
Group invariant machine learning by fundamental domain
projections

Daniel Platt
3 May 2023

University of Nottingham Online Machine Learning Seminar

Abstract: In many applications one wants to learn a function that is invariant under a
group action. For example, classifying images of digits, no matter how they are
rotated. There exist many approaches in the literature to do this. I will mention two
approaches that are very useful in many applications, but struggle if the group is big or
acts in a complicated way. I will then explain our approach which does not have these
two problems. The approach works by finding some ”canonical representative” of each
input element. In the example of images of digits, one may rotate the digit so that the
brightest quarter is in the top-left, which would define a ”canonical representative”. In
the general case, one has to define what that means. Our approach is useful if the
group is big, and useless if the group is small, and I will present experiments for both
cases. This is joint work with Benjamin Aslan and David Sheard.

Group actions

▶ Example: S3 =permutation group of 3 elements
S3 ↷ R3, e.g. (1, 2) · (x1, x2, x3) = (x2, x1, x3)

▶ f : R3 → R group invariant :⇔ f (g · x) = f (x) for all g ∈ S3 and x ∈ R3

▶ Example:

max : R3→ R
(x1, x2, x3) 7→ max{x1, x2, x3}

▶ Given many pairs ((x1, x2, x3),max{x1, x2, x3}) can train neural network NN

▶ Approximate max, but need not be group invariant

▶ Q1: how can find one group invariant NNs?

▶ Q2: does this improve performance of NNs?

Previous approaches

1. Data augmentation: Given many pairs ((x1, x2, x3),max{x1, x2, x3}), add pairs
(g · (x1, x2, x3),max{x1, x2, x3}) for all g ∈ S3 to the training data

2. Restricting weights of neural networks [Zaheer et al., 2017] (”Deep Sets”):

L :

x1
x2
x3

 7→ λ1

1 1 1
1 1 1
1 1 1

x1
x2
x3

+ λ2

1 0 0
0 1 0
0 0 1

x1
x2
x3

 for λ1, λ2 ∈ R

has L(g · x) = g · L(x) (equivariant). Define NN = pool ◦ L ◦ σ ◦ L ◦ σ ◦ L, where:
▶ pool =some fixed group-invariant function R3 → R, e.g. (x1, x2, x3) 7→ x1 + x2 + x3
▶ σ =some non-linearity, e.g. ReLU

Theorem: If L : R3 → R3 is S3-equivariant, then L is of this form.

3. Averaging techniques:
Let NN : R3 → R be a neural network architecture, not necessarily invariant

ÑN : R3 → R

(x1, x2, x3) 7→
∑
g∈S3

NN(g · (x1, x2, x3))

⇒ ÑN is group invariant ⇝ train ÑN instead of NN

New approach: group invariant pre-processing [Aslan et al., 2023]

▶ Take F : R3 → R3 s.t. F (g · x) = F (x) for all g ∈ S3 and x ∈ R3

▶ Neural network NN ⇝ define ÑN := NN ◦ F
⇒ ÑN(g · x) = NN

(
F (g · x)

)
= NN

(
F (x)

)
= ÑN(x)

Train ÑN instead of NN
(Equivalent: train on data (F (x), y) rather than (x , y))

How to get good F?
▶ U ⊂ RN fundamental domain for G ↷ RN :⇔

1. U open and connected
2. for all x ∈ X the orbit G · x := {g · x : g ∈ G} intersects U
3. if G · x intersects U, then the intersection is unique

▶ F : RN → RN def by x 7→ intersection of G · x and U

Example: G = S3 ↷ R3, U := {(x1, x2, x3) ∈ R3 : x1 > x2 > x3}

F : R3 → U
(x1, x2, x3) 7→ max{x1, x2, x3}
middle{x1, x2, x3}
min{x1, x2, x3}

How to get F : RN → RN?

▶ Approach 1: Combinatorial Fundamental Domain
[Dixon and Majeed, 1988] ⇒ for any G ⊂ Sn subgroup:
combinatorial algorithm to compute U and F for the action G ↷ Sn, we extend
to case G ↷ Rn

▶ Approach 2: Dirichlet Fundamental Domain
G ⊂ Sn ↷ Rn acts through isometries, i.e. |x | = |g · x |
x0 ∈ Rn generic, define

U := {x ∈ Rn : ⟨x , x0⟩ > ⟨g · x , x0⟩ for all g ∈ G} , where ⟨·, ·⟩ is dot product
F : Rn → Rn

x 7→ g̃ x where g̃ ∈ G s.t. ⟨g̃ x , x0⟩ = max
g∈G

⟨g · x , x0⟩

e.g. S3 ↷ R3, x0 = (3, 2, 1), project y = (y1, y2, y3)
to maximise ⟨y , x0⟩ = 3y1+2y2+ y3 want to order y1, y2, y3 s.t. biggest coord first
⇝ U = {(y1, y2, y3) ∈ R3 : y1 ≥ y2 ≥ y3} same as before!

