
Group invariant machine learning on pure maths datasets

Daniel Platt (Imperial College London)
8 Feb 2024

The University of Hong Kong

Abstract: It is a recent trend to use machine learning on pure maths datasets, for
example to approximately compute geometric invariants of spaces that are expensive to
compute exactly. Often, the map taking some representation of a space to its
geometric invariants is invariant under some group action. A common example is that
the input space is represented by a matrix and the map is invariant under row and
column permutations. I report on some work comparing group invariant and ordinary
machine learning models on such datasets. We find that models that are approximately
group invariant perform better than fully group invariant models and better than
models that are not invariant at all. I will explain one such ”approximately group
invariant” machine learning model in detail. This is based on two joint works: one
published paper with B. Aslan, D. Sheard, and one unpublished work in progress with
C. Ewert, S. Magruder, V. Maiboroda, Y. Shen, P Singh.

Motivation

Geometric objects −→ Numerical invariants

▶ Topological space

▶ Complex manifold

▶ Knot

▶ Betti numbers

▶ Hodge numbers

▶ Jones polynomial

▶ String theory: find complex manifolds with large Hodge number and other
prescribed properties [He et al., 2014, p.7]

▶ Billions of candidates, single computation can take days [Aggarwal et al., 2023]

▶ Idea: machine learning computes numerical fast but approximately
↷ identify most promising candidates

▶ (Bonus motivation: machine learning may suggest new theorems/ways to compute
invariants, e.g. [Coates et al., 2023, Davies et al., 2021, Dong et al., 2023])

Motivation

Geometric objects −→ Numerical invariants

▶ Topological space

▶ Complex manifold

▶ Knot

▶ Betti numbers

▶ Hodge numbers

▶ Jones polynomial

▶ String theory: find complex manifolds with large Hodge number and other
prescribed properties [He et al., 2014, p.7]

▶ Billions of candidates, single computation can take days [Aggarwal et al., 2023]

▶ Idea: machine learning computes numerical fast but approximately
↷ identify most promising candidates

▶ (Bonus motivation: machine learning may suggest new theorems/ways to compute
invariants, e.g. [Coates et al., 2023, Davies et al., 2021, Dong et al., 2023])

Motivation

Geometric objects −→ Numerical invariants

▶ Topological space

▶ Complex manifold

▶ Knot

▶ Betti numbers

▶ Hodge numbers

▶ Jones polynomial

▶ String theory: find complex manifolds with large Hodge number and other
prescribed properties [He et al., 2014, p.7]

▶ Billions of candidates, single computation can take days [Aggarwal et al., 2023]

▶ Idea: machine learning computes numerical fast but approximately
↷ identify most promising candidates

▶ (Bonus motivation: machine learning may suggest new theorems/ways to compute
invariants, e.g. [Coates et al., 2023, Davies et al., 2021, Dong et al., 2023])

Motivation

Geometric objects −→ Numerical invariants

▶ Topological space

▶ Complex manifold

▶ Knot

▶ Betti numbers

▶ Hodge numbers

▶ Jones polynomial

▶ String theory: find complex manifolds with large Hodge number and other
prescribed properties [He et al., 2014, p.7]

▶ Billions of candidates, single computation can take days [Aggarwal et al., 2023]

▶ Idea: machine learning computes numerical fast but approximately
↷ identify most promising candidates

▶ (Bonus motivation: machine learning may suggest new theorems/ways to compute
invariants, e.g. [Coates et al., 2023, Davies et al., 2021, Dong et al., 2023])

Motivation

Geometric objects −→ Numerical invariants

▶ Topological space

▶ Complex manifold

▶ Knot

▶ Betti numbers

▶ Hodge numbers

▶ Jones polynomial

▶ String theory: find complex manifolds with large Hodge number and other
prescribed properties [He et al., 2014, p.7]

▶ Billions of candidates, single computation can take days [Aggarwal et al., 2023]

▶ Idea: machine learning computes numerical fast but approximately
↷ identify most promising candidates

▶ (Bonus motivation: machine learning may suggest new theorems/ways to compute
invariants, e.g. [Coates et al., 2023, Davies et al., 2021, Dong et al., 2023])

Motivation

Geometric objects −→ Numerical invariants

▶ Topological space

▶ Complex manifold

▶ Knot

▶ Betti numbers

▶ Hodge numbers

▶ Jones polynomial

▶ String theory: find complex manifolds with large Hodge number and other
prescribed properties [He et al., 2014, p.7]

▶ Billions of candidates, single computation can take days [Aggarwal et al., 2023]

▶ Idea: machine learning computes numerical fast but approximately
↷ identify most promising candidates

▶ (Bonus motivation: machine learning may suggest new theorems/ways to compute
invariants, e.g. [Coates et al., 2023, Davies et al., 2021, Dong et al., 2023])

Neural networks

▶ Data (xi , yi) ∈ Rk × R for i = 1, . . . ,N. Find f : Rk → R s.t. f (xi) ≈ yi
▶ Linear regression: let θ ∈ Rk×1 (view as θ : Rk → R1) minimise

·θ
R

Rk

min
θ∈Rk×1

N∑
i=1

|θ · xi − yi |2

▶ Neural network: let σ : R → R be non-linear, e.g. σ(x) = ReLU(x) := max(0, x).
Let θ ∈ Rj×k and θ′ ∈ R1×j minimise

σ ◦ (·θ)

θ′
RjRk

R min
θ∈Rj×k

θ′∈R1×j

N∑
i=1

∣∣θ′ · (σ(θ · xi))− yi
∣∣2

Neural networks

▶ Data (xi , yi) ∈ Rk × R for i = 1, . . . ,N. Find f : Rk → R s.t. f (xi) ≈ yi
▶ Linear regression: let θ ∈ Rk×1 (view as θ : Rk → R1) minimise

·θ
R

Rk

min
θ∈Rk×1

N∑
i=1

|θ · xi − yi |2

▶ Neural network: let σ : R → R be non-linear, e.g. σ(x) = ReLU(x) := max(0, x).
Let θ ∈ Rj×k and θ′ ∈ R1×j minimise

