.00 0.0




Experimental results on quadric N quartic

01

1 Metric stretching over distance from
singularity

0.4

0.6



Experimental results on quadric N quartic

c=—x3+x2+x3 and g = —x§ + x5 + x; + x¢
Set xo=1and x3=x3 =0~ {(x1,x) € R? : x? + x5 = 1} x {£1}
1-form restricted to this




Proposition

For all yx > O there exists ¢ > 0 such that the following is true:
for A € QY(L3) such that and |[A||2 g =1 and mLin Al > o let

X € [\ be the unique Acy-harmonic 1-form. Then:

Hgapprox —gcy||L;1a <€e = = |X|(X) > g for all x € L.

i~ 1| <o, Awith
VolQ l—f

= there exists nowhere vanishing gcy-harmonic 1-form on L

«O0> «Fr «E» «

Find: gapprox With

and mLin A > p

>

DA



Bonus motivation

Proposition
For all € > 0 there exists § > 0 such that

V0|h
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Proposition

For all w > 0 there exists ¢ > 0 such that the following is true:
for X\ € QY(L3) such that A.ppox A = 0 and ||\ 2 =1 and mLin |A| > p let
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X € [\ be the unique Acy-harmonic 1-form. Then:

~ 1 ~
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Bonus motivation

Proposition
For all € > 0 there exists § > 0 such that

V0|h
— ]
VO|Q

<0 = Hgapprox - gCYHL:’f < €.
L7

Proposition

For all w > 0 there exists ¢ > 0 such that the following is true:
for X\ € QY(L3) such that A.ppox A = 0 and ||\ 2 =1 and mLin |A| > p let

»8approx

X € [\ be the unique Acy-harmonic 1-form. Then:

~ 1 ~
lgapprox = gevllip <€ = A= (x) <& = (x> & forallx e L

VO|/7
volg 1‘

Find: gapprox With o <0, A with ApproxA = 0 and mLin Al > p
1

= there exists nowhere vanishing gcy-harmonic 1-form on L



Thank you for the attention!
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