Ricci flow invariant curvature conditions – Concluding Talk

Anusha M. Krishnan

WWU Münster

BIGW July 2023

Plan for the talk

• Summary of what we've seen in this series of talks/ Survey of related results.

• sec ≥ 0 , sec > 0 under the Ricci flow in dimension 4

• Further questions.

Introduction/ Recap

• Ricci flow: geometric PDE for evolving a metric $(M^n, g(t))$.

$$\begin{aligned} \frac{\partial \mathbf{g}}{\partial t} &= -2 \operatorname{Ric}_{\mathbf{g}(t)} \\ \mathbf{g}(\mathbf{0}) &= \mathbf{g}_{\mathbf{0}} \end{aligned}$$

- Expect: lower bounds on curvature preserved under the flow.
- For example, the scalar curvature R evolves as:

$$rac{\partial R_{\mathrm{g}(t)}}{\partial t} = \Delta_{\mathrm{g}(t)} R_{\mathrm{g}(t)} + 2 |\operatorname{Ric}_{\mathrm{g}(t)}|^2.$$

 $\xrightarrow{(\text{scalar}) \text{ maximum principle}} R \ge 0 \text{ is preserved under the Ricci flow}.$

Ricci flow and positive curvature

- [HAMILTON '82] proved that a 3-manifold with Ric > 0 is diffeomorphic to S^3/Γ .
- \bullet Along the way, he proved that Ric>0 and sec>0 are preserved under RF on a 3-manifold.
- [HAMILTON '86] showed that $\mathcal{R} > 0$ is preserved under RF in all dim, and a 4-manifold with $\mathcal{R} > 0$ is diffeomorphic to S^4/Γ .
- [CHEN '91] showed that 2-positive curvature operator is RF preserved, and [BöHM–WILKING '08] showed that such manifolds are diffeomorphic to Sⁿ/Γ.
- [NGUYEN '07, '10] and [BRENDLE-SCHOEN '09] independently showed that PIC is RF preserved, and [BRENDLE-SCHOEN '09] used this to prove the differentiable sphere theorem.

Positive curvature cones

- Curvature operator $\mathcal{R}_p : \Lambda^2 \mathbb{R}^n \to \Lambda^2 \mathbb{R}^n$.
- Positive curvature conditions correspond to cones $C \subseteq S_B^2 \Lambda^2 \mathbb{R}^n$.
- Hamilton's tensor maximum principle: \overline{C} preserved by ODE $\implies \overline{C}$ preserved by PDE, i.e., the corresponding curvature condition is RF invariant.
- [WILKING '13]: Lie alg. criterion vor unified proof of all prior RF invariant curvature cones.
- [BAMLER CABEZAS-RIVAS WILKING '19]: Almost non-negative curvature conditions.

On the opposite side ...

- [MAXIMO, '14] : Ric ≥ 0 is not preserved under the Ricci flow in dim ≥ 4 .
- $[N_1, 04]$: example of non-compact M^4 where sec > 0 is not preserved under the RF.
- [BÖHM-WILKING '07]: \exists homogeneous metrics of sec > 0 on $M^{12} = \text{Sp}(3)/\text{Sp}(1)\text{Sp}(1)\text{Sp}(1)$ which evolve under the Ricci flow to metrics with mixed Ricci curvature. [CHEUNG-WALLACH '15], [ABIEV-NIKONOROV '16]: similar result on $M^6 = \text{SU}(3)/\text{T}^2$ and $M^{24} = F_4/\text{Spin}(8)$.
- $C_{\text{sec} \ge 0} \subset S_B^2 \Lambda^2 \mathbb{R}^n$ is <u>not</u> invariant under the Ricci flow ODE starting in dimension 4. [RICHARD-SESHADRI '15]: In any even dimension *n*, the cone $C_{\text{scal} \ge 0}$ is the only RF (ODE) invariant curvature cone that contains $C_{\text{sec} \ge 0}$.

Theorem 0 [Bettiol – K., 2019]

There exist metrics with sec ≥ 0 on S^4 , $\mathbb{C}P^2$, $S^2 \times S^2$, $\mathbb{C}P^2 \# \overline{\mathbb{C}P^2}$ that immediately lose this property (sec ≥ 0) when evolved via the Ricci flow.

Corollary

 $\sec \ge 0$ is not preserved under the Ricci flow in dimensions ≥ 4 .

• All of these 4-manifolds admit cohomogeneity one actions by $G = SO(3) \rightsquigarrow$ unified proof.

Cohomogeneity one manifolds

• $G \subset (M,g)$ such that M/G = [0, L].

- Each orbit is isometric to a homogeneous space, G/H for pre-images of points $\in (0, L)$ (principal orbits) and G/K_{\pm} for pre-images of L and 0 (singular orbits).
- $K_{\pm}/H = S^{\ell_{\pm}}$.
- *M* is the union of disk bundles over the singular orbits, $M = \nu_{-} \bigsqcup \nu_{+}$, where $\nu_{\pm} = G \times_{K_{\pm}} D^{\ell_{\pm}+1}$.