σ ◦ (·θ)

θ′
RjRk

R min
θ∈Rj×k

θ′∈R1×j

N∑
i=1

∣∣θ′ · (σ(θ · xi))− yi
∣∣2

Neural networks

▶ Data (xi , yi) ∈ Rk × R for i = 1, . . . ,N. Find f : Rk → R s.t. f (xi) ≈ yi
▶ Linear regression: let θ ∈ Rk×1 (view as θ : Rk → R1) minimise

·θ
R

Rk

min
θ∈Rk×1

N∑
i=1

|θ · xi − yi |2

▶ Neural network: let σ : R → R be non-linear, e.g. σ(x) = ReLU(x) := max(0, x).
Let θ ∈ Rj×k and θ′ ∈ R1×j minimise

σ ◦ (·θ)

θ′
RjRk

R min
θ∈Rj×k

θ′∈R1×j

N∑
i=1

∣∣θ′ · (σ(θ · xi))− yi
∣∣2

Group actions

▶ Example: S3 =permutation group of 3 elements
S3 ↷ R3, e.g. (1, 2) · (x1, x2, x3) = (x2, x1, x3)

▶ f : R3 → R group invariant :⇔ f (g · x) = f (x) for all g ∈ S3 and x ∈ R3

▶ Example:

max : R3→ R
(x1, x2, x3) 7→ max{x1, x2, x3}

▶ Given many pairs ((x1, x2, x3), max{x1, x2, x3}) can train neural network NN

▶ Approximate max, but need not be group invariant

▶ Q1: how to find group invariant NNs?

▶ Q2: does this improve performance of NNs?

Group actions

▶ Example: S3 =permutation group of 3 elements
S3 ↷ R3, e.g. (1, 2) · (x1, x2, x3) = (x2, x1, x3)

▶ f : R3 → R group invariant :⇔ f (g · x) = f (x) for all g ∈ S3 and x ∈ R3

▶ Example:

max : R3→ R
(x1, x2, x3) 7→ max{x1, x2, x3}

▶ Given many pairs ((x1, x2, x3), max{x1, x2, x3}) can train neural network NN

▶ Approximate max, but need not be group invariant

▶ Q1: how to find group invariant NNs?

▶ Q2: does this improve performance of NNs?

Group actions

▶ Example: S3 =permutation group of 3 elements
S3 ↷ R3, e.g. (1, 2) · (x1, x2, x3) = (x2, x1, x3)

▶ f : R3 → R group invariant :⇔ f (g · x) = f (x) for all g ∈ S3 and x ∈ R3

▶ Example:

max : R3→ R
(x1, x2, x3) 7→ max{x1, x2, x3}

▶ Given many pairs ((x1, x2, x3), max{x1, x2, x3}) can train neural network NN

▶ Approximate max, but need not be group invariant

▶ Q1: how to find group invariant NNs?

▶ Q2: does this improve performance of NNs?

Group actions

▶ Example: S3 =permutation group of 3 elements
S3 ↷ R3, e.g. (1, 2) · (x1, x2, x3) = (x2, x1, x3)

▶ f : R3 → R group invariant :⇔ f (g · x) = f (x) for all g ∈ S3 and x ∈ R3

▶ Example:

max : R3→ R
(x1, x2, x3) 7→ max{x1, x2, x3}

▶ Given many pairs ((x1, x2, x3), max{x1, x2, x3}) can train neural network NN

▶ Approximate max, but need not be group invariant

▶ Q1: how to find group invariant NNs?

▶ Q2: does this improve performance of NNs?

Group actions

▶ Example: S3 =permutation group of 3 elements
S3 ↷ R3, e.g. (1, 2) · (x1, x2, x3) = (x2, x1, x3)

▶ f : R3 → R group invariant :⇔ f (g · x) = f (x) for all g ∈ S3 and x ∈ R3

▶ Example:

max : R3→ R
(x1, x2, x3) 7→ max{x1, x2, x3}

▶ Given many pairs ((x1, x2, x3), max{x1, x2, x3}) can train neural network NN

▶ Approximate max, but need not be group invariant

▶ Q1: how to find group invariant NNs?

▶ Q2: does this improve performance of NNs?

Group actions

▶ Example: S3 =permutation group of 3 elements
S3 ↷ R3, e.g. (1, 2) · (x1, x2, x3) = (x2, x1, x3)

▶ f : R3 → R group invariant :⇔ f (g · x) = f (x) for all g ∈ S3 and x ∈ R3

▶ Example:

max : R3→ R
(x1, x2, x3) 7→ max{x1, x2, x3}

▶ Given many pairs ((x1, x2, x3), max{x1, x2, x3}) can train neural network NN

▶ Approximate max, but need not be group invariant

▶ Q1: how to find group invariant NNs?

▶ Q2: does this improve performance of NNs?

Previous approaches

1. Data augmentation: Given many pairs ((x1, x2, x3),max{x1, x2, x3}), add pairs
(g · (x1, x2, x3),max{x1, x2, x3}) for all g ∈ S3 to the training data

2. Restricting weights of neural networks [Zaheer et al., 2017] (”Deep Sets”)

3. Averaging techniques:
Let NN : R3 → R be a neural network architecture, not necessarily invariant

ÑN : R3 → R

(x1, x2, x3) 7→
∑
g∈S3

NN(g · (x1, x2, x3))

⇒ ÑN is group invariant ⇝ train ÑN instead of NN

Previous approaches

1. Data augmentation: Given many pairs ((x1, x2, x3),max{x1, x2, x3}), add pairs
(g · (x1, x2, x3),max{x1, x2, x3}) for all g ∈ S3 to the training data

2. Restricting weights of neural networks [Zaheer et al., 2017] (”Deep Sets”)

3. Averaging techniques:
Let NN : R3 → R be a neural network architecture, not necessarily invariant

ÑN : R3 → R

(x1, x2, x3) 7→
∑
g∈S3

NN(g · (x1, x2, x3))

