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Abstract: In many applications one wants to learn a function that is invariant under a
group action. For example, classifying images of digits, no matter how they are
rotated. There exist many approaches in the literature to do this. | will mention two
approaches that are very useful in many applications, but struggle if the group is big or
acts in a complicated way. | will then explain our approach which does not have these
two problems. The approach works by finding some " canonical representative” of each
input element. In the example of images of digits, one may rotate the digit so that the
brightest quarter is in the top-left, which would define a " canonical representative”. In
the general case, one has to define what that means. Our approach is useful if the
group is big, and useless if the group is small, and | will present experiments for both
cases. This is joint work with Benjamin Aslan and David Sheard.



Group actions

Example: S3 =permutation group of 3 elements
S3 R eg (1,2) - (x1, %2, x3) = (%2, X1, x3)
()
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h «
f : R3 — R group invariant <= f(g - x) = f(x) for all g € S3 and x € R3

Example:

max : R3— R

(x1, X2, x3) = max{xi, x2, x3}

Given many pairs ((x1, x2, x3), max{x1, X2, x3}) can train neural network NN
Approximate max, but need not be group invariant

Q1: how can find one group invariant NNs?

Q2: does this improve performance of NNs?



Previous approaches

1. Data augmentation: Given many pairs ((xi1, x2, x3), max{xi, x2, x3}), add pairs
(g (x1,x0,x3), max{xy, 2, x3}) for all g € S5 to the training data
2. Restricting weights of neural networks [Zaheer et al., 2017] (" Deep Sets"):

X1 1 11 X1 1 00 X1
L:|lx]|—=X][]1 11 x| +X |0 1 0 xo | for Ad;, 2 €R
X3 1 11 X3 0 01 X3

has L(g - x) = g - L(x) (equivariant). Define NN = poolo Loo o Loo oL, where:
> pool =some fixed group-invariant function R® — R, e.g. (x1,x2,x3) = x1 + X% + x3
» o =some non-linearity, e.g. RelLU

Theorem: If L:R3 — R3 is Ss-equivariant, then L is of this form.

3. Averaging techniques:
Let NN : R3 — R be a neural network architecture, not necessarily invariant

NN :R3 =R

(x1, %2, x3) = > NN(g - (x1, %2, %3))
g€S3

= NN is group invariant ~- train NN instead of NN



New approach: group invariant pre-processing [Aslan et al., 2023]

» Take F: R® —+ R3st. F(g-x)= F(x) forall g € S3 and x € R3

> Neural network NN ~ define NN := NN o F
= NN(g-x) = NN(F(g - x)) = NN(F(x)) = NN(x)

Train NN instead of NN
(Equivalent: train on data (F(x),y) rather than (x,y))
How to get good F?
» U C R" fundamental domain for G ~ RN =
1. U open and connected
2. forall x € X the orbit G - x := {g-x: g € G} intersects U
3. if G - x intersects U, then the intersection is unique

» F:RN — RN def by x + intersection of G - x and U
Example: G = S3 ~ R3, U = {(x1,x0,x3) ER3 : x1 > x0 > x3}

F:R¥=U
(Xl,Xz,X3) —
max{xy, X2, X3 }
middle{xl, X2, X3}
min{Xl,X27X3}




How to get F : RN — RN?

Approach 1: Combinatorial Fundamental Domain

[Dixon and Majeed, 1988] = for any G C S, subgroup:

combinatorial algorithm to compute U and F for the action G ~ S,,, we extend
to case G ~ R”

Approach 2: Dirichlet Fundamental Domain
G C S, ~ R" acts through isometries, i.e. |x| = |g - x|
xp € R" generic, define

U:={xeR": (x,x9) > (g-x,x) for all g € G}, where (-,-) is dot product
F:R" - R"
x +— gx where g € G s.t. (gx,xp) = mag(g X, X0)
g€
e.g. 3 R3 x0=(3,2,1), project y = (y1, y2, ¥3)
to maximise (y, xo) = 3y1 +2y> + y3 want to order y1, y2, y3 s.t. biggest coord first
~ U={(y1,y2,y3) €ER3:y; > y» > y3} same as before!