For more general groups

▶ Groups can be large, e.g. S15 ↷ R15 has |S15| = 15! ≈ 1012

⇒ data augmentation and averaging techniques impossible
(NN with restricted weights still possible)

▶ Ours can be generalised to G ↷ M for M a complete Riemannian manifold

U := {x ∈ M : d(x , x0) < d(g · x , x0) for all g ∈ G}

e.g. SL(2,Z) ↷ H2

▶ Remark: for Lie groups G ↷ M: choose U to be slice

Example 1: Rotated MNIST

▶ 28× 28 pixel images showing a digit, possibly rotated by 90◦, 180◦, 270◦

▶ Learn

h : R28×28→ {0, 1, 2, . . . , 9}
x 7→ the digit shown in x (pre-processing useful for very small models)

▶ Have Z4 ↷ R28×28 by rotation and h is Z4-invariant
(note Z4 ⊂ S28·28 = S784)

▶ Define U (fundamental domain) and F (projection):
(small lie, x0 not generic)

x0 =

4 4 . . . 3 3 . . .
4 4 . . . 3 3 . . .

.

.

.

.

.

.

.

.

.

.

.

.
2 2 . . . 1 1 . . .
2 2 . . . 1 1 . . .

.

.

.

.

.

.

.

.

.

.

.

.

, U :=

{
x ∈ R28×28 : ⟨x , x0⟩ = max

g∈S4
⟨g · x , x0⟩

}

F : R28×28 → R28×28, x 7→ x rotated so that top left quadrant is brightest

Example 2: Complete Intersection Calabi-Yau (CICY) matrices

▶ have procedure M ∈ R12×15 ⇝ f1, . . . , f15 polynomials such that

CY(M) := {x ∈ CPk1 × · · · × CPk12 : f1(x) = 0, . . . , f15(x) = 0}

is Calabi-Yau manifold
1 1 0 0 0 0 . . .
0 0 1 0 0 1 . . .
0 0 0 0 1 1 . . .
1 0 0 1 0 0 . . .
1 0 0 0 0 1 . . .
0 0 1 2 0 0 . . .
0 1 0 0 2 0 . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

▶ geometric invariant ”second Hodge number” h2 : {Calabi-Yau mf} → Z
▶ Learn

h : R12×15→ Z
M 7→ h2(CY(M))

▶ Fact: h invariant under action of S12 × S15 acting by row/column permutations

Example 2: Complete Intersection Calabi-Yau (CICY) matrices

▶ Let x0 =

10179 10178 10177 . . . 10165

...
...

...
...

1029 1028 1027 . . . 1015

1014 1013 1012 . . . 100

 ∈ R12×15

U : = {M ∈ R12×15 : ⟨M, x0⟩ < ⟨g ·M, x0⟩ for all g ∈ S12 × S15}

=

{
M ∈ R12×15 :

M is lexicographically smaller
g ·M for all g ∈ S12 × S15

}
▶ F : M 7→ lexicographically smallest row/column permutation of M

E.g. F

(
2 0
1 3

)
=

(
0 2
3 1

)
▶ Compute F? For M ∈ R12×15 apply random permutations until get no smaller

(Side note: F in polynomial time ⇝ graph ismomorphism problem (unsolved))

Inception
[Erbin and Finotello, 2021]

Example 3: Kreuzer-Skarke toric variety list

▶ M ∈ R4×26 ↔ polytope in R4 with 26 vertices

⇝ Calabi-Yau manifold CY(M)

▶ Learn

h : R4×26→ Z
M 7→ h2(CY(M))

▶ x0, U, F as before ⇝

First line from
[Berglund et al., 2021]

Thank you for the attention!

References I

Aslan, B., Platt, D., and Sheard, D. (2023).
Group invariant machine learning by fundamental domain projections.
In NeurIPS Workshop on Symmetry and Geometry in Neural Representations,
pages 181–218. PMLR.

Berglund, P., Campbell, B., and Jejjala, V. (2021).
Machine learning kreuzer–skarke calabi–yau threefolds.
arXiv preprint arXiv:2112.09117.

Dixon, J. D. and Majeed, A. (1988).
Coset representatives for permutation groups.
Portugaliae mathematica, 45:61–68.

Erbin, H. and Finotello, R. (2021).
Machine learning for complete intersection calabi-yau manifolds: a methodological
study.
Physical Review D, 103(12):126014.

References II

Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R. R., and
Smola, A. J. (2017).
Deep sets.
Advances in neural information processing systems, 30.

Image credit

▶ Polytope image:
https://en.wikipedia.org/wiki/Simple polytope#/media/File:

Associahedron K5.svg

▶ Tesselation of hyperbolic plane:
https://www.pngwing.com/en/free-png-cmyrj

This presentation is licensed under Attribution-ShareAlike 3.0 Unported (CC

BY-SA 3.0).

https://en.wikipedia.org/wiki/Simple_polytope##/media/File:Associahedron_K5.svg
https://en.wikipedia.org/wiki/Simple_polytope##/media/File:Associahedron_K5.svg
https://www.pngwing.com/en/free-png-cmyrj