⇒ ÑN is group invariant ⇝ train ÑN instead of NN

Previous approaches

1. Data augmentation: Given many pairs ((x1, x2, x3),max{x1, x2, x3}), add pairs
(g · (x1, x2, x3),max{x1, x2, x3}) for all g ∈ S3 to the training data

2. Restricting weights of neural networks [Zaheer et al., 2017] (”Deep Sets”)

3. Averaging techniques:
Let NN : R3 → R be a neural network architecture, not necessarily invariant

ÑN : R3 → R

(x1, x2, x3) 7→
∑
g∈S3

NN(g · (x1, x2, x3))

⇒ ÑN is group invariant ⇝ train ÑN instead of NN

Previous approaches

1. Data augmentation: Given many pairs ((x1, x2, x3),max{x1, x2, x3}), add pairs
(g · (x1, x2, x3),max{x1, x2, x3}) for all g ∈ S3 to the training data

2. Restricting weights of neural networks [Zaheer et al., 2017] (”Deep Sets”)

3. Averaging techniques:
Let NN : R3 → R be a neural network architecture, not necessarily invariant

ÑN : R3 → R

(x1, x2, x3) 7→
∑
g∈S3

NN(g · (x1, x2, x3))

⇒ ÑN is group invariant ⇝ train ÑN instead of NN

Previous approaches

1. Data augmentation: Given many pairs ((x1, x2, x3),max{x1, x2, x3}), add pairs
(g · (x1, x2, x3),max{x1, x2, x3}) for all g ∈ S3 to the training data

2. Restricting weights of neural networks [Zaheer et al., 2017] (”Deep Sets”)

3. Averaging techniques:
Let NN : R3 → R be a neural network architecture, not necessarily invariant

ÑN : R3 → R

(x1, x2, x3) 7→
∑
g∈S3

NN(g · (x1, x2, x3))

⇒ ÑN is group invariant ⇝ train ÑN instead of NN

New approach: group invariant pre-processing [Aslan et al., 2023]

▶ Take F : R3 → R3 s.t. F (g · x) = F (x) for all g ∈ S3 and x ∈ R3

▶ Neural network NN ⇝ define ÑN := NN ◦ F
⇒ ÑN(g · x) = NN

(
F (g · x)

)
= NN

(
F (x)

)
= ÑN(x)

Train ÑN instead of NN
(Equivalent: train on data (F (x), y) rather than (x , y))

How to get good F?
▶ U ⊂ RN fundamental domain for G ↷ RN :⇔

1. U open and connected
2. for all x ∈ X the orbit G · x := {g · x : g ∈ G} intersects U
3. if G · x intersects U, then the intersection is unique

▶ F : RN → RN def by x 7→ intersection of G · x and U

Example: G = S3 ↷ R3, U := {(x1, x2, x3) ∈ R3 : x1 > x2 > x3}

F : R3 → U
(x1, x2, x3) 7→ max{x1, x2, x3}
middle{x1, x2, x3}
min{x1, x2, x3}



New approach: group invariant pre-processing [Aslan et al., 2023]

▶ Take F : R3 → R3 s.t. F (g · x) = F (x) for all g ∈ S3 and x ∈ R3

▶ Neural network NN ⇝ define ÑN := NN ◦ F
⇒ ÑN(g · x) = NN

(
F (g · x)

)
= NN

(
F (x)

)
= ÑN(x)

Train ÑN instead of NN
(Equivalent: train on data (F (x), y) rather than (x , y))

How to get good F?
▶ U ⊂ RN fundamental domain for G ↷ RN :⇔

1. U open and connected
2. for all x ∈ X the orbit G · x := {g · x : g ∈ G} intersects U
3. if G · x intersects U, then the intersection is unique

▶ F : RN → RN def by x 7→ intersection of G · x and U

Example: G = S3 ↷ R3, U := {(x1, x2, x3) ∈ R3 : x1 > x2 > x3}

F : R3 → U
(x1, x2, x3) 7→ max{x1, x2, x3}
middle{x1, x2, x3}
min{x1, x2, x3}



New approach: group invariant pre-processing [Aslan et al., 2023]

▶ Take F : R3 → R3 s.t. F (g · x) = F (x) for all g ∈ S3 and x ∈ R3

▶ Neural network NN ⇝ define ÑN := NN ◦ F
⇒ ÑN(g · x) = NN

(
F (g · x)

)
= NN

(
F (x)

)
= ÑN(x)

Train ÑN instead of NN
(Equivalent: train on data (F (x), y) rather than (x , y))

How to get good F?
▶ U ⊂ RN fundamental domain for G ↷ RN :⇔

1. U open and connected
2. for all x ∈ X the orbit G · x := {g · x : g ∈ G} intersects U
3. if G · x intersects U, then the intersection is unique

▶ F : RN → RN def by x 7→ intersection of G · x and U

Example: G = S3 ↷ R3, U := {(x1, x2, x3) ∈ R3 : x1 > x2 > x3}

F : R3 → U
(x1, x2, x3) 7→ max{x1, x2, x3}
middle{x1, x2, x3}
min{x1, x2, x3}



New approach: group invariant pre-processing [Aslan et al., 2023]

▶ Take F : R3 → R3 s.t. F (g · x) = F (x) for all g ∈ S3 and x ∈ R3

▶ Neural network NN ⇝ define ÑN := NN ◦ F
⇒ ÑN(g · x) = NN

(
F (g · x)

)
= NN

(
F (x)

)
= ÑN(x)

Train ÑN instead of NN
(Equivalent: train on data (F (x), y) rather than (x , y))

How to get good F?
▶ U ⊂ RN fundamental domain for G ↷ RN :⇔

1. U open and connected
2. for all x ∈ X the orbit G · x := {g · x : g ∈ G} intersects U
3. if G · x intersects U, then the intersection is unique