For more general groups

Groups can be large, e.g. Si5 ~ R15 has |Si5| = 15! ~ 1012
= data augmentation and averaging techniques impossible
(NN with restricted weights still possible)

Ours can be generalised to G ~ M for M a complete Riemannian manifold

U:={xeM:d(x,x) <d(g-x,x) forall g € G}

e.g. SL(2,Z) ~ H?

Remark: for Lie groups G ~ M: choose U to be slice



Example 1: Rotated MNIST

28 x 28 pixel images showing a digit, possibly rotated by 90°,180°,270°

3NN

Learn
h:R*®*28_,101,2,...,9}

x +— the digit shown in x

No pre-processing F
Linear 0.677 +£0.001  0.784 4+ 0.001
MLP 0.939 £0.001  0.953+0.003
SimpNet (19) 0.979 0.979

(pre-processing useful for very small models)

Have Zs ~ R?6%?8 by rotation and h is Zs-invariant

(note Zy4 C Sogog = 5784)

Define U (fundamental domain) and F (projection):

(small lie, xp not generic)

4 4 3 3
4 4 3 3

X0= |72 T 1 ) U::{
2 2 11

. T28x%28 28x28
F:R — R28x28

x € R28><28 : <X,Xo> _ max(g . X:X0>}
gE€Ss

X — x rotated so that top left quadrant is brightest



Example 2: Complete Intersection Calabi-Yau (CICY) matrices

» have procedure M € R¥?*1% < f, ... fi5 polynomials such that

CY(M) = {X c (C[P’kl X o X C]P)klz : fl(X) =0,..., f15(X) = O} o/

is Calabi-Yau manifold

1 1 0 0o 0 O
0o 0 1 0 o0 1
0o 0 0o o0 1 1
1 0 0 1 0 O
1 0 0 0 0 1
o 0 1 2 0 O
0o 1 0 0 2 O

> geometric invariant "second Hodge number” h? : {Calabi-Yau mf} — Z
> Learn

h: R 7

M — h?(CY(M))

» Fact: h invariant under action of S;» X Si5 acting by row/column permutations



Example 2: Complete Intersection Calabi-Yau (CICY) matrices

10179 10178 10177 o 10165

Let xo = : : : : € R12x15
1029 102 10%7 ... 1015
10 1083 1012 ... 100

U:={MecR¥: (M x) < (g M, x) for all g € Si2 x Si5}

M is lexicographically smaller
—IM R12X15 .
{ < g M for all g € 515 X S15

F : M — lexicographically smallest row/column permutation of M

Eg F (f g) - <§ f)

Compute F? For M € R?*15 apply random permutations until get no smaller
(Side note: F in polynomial time ~~ graph ismomorphism problem (unsolved))

Original dataset Randomly permuted

MLP 0.554 = 0.015 0.395 = 0.029 :

MLP+pre-processing 0.858 + 0.009 0.417 + 0.086 Inceptlon .

Inception 0.970 = 0.009 0.844 +0.117 [Erbin and Finotello, 2021]
G-inv MLP 0.895 + 0.029 0.914 + 0.023

[F +Inception 0.975 = 0.007 0.963 + 0.016




Example 3: Kreuzer-Skarke toric variety list

M € R**26 «5 polytope in R* with 26 vertices \‘\

~~ Calabi-Yau manifold CY(M)

Learn

h:R¥2°_ 7
M — h?(CY(M))

xo, U, F as before ~~

Model Acc (orig)

MLP with reduced input 46.89% First line from

MLP 82.96%

[MLP+F - 85.56%) [Berglund et al., 2021]

Invariant MLP 67.16%




Thank you for the attention!
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Image credit

Polytope image:
https://en.wikipedia.org/wiki/Simple_polytope#/media/File:
Associahedron K5.svg
Tesselation of hyperbolic plane:
https://www.pngwing.com/en/free-png-cmyrj
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