A Numerically Verifiable Proof for M-theory Compactifications*

Michael Douglas¹, Daniel Platt², Yidi Qi³

¹Harvard University, Stony Brook University ²King's College London ³Northeastern University

Motivation

Y Calabi-Yau 3-fold (real dimension 6) with involution σ

Theorem (Joyce-Karigiannis [1]):

If $fix(\sigma)$ admits a nowhere vanishing harmonic vector field, then $(Y \times S^1)/\langle \sigma \rangle$ admits a metric with holonomy G_2 .

These manifolds are needed in M-theory (a flavour of string theory)

Problem: only conjectural examples are known

Goal: prove one of the conjectural examples works!

Background

Calabi-Yau manifold Y in \mathbb{CP}^5 be (a small perturbation of)

$$Y_0:=\{\overrightarrow{z}\in\mathbb{CP}^5:p(\overrightarrow{z})=0 ext{ and }q(\overrightarrow{z})=0\}$$

where p is degree 2 polynomial, q is degree 4 polynomial. $\sigma: Y \to Y$ the conjugation map, then "real locus" is

$$Y_{\mathbb{R}} := fix(\sigma) = \{\overrightarrow{z} = (z_0 : \cdots : z_6) \in Y : z_0, \ldots, z_6 \in \mathbb{R}\}$$

Y has two metrics:

g_{CY}

 g_{approx} (see [2])

Calabi-Yau metric, $\mathsf{has}\; Ricci(g_{CY}) \; = \;$ 0, no closed form ex- $Ricci(g_{approx}) \neq 0$ pression known

An approximation of g_{CY} , has

but small, very explicit formulae given

References

- [1] Dominic Joyce and Spiro Karigiannis. A new construction of compact torsion-free G_2 -manifolds by gluing families of Eguchi-Hanson spaces. J. Differential Geom., 117(2):255-343, 2021.
- [2] Michael Douglas, Subramanian Lakshminarasimhan, and Yidi Qi. Numerical calabi-yau metrics from holomorphic networks. In Mathematical and Scientific Machine Learning, pages 223–252. PMLR, 2022.

Question

Does $Y_{\mathbb{R}}$ admit a harmonic vector field with no zeros?

$$V \in \Gamma(TY_{\mathbb{R}}), \quad \Delta_{CY}(V) = 0$$
 ?

Problem: Δ_{CY} depends on the non-explicit metric g_{CY}

A vector field V on $Y_{\mathbb{R}}$ which is harmonic with respect to g_{approx} . It can be computed explicitly and is nowhere 0, with a good bound from below: $|V| > \epsilon$.

Our approach

- 1. Find harmonic (unit norm) vector field $\tilde{V} \in \Gamma(TY_{\mathbb{R}})$ w.r.t. g_{approx} with $|V|>\epsilon$ everywhere.
- 2. ("Stability estimate") Find C > 0 with

$$||g_{CY} - g_{approx}|| \leq C \cdot ||Ricci(g_{approx})||$$

- 3. Classical fact (Hodge theory): ex. $V \in \Gamma(TY_{\mathbb{R}})$ that is g_{CY} -harmonic in same cohomology class as $ilde{V}$
- 4. Find D > 0 with

$$||V - ilde{V}|| \leq D \cdot ||g_{CY} - g_{approx}||$$

5. Conclusion: if

$$||Ric(g_{approx})|| < \epsilon \cdot \frac{1}{C} \cdot \frac{1}{D}$$

then

$$|V| > |\tilde{V}| - |V - \tilde{V}| > \epsilon - \epsilon \frac{1}{C} \cdot \frac{1}{D} \cdot C \cdot D = \mathbf{0}$$

V has no zeros!

The perturbed vector field V on $Y_{\mathbb{R}}$ which is harmonic with respect to g_{approx} . If $||Ricci(g_{approx})||$ is very small, then the metrics g_{CY} and g_{approx} are so close to each other that harmonic vector fields of the two metrics are almost the same. Because V was nowhere 0, the new Vis nowhere 0, even though the bound from below may be worse.