▶ F : RN → RN def by x 7→ intersection of G · x and U

Example: G = S3 ↷ R3, U := {(x1, x2, x3) ∈ R3 : x1 > x2 > x3}

F : R3 → U
(x1, x2, x3) 7→ max{x1, x2, x3}
middle{x1, x2, x3}
min{x1, x2, x3}



New approach: group invariant pre-processing [Aslan et al., 2023]

▶ Take F : R3 → R3 s.t. F (g · x) = F (x) for all g ∈ S3 and x ∈ R3

▶ Neural network NN ⇝ define ÑN := NN ◦ F
⇒ ÑN(g · x) = NN

(
F (g · x)

)
= NN

(
F (x)

)
= ÑN(x)

Train ÑN instead of NN
(Equivalent: train on data (F (x), y) rather than (x , y))

How to get good F?
▶ U ⊂ RN fundamental domain for G ↷ RN :⇔

1. U open and connected
2. for all x ∈ X the orbit G · x := {g · x : g ∈ G} intersects U
3. if G · x intersects U, then the intersection is unique

▶ F : RN → RN def by x 7→ intersection of G · x and U

Example: G = S3 ↷ R3, U := {(x1, x2, x3) ∈ R3 : x1 > x2 > x3}

F : R3 → U
(x1, x2, x3) 7→ max{x1, x2, x3}
middle{x1, x2, x3}
min{x1, x2, x3}



New approach: group invariant pre-processing [Aslan et al., 2023]

▶ Take F : R3 → R3 s.t. F (g · x) = F (x) for all g ∈ S3 and x ∈ R3

▶ Neural network NN ⇝ define ÑN := NN ◦ F
⇒ ÑN(g · x) = NN

(
F (g · x)

)
= NN

(
F (x)

)
= ÑN(x)

Train ÑN instead of NN
(Equivalent: train on data (F (x), y) rather than (x , y))

How to get good F?
▶ U ⊂ RN fundamental domain for G ↷ RN :⇔

1. U open and connected
2. for all x ∈ X the orbit G · x := {g · x : g ∈ G} intersects U
3. if G · x intersects U, then the intersection is unique

▶ F : RN → RN def by x 7→ intersection of G · x and U

Example: G = S3 ↷ R3, U := {(x1, x2, x3) ∈ R3 : x1 > x2 > x3}

F : R3 → U
(x1, x2, x3) 7→ max{x1, x2, x3}
middle{x1, x2, x3}
min{x1, x2, x3}



New approach: group invariant pre-processing [Aslan et al., 2023]

▶ Take F : R3 → R3 s.t. F (g · x) = F (x) for all g ∈ S3 and x ∈ R3

▶ Neural network NN ⇝ define ÑN := NN ◦ F
⇒ ÑN(g · x) = NN

(
F (g · x)

)
= NN

(
F (x)

)
= ÑN(x)

Train ÑN instead of NN
(Equivalent: train on data (F (x), y) rather than (x , y))

How to get good F?
▶ U ⊂ RN fundamental domain for G ↷ RN :⇔

1. U open and connected
2. for all x ∈ X the orbit G · x := {g · x : g ∈ G} intersects U
3. if G · x intersects U, then the intersection is unique

▶ F : RN → RN def by x 7→ intersection of G · x and U

Example: G = S3 ↷ R3, U := {(x1, x2, x3) ∈ R3 : x1 > x2 > x3}

F : R3 → U
(x1, x2, x3) 7→ max{x1, x2, x3}
middle{x1, x2, x3}
min{x1, x2, x3}



New approach: group invariant pre-processing [Aslan et al., 2023]

▶ Take F : R3 → R3 s.t. F (g · x) = F (x) for all g ∈ S3 and x ∈ R3

▶ Neural network NN ⇝ define ÑN := NN ◦ F
⇒ ÑN(g · x) = NN

(
F (g · x)

)
= NN

(
F (x)

)
= ÑN(x)

Train ÑN instead of NN
(Equivalent: train on data (F (x), y) rather than (x , y))

How to get good F?
▶ U ⊂ RN fundamental domain for G ↷ RN :⇔

1. U open and connected
2. for all x ∈ X the orbit G · x := {g · x : g ∈ G} intersects U
3. if G · x intersects U, then the intersection is unique

▶ F : RN → RN def by x 7→ intersection of G · x and U

Example: G = S3 ↷ R3, U := {(x1, x2, x3) ∈ R3 : x1 > x2 > x3}

F : R3 → U
(x1, x2, x3) 7→ max{x1, x2, x3}
middle{x1, x2, x3}
min{x1, x2, x3}



How to get F : RN → RN?

▶ Approach 1: Combinatorial Fundamental Domain
[Dixon and Majeed, 1988] ⇒ for any G ⊂ Sn subgroup:
fast combinatorial algorithm to compute U and F for the action G ↷ Sn,
we extend to case G ↷ Rn

▶ Approach 2: Dirichlet Fundamental Domain
G ⊂ Sn ↷ Rn acts through isometries, i.e. |x | = |g · x |
x0 ∈ Rn generic, define

U := {x ∈ Rn : ⟨x , x0⟩ > ⟨g · x , x0⟩ for all g ∈ G} , where ⟨·, ·⟩ is dot product
F : Rn → Rn

x 7→ g̃ x where g̃ ∈ G s.t. ⟨g̃ x , x0⟩ = max
g∈G

⟨g · x , x0⟩

e.g. S3 ↷ R3, x0 = (3, 2, 1), project y = (y1, y2, y3)
to maximise ⟨y , x0⟩ = 3y1+2y2+ y3 want to order y1, y2, y3 s.t. biggest coord first
⇝ U = {(y1, y2, y3) ∈ R3 : y1 ≥ y2 ≥ y3} same as before!

How to get F : RN → RN?

▶ Approach 1: Combinatorial Fundamental Domain
[Dixon and Majeed, 1988] ⇒ for any G ⊂ Sn subgroup:
fast combinatorial algorithm to compute U and F for the action G ↷ Sn,
we extend to case G ↷ Rn

▶ Approach 2: Dirichlet Fundamental Domain
G ⊂ Sn ↷ Rn acts through isometries, i.e. |x | = |g · x |
x0 ∈ Rn generic, define

U := {x ∈ Rn : ⟨x , x0⟩ > ⟨g · x , x0⟩ for all g ∈ G} , where ⟨·, ·⟩ is dot product
F : Rn → Rn

x 7→ g̃ x where g̃ ∈ G s.t. ⟨g̃ x , x0⟩ = max
g∈G

⟨g · x , x0⟩

e.g. S3 ↷ R3, x0 = (3, 2, 1), project y = (y1, y2, y3)
to maximise ⟨y , x0⟩ = 3y1+2y2+ y3 want to order y1, y2, y3 s.t. biggest coord first
⇝ U = {(y1, y2, y3) ∈ R3 : y1 ≥ y2 ≥ y3} same as before!

How to get F : RN → RN?

▶ Approach 1: Combinatorial Fundamental Domain
[Dixon and Majeed, 1988] ⇒ for any G ⊂ Sn subgroup:
fast combinatorial algorithm to compute U and F for the action G ↷ Sn,
we extend to case G ↷ Rn

▶ Approach 2: Dirichlet Fundamental Domain
G ⊂ Sn ↷ Rn acts through isometries, i.e. |x | = |g · x |
x0 ∈ Rn generic, define

U := {x ∈ Rn : ⟨x , x0⟩ > ⟨g · x , x0⟩ for all g ∈ G} , where ⟨·, ·⟩ is dot product
F : Rn → Rn

x 7→ g̃ x where g̃ ∈ G s.t. ⟨g̃ x , x0⟩ = max
g∈G

⟨g · x , x0⟩

e.g. S3 ↷ R3, x0 = (3, 2, 1), project y = (y1, y2, y3)
to maximise ⟨y , x0⟩ = 3y1+2y2+ y3 want to order y1, y2, y3 s.t. biggest coord first
⇝ U = {(y1, y2, y3) ∈ R3 : y1 ≥ y2 ≥ y3} same as before!

How to get F : RN → RN?

▶ Approach 1: Combinatorial Fundamental Domain
[Dixon and Majeed, 1988] ⇒ for any G ⊂ Sn subgroup:
fast combinatorial algorithm to compute U and F for the action G ↷ Sn,
we extend to case G ↷ Rn

▶ Approach 2: Dirichlet Fundamental Domain
G ⊂ Sn ↷ Rn acts through isometries, i.e. |x | = |g · x |
x0 ∈ Rn generic, define

U := {x ∈ Rn : ⟨x , x0⟩ > ⟨g · x , x0⟩ for all g ∈ G} , where ⟨·, ·⟩ is dot product
F : Rn → Rn

x 7→ g̃ x where g̃ ∈ G s.t. ⟨g̃ x , x0⟩ = max
g∈G

⟨g · x , x0⟩

e.g. S3 ↷ R3, x0 = (3, 2, 1), project y = (y1, y2, y3)
to maximise ⟨y , x0⟩ = 3y1+2y2+ y3 want to order y1, y2, y3 s.t. biggest coord first
⇝ U = {(y1, y2, y3) ∈ R3 : y1 ≥ y2 ≥ y3} same as before!

How to get F : RN → RN?

▶ Approach 1: Combinatorial Fundamental Domain
[Dixon and Majeed, 1988] ⇒ for any G ⊂ Sn subgroup:
fast combinatorial algorithm to compute U and F for the action G ↷ Sn,
we extend to case G ↷ Rn

▶ Approach 2: Dirichlet Fundamental Domain
G ⊂ Sn ↷ Rn acts through isometries, i.e. |x | = |g · x |
x0 ∈ Rn generic, define

U := {x ∈ Rn : ⟨x , x0⟩ > ⟨g · x , x0⟩ for all g ∈ G} , where ⟨·, ·⟩ is dot product
F : Rn → Rn

x 7→ g̃ x where g̃ ∈ G s.t. ⟨g̃ x , x0⟩ = max
g∈G

⟨g · x , x0⟩

e.g. S3 ↷ R3, x0 = (3, 2, 1), project y = (y1, y2, y3)
to maximise ⟨y , x0⟩ = 3y1+2y2+ y3 want to order y1, y2, y3 s.t. biggest coord first
⇝ U = {(y1, y2, y3) ∈ R3 : y1 ≥ y2 ≥ y3} same as before!

How to get F : RN → RN?

▶ Approach 1: Combinatorial Fundamental Domain
[Dixon and Majeed, 1988] ⇒ for any G ⊂ Sn subgroup:
fast combinatorial algorithm to compute U and F for the action G ↷ Sn,
we extend to case G ↷ Rn

▶ Approach 2: Dirichlet Fundamental Domain
G ⊂ Sn ↷ Rn acts through isometries, i.e. |x | = |g · x |
x0 ∈ Rn generic, define

U := {x ∈ Rn : ⟨x , x0⟩ > ⟨g · x , x0⟩ for all g ∈ G} , where ⟨·, ·⟩ is dot product
F : Rn → Rn

x 7→ g̃ x where g̃ ∈ G s.t. ⟨g̃ x , x0⟩ = max
g∈G

⟨g · x , x0⟩

e.g. S3 ↷ R3, x0 = (3, 2, 1), project y = (y1, y2, y3)
to maximise ⟨y , x0⟩ = 3y1+2y2+ y3 want to order y1, y2, y3 s.t. biggest coord first
⇝ U = {(y1, y2, y3) ∈ R3 : y1 ≥ y2 ≥ y3} same as before!

How to get F : RN → RN?

▶ Approach 1: Combinatorial Fundamental Domain
[Dixon and Majeed, 1988] ⇒ for any G ⊂ Sn subgroup:
fast combinatorial algorithm to compute U and F for the action G ↷ Sn,
we extend to case G ↷ Rn

▶ Approach 2: Dirichlet Fundamental Domain
G ⊂ Sn ↷ Rn acts through isometries, i.e. |x | = |g · x |
x0 ∈ Rn generic, define

U := {x ∈ Rn : ⟨x , x0⟩ > ⟨g · x , x0⟩ for all g ∈ G} , where ⟨·, ·⟩ is dot product
F : Rn → Rn

x 7→ g̃ x where g̃ ∈ G s.t. ⟨g̃ x , x0⟩ = max
g∈G

⟨g · x , x0⟩

e.g. S3 ↷ R3, x0 = (3, 2, 1), project y = (y1, y2, y3)
to maximise ⟨y , x0⟩ = 3y1+2y2+ y3 want to order y1, y2, y3 s.t. biggest coord first
⇝ U = {(y1, y2, y3) ∈ R3 : y1 ≥ y2 ≥ y3} same as before!

How to get F : RN → RN?

▶ Approach 1: Combinatorial Fundamental Domain
[Dixon and Majeed, 1988] ⇒ for any G ⊂ Sn subgroup:
fast combinatorial algorithm to compute U and F for the action G ↷ Sn,
we extend to case G ↷ Rn

▶ Approach 2: Dirichlet Fundamental Domain
G ⊂ Sn ↷ Rn acts through isometries, i.e. |x | = |g · x |
x0 ∈ Rn generic, define

U := {x ∈ Rn : ⟨x , x0⟩ > ⟨g · x , x0⟩ for all g ∈ G} , where ⟨·, ·⟩ is dot product
F : Rn → Rn

x 7→ g̃ x where g̃ ∈ G s.t. ⟨g̃ x , x0⟩ = max
g∈G

⟨g · x , x0⟩

e.g. S3 ↷ R3, x0 = (3, 2, 1), project y = (y1, y2, y3)
to maximise ⟨y , x0⟩ = 3y1+2y2+ y3 want to order y1, y2, y3 s.t. biggest coord first
⇝ U = {(y1, y2, y3) ∈ R3 : y1 ≥ y2 ≥ y3} same as before!

For more general groups

▶ Groups can be large, e.g. S15 ↷ R15 has |S15| = 15! ≈ 1012

⇒ data augmentation and averaging techniques impossible
(NN with restricted weights still possible)

▶ Ours can be generalised to G ↷ M for M a complete Riemannian manifold

U := {x ∈ M : d(x , x0) < d(g · x , x0) for all g ∈ G}

e.g. SL(2,Z) ↷ H2

▶ Remark: for Lie groups G ↷ M: choose U to be slice

For more general groups

▶ Groups can be large, e.g. S15 ↷ R15 has |S15| = 15! ≈ 1012

⇒ data augmentation and averaging techniques impossible
(NN with restricted weights still possible)

▶ Ours can be generalised to G ↷ M for M a complete Riemannian manifold

U := {x ∈ M : d(x , x0) < d(g · x , x0) for all g ∈ G}

e.g. SL(2,Z) ↷ H2

▶ Remark: for Lie groups G ↷ M: choose U to be slice

For more general groups

▶ Groups can be large, e.g. S15 ↷ R15 has |S15| = 15! ≈ 1012

⇒ data augmentation and averaging techniques impossible
(NN with restricted weights still possible)

▶ Ours can be generalised to G ↷ M for M a complete Riemannian manifold

U := {x ∈ M : d(x , x0) < d(g · x , x0) for all g ∈ G}

e.g. SL(2,Z) ↷ H2

▶ Remark: for Lie groups G ↷ M: choose U to be slice

For more general groups

▶ Groups can be large, e.g. S15 ↷ R15 has |S15| = 15! ≈ 1012

⇒ data augmentation and averaging techniques impossible
(NN with restricted weights still possible)

▶ Ours can be generalised to G ↷ M for M a complete Riemannian manifold

U := {x ∈ M : d(x , x0) < d(g · x , x0) for all g ∈ G}

e.g. SL(2,Z) ↷ H2

▶ Remark: for Lie groups G ↷ M: choose U to be slice

For more general groups

▶ Groups can be large, e.g. S15 ↷ R15 has |S15| = 15! ≈ 1012

⇒ data augmentation and averaging techniques impossible
(NN with restricted weights still possible)

▶ Ours can be generalised to G ↷ M for M a complete Riemannian manifold

U := {x ∈ M : d(x , x0) < d(g · x , x0) for all g ∈ G}

e.g. SL(2,Z) ↷ H2

▶ Remark: for Lie groups G ↷ M: choose U to be slice

Example 1: Rotated MNIST

▶ 28× 28 pixel images showing a digit, possibly rotated by 90◦, 180◦, 270◦

▶ Learn

h : R28×28→ {0, 1, 2, . . . , 9}
x 7→ the digit shown in x

▶ Have Z4 ↷ R28×28 by rotation and h is Z4-invariant
(note Z4 ⊂ S28·28 = S784)

▶ Define U (fundamental domain) and F (projection):
(small lie, x0 not generic)

x0 =


4 4 . . . 3 3 . . .
4 4 . . . 3 3 . . .

.

.

.

.

.

.

.

.

.

.

.

.
2 2 . . . 1 1 . . .
2 2 . . . 1 1 . . .

.

.

.

.

.

.

.

.

.

.

.

.

, U :=

{
x ∈ R28×28 : ⟨x , x0⟩ = max

g∈S4
⟨g · x , x0⟩

}

F : R28×28 → R28×28, x 7→ x rotated so that top left quadrant is brightest

Example 1: Rotated MNIST

▶ 28× 28 pixel images showing a digit, possibly rotated by 90◦, 180◦, 270◦

▶ Learn

h : R28×28→ {0, 1, 2, . . . , 9}
x 7→ the digit shown in x

▶ Have Z4 ↷ R28×28 by rotation and h is Z4-invariant
(note Z4 ⊂ S28·28 = S784)

▶ Define U (fundamental domain) and F (projection):
(small lie, x0 not generic)

x0 =


4 4 . . . 3 3 . . .
4 4 . . . 3 3 . . .

.

.

.

.

.

.

.

.

.

.

.

.
2 2 . . . 1 1 . . .
2 2 . . . 1 1 . . .

.

.

.

.

.

.

.

.

.

.

.

.

, U :=

{
x ∈ R28×28 : ⟨x , x0⟩ = max

g∈S4
⟨g · x , x0⟩

}

F : R28×28 → R28×28, x 7→ x rotated so that top left quadrant is brightest

Example 1: Rotated MNIST

▶ 28× 28 pixel images showing a digit, possibly rotated by 90◦, 180◦, 270◦

▶ Learn

h : R28×28→ {0, 1, 2, . . . , 9}
x 7→ the digit shown in x

▶ Have Z4 ↷ R28×28 by rotation and h is Z4-invariant
(note Z4 ⊂ S28·28 = S784)

▶ Define U (fundamental domain) and F (projection):
(small lie, x0 not generic)

x0 =


4 4 . . . 3 3 . . .
4 4 . . . 3 3 . . .

.

.

.

.

.

.

.

.

.

.

.

.
2 2 . . . 1 1 . . .
2 2 . . . 1 1 . . .

.

.

.

.

.

.

.

.

.

.

.

.

, U :=

{
x ∈ R28×28 : ⟨x , x0⟩ = max

g∈S4
⟨g · x , x0⟩

}

F : R28×28 → R28×28, x 7→ x rotated so that top left quadrant is brightest

Example 1: Rotated MNIST

▶ 28× 28 pixel images showing a digit, possibly rotated by 90◦, 180◦, 270◦

▶ Learn

h : R28×28→ {0, 1, 2, . . . , 9}
x 7→ the digit shown in x (pre-processing useful for very small models)

▶ Have Z4 ↷ R28×28 by rotation and h is Z4-invariant
(note Z4 ⊂ S28·28 = S784)

▶ Define U (fundamental domain) and F (projection):
(small lie, x0 not generic)

x0 =


4 4 . . . 3 3 . . .
4 4 . . . 3 3 . . .

.

.

.

.

.

.

.

.

.

.

.

.
2 2 . . . 1 1 . . .
2 2 . . . 1 1 . . .

.

.

.

.

.

.

.

.

.

.

.

.

, U :=

{
x ∈ R28×28 : ⟨x , x0⟩ = max

g∈S4
⟨g · x , x0⟩

}

F : R28×28 → R28×28, x 7→ x rotated so that top left quadrant is brightest

Example 2: Complete Intersection Calabi-Yau (CICY) matrices

▶ have procedure M ∈ R12×15 ⇝ f1, . . . , f15 polynomials such that

CY(M) := {x ∈ CPk1 × · · · × CPk12 : f1(x) = 0, . . . , f15(x) = 0}

is Calabi-Yau manifold
1 1 0 0 0 0 . . .
0 0 1 0 0 1 . . .
0 0 0 0 1 1 . . .
1 0 0 1 0 0 . . .
1 0 0 0 0 1 . . .
0 0 1 2 0 0 . . .
0 1 0 0 2 0 . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.


▶ geometric invariant ”second Hodge number” h2 : {Calabi-Yau mf} → Z
▶ Learn

h : R12×15→ Z
M 7→ h2(CY(M))

▶ Fact: h invariant under action of S12 × S15 acting by row/column permutations

Example 2: Complete Intersection Calabi-Yau (CICY) matrices

▶ have procedure M ∈ R12×15 ⇝ f1, . . . , f15 polynomials such that

CY(M) := {x ∈ CPk1 × · · · × CPk12 : f1(x) = 0, . . . , f15(x) = 0}

is Calabi-Yau manifold
1 1 0 0 0 0 . . .
0 0 1 0 0 1 . . .
0 0 0 0 1 1 . . .
1 0 0 1 0 0 . . .
1 0 0 0 0 1 . . .
0 0 1 2 0 0 . . .
0 1 0 0 2 0 . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.


▶ geometric invariant ”second Hodge number” h2 : {Calabi-Yau mf} → Z
▶ Learn

h : R12×15→ Z
M 7→ h2(CY(M))

▶ Fact: h invariant under action of S12 × S15 acting by row/column permutations

Example 2: Complete Intersection Calabi-Yau (CICY) matrices

▶ have procedure M ∈ R12×15 ⇝ f1, . . . , f15 polynomials such that

CY(M) := {x ∈ CPk1 × · · · × CPk12 : f1(x) = 0, . . . , f15(x) = 0}

is Calabi-Yau manifold
1 1 0 0 0 0 . . .
0 0 1 0 0 1 . . .
0 0 0 0 1 1 . . .
1 0 0 1 0 0 . . .
1 0 0 0 0 1 . . .
0 0 1 2 0 0 . . .
0 1 0 0 2 0 . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.


▶ geometric invariant ”second Hodge number” h2 : {Calabi-Yau mf} → Z
▶ Learn

h : R12×15→ Z
M 7→ h2(CY(M))

▶ Fact: h invariant under action of S12 × S15 acting by row/column permutations

Example 2: Complete Intersection Calabi-Yau (CICY) matrices

▶ have procedure M ∈ R12×15 ⇝ f1, . . . , f15 polynomials such that

CY(M) := {x ∈ CPk1 × · · · × CPk12 : f1(x) = 0, . . . , f15(x) = 0}

is Calabi-Yau manifold
1 1 0 0 0 0 . . .
0 0 1 0 0 1 . . .
0 0 0 0 1 1 . . .
1 0 0 1 0 0 . . .
1 0 0 0 0 1 . . .
0 0 1 2 0 0 . . .
0 1 0 0 2 0 . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.


▶ geometric invariant ”second Hodge number” h2 : {Calabi-Yau mf} → Z
▶ Learn

h : R12×15→ Z
M 7→ h2(CY(M))

▶ Fact: h invariant under action of S12 × S15 acting by row/column permutations

Example 2: Complete Intersection Calabi-Yau (CICY) matrices

▶ Let x0 =


10179 10178 10177 . . . 10165

...
...

...
...

1029 1028 1027 . . . 1015

1014 1013 1012 . . . 100

 ∈ R12×15

U : = {M ∈ R12×15 : ⟨M, x0⟩ > ⟨g ·M, x0⟩ for all g ∈ S12 × S15}

=

{
M ∈ R12×15 :

M is lexicographically bigger
g ·M for all g ∈ S12 × S15

}
▶ F : M 7→ lexicographically biggest row/column permutation of M

E.g. F

(
2 0
1 3

)
=

(
3 2
0 1

)
▶ Compute F? For M ∈ R12×15 apply random permutations until get no bigger

(Side note: computing F is slower than solving graph isomorphism problem)

Example 2: Complete Intersection Calabi-Yau (CICY) matrices

▶ Let x0 =


10179 10178 10177 . . . 10165

...
...

...
...

1029 1028 1027 . . . 1015

1014 1013 1012 . . . 100

 ∈ R12×15

U : = {M ∈ R12×15 : ⟨M, x0⟩ > ⟨g ·M, x0⟩ for all g ∈ S12 × S15}

=

{
M ∈ R12×15 :

M is lexicographically bigger
g ·M for all g ∈ S12 × S15

}
▶ F : M 7→ lexicographically biggest row/column permutation of M

E.g. F

(
2 0
1 3

)
=

(
3 2
0 1

)
▶ Compute F? For M ∈ R12×15 apply random permutations until get no bigger

(Side note: computing F is slower than solving graph isomorphism problem)

Example 2: Complete Intersection Calabi-Yau (CICY) matrices

▶ Let x0 =


10179 10178 10177 . . . 10165

...
...

...
...

1029 1028 1027 . . . 1015

1014 1013 1012 . . . 100

 ∈ R12×15

U : = {M ∈ R12×15 : ⟨M, x0⟩ > ⟨g ·M, x0⟩ for all g ∈ S12 × S15}

=

{
M ∈ R12×15 :

M is lexicographically bigger
g ·M for all g ∈ S12 × S15

}
▶ F : M 7→ lexicographically biggest row/column permutation of M

E.g. F

(
2 0
1 3

)
=

(
3 2
0 1

)
▶ Compute F? For M ∈ R12×15 apply random permutations until get no bigger

(Side note: computing F is slower than solving graph isomorphism problem)

Example 2: Complete Intersection Calabi-Yau (CICY) matrices

▶ Let x0 =


10179 10178 10177 . . . 10165

...
...

...
...

1029 1028 1027 . . . 1015

1014 1013 1012 . . . 100

 ∈ R12×15

U : = {M ∈ R12×15 : ⟨M, x0⟩ > ⟨g ·M, x0⟩ for all g ∈ S12 × S15}

=

{
M ∈ R12×15 :

M is lexicographically bigger
g ·M for all g ∈ S12 × S15

}
▶ F : M 7→ lexicographically biggest row/column permutation of M

E.g. F

(
2 0
1 3

)
=

(
3 2
0 1

)
▶ Compute F? For M ∈ R12×15 apply random permutations until get no bigger

(Side note: computing F is slower than solving graph isomorphism problem)

Inception
[Erbin and Finotello, 2021]

Example 3: Kreuzer-Skarke toric variety list

▶ M ∈ R4×26

↔ polytope in R4 with 26 vertices
↔ Toric Fano variety

⇝ (Suitable degree) Hypersurface is Calabi-Yau manifold CY(M)

▶ Learn

h : R4×26→ Z
M 7→ h2(CY(M))

▶ x0, U, F as before ⇝

F

cf.
[Berglund et al., 2021]

Thank you for the attention!

References I

Aggarwal, D., He, Y.-H., Heyes, E., Hirst, E., Earp, H. N. S., and Silva, T. S.
(2023).
Machine-learning sasakian and g 2 topology on contact calabi-yau 7-manifolds.
arXiv preprint arXiv:2310.03064.

Aslan, B., Platt, D., and Sheard, D. (2023).
Group invariant machine learning by fundamental domain projections.
In NeurIPS Workshop on Symmetry and Geometry in Neural Representations,
pages 181–218. PMLR.

Berglund, P., Campbell, B., and Jejjala, V. (2021).
Machine learning kreuzer–skarke calabi–yau threefolds.
arXiv preprint arXiv:2112.09117.

Coates, T., Kasprzyk, A. M., and Veneziale, S. (2023).
Machine learning detects terminal singularities.
In NeurIPS. PMLR.

References II

Davies, A., Veličković, P., Buesing, L., Blackwell, S., Zheng, D., Tomašev, N.,
Tanburn, R., Battaglia, P., Blundell, C., Juhász, A., et al. (2021).
Advancing mathematics by guiding human intuition with ai.
Nature, 600(7887):70–74.

Dixon, J. D. and Majeed, A. (1988).
Coset representatives for permutation groups.
Portugaliae mathematica, 45:61–68.

Dong, B., He, X., Jin, P., Schremmer, F., and Yu, Q. (2023).
Machine learning assisted exploration for affine deligne-lusztig varieties.

Erbin, H. and Finotello, R. (2021).
Machine learning for complete intersection calabi-yau manifolds: a methodological
study.
Physical Review D, 103(12):126014.

References III

He, Y.-H., Lee, S.-J., Lukas, A., and Sun, C. (2014).
Heterotic model building: 16 special manifolds.
Journal of High Energy Physics, 2014(6).

Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R. R., and
Smola, A. J. (2017).
Deep sets.
Advances in neural information processing systems, 30.

Image credit

▶ Polytope image:
https://en.wikipedia.org/wiki/Simple polytope#/media/File:

Associahedron K5.svg

▶ Tesselation of hyperbolic plane:
https://www.pngwing.com/en/free-png-cmyrj

This presentation is licensed under Attribution-ShareAlike 3.0 Unported (CC

BY-SA 3.0).

https://en.wikipedia.org/wiki/Simple_polytope##/media/File:Associahedron_K5.svg
https://en.wikipedia.org/wiki/Simple_polytope##/media/File:Associahedron_K5.svg
https://www.pngwing.com/en/free-png-cmyrj