A cohomogeneity one action on S^4

 $SO(3) \subset \mathbb{R}^5 = \{A \in M_3(\mathbb{R}) : A = A^T, tr(A) = 0\}$ by conjugation. Descends to $SO(3) \subset S^4$.

Invariant metrics

$$g = dr^{2} + g_{r}, \ r \in (0, L)$$

i.e.,
$$g = dr^{2} + \phi(r)^{2}\omega_{1}^{2} + \xi(r)^{2}\omega_{2}^{2} + \psi(r)^{2}\omega_{3}^{2}$$

 $\phi(r)$, $\xi(r)$, $\psi(r)$ satisfy smoothness conditions at r = 0and r = L, determined by the equivariant geometry.

 $[{\rm Grove-Ziller~'00}]: A \ cohomogeneity \ one \ manifold \ with \ singular orbits \ of \ codimension \ 2 \ admits \ invariant \ sec \ \geqslant 0 \ metrics.$

Proof of Theorem 0

- Let $g(0) = g_0 =$ Grove-Ziller metric evolve by the Ricci flow as g(t).
- Sectional curvature sec $(X_3, \frac{\partial}{\partial r}) = -\frac{\psi''}{\psi}$.
- If $\mu(r) = \operatorname{span} \left\{ X_3, \frac{\partial}{\partial r} \right\}$, then $\operatorname{sec}_{g_0}(\mu(r)) = 0$.
- Isom(g(t)) remains unchanged under the flow, and RF is equivalent to a system of PDEs^{*}

$$\phi_t = \phi_{rr} + \cdots$$

$$\xi_t = \xi_{rr} + \cdots$$

$$\psi_t = \psi_{rr} + \cdots$$

• Using the above coupled PDEs and the smoothness conditions, we compute:

$$\frac{d}{dt} \sec_{g(t)}(\mu(r))\Big|_{t=0} = \frac{d}{dt} \left(-\frac{\psi''}{\psi}\right)\Big|_{t=0} = \dots < 0 \quad \text{for } r \text{ small.}$$

 $\psi_0(r)$

b

$\sec > 0$ in dimension 4

Theorem 1 [Bettiol – K., 2023]

There exist metrics with sec > 0 on S^4 and $\mathbb{C}P^2$ that evolve under the Ricci flow to metrics with sectional curvature of mixed sign.

Theorem 2 [Bettiol – K., 2023]

Every Grove–Ziller metric g_0 on S^4 or $\mathbb{C}P^2$ is the limit (in C^{∞} topology) of cohomogeneity one metrics g_s with sec > 0.

Proof of Theorem 1 (assuming Theorem 2).

- By the continuous dependence of the Ricci flow on initial data, if the initial metric g_s is close to g_0 , then $g_s(t)$ is close to $g_0(t)$.
- Proof of Theorem 0 $\implies \sec_{g_0(t)}(\mu) < 0$ for t small. Therefore for s small enough, $\sec_{g_s(t)}(\mu) < 0$.

Perturbing the Grove–Ziller metric to one of sec > 0

$$g = dr^2 + \phi(r)^2 d\theta_1^2 + \xi(r)^2 d\theta_2^2$$

Figure: $g_0 =$ Grove–Ziller metric

Figure: $g_1 = round metric$

- Curvature operator $\mathcal{R} = \text{diag}\left(-\frac{\phi''}{\phi}, -\frac{\xi''}{\xi}, -\frac{\phi'\xi'}{\phi\xi}\right).$
- Recall: in dim 3, ${\cal R}$ positive definite \iff sec >0
- sec \ge 0 (> 0) iff ϕ , ξ are (strictly) concave and monotone.
- Define g_s by

$$\phi_s = (1-s) \phi_0 + s \phi_1$$

 $\xi_s = (1-s) \xi_0 + s \xi_1$

then $\sec_{g_s} > 0 \ \forall \ s \in (0,1].$

Proof of Theorem 2 (for S^4)

Figure: $g_0 =$ Grove–Ziller metric

Figure: $g_1 = round metric$

Let
$$g_s$$
 be the metric defined by $\phi_s = (1 - s) \phi_0 + s \phi_1$
 $\xi_s = (1 - s) \xi_0 + s \xi_1$
 $\psi_s = (1 - s) \psi_0 + s \psi_1.$
CLAIM: $\forall s > 0$ small enough, $\sec_{\sigma} > 0$.

In dim 4, sec ≥ 0 is not equivalent to $\mathcal{R} \ge 0$! However, we have:

Thorpe's trick

Let $\mathcal{R} \in S^2_B(\Lambda^2 \mathbb{R}^4)$ be an algebraic curvature operator. Then \mathcal{R} has sec $> 0 \ (\geq 0) \ \underline{\text{iff}} \ \exists \tau \in \mathbb{R}$ such that $\mathcal{R} + \tau * > 0 \ (\geq 0)$.

Proof of Theorem 2 (for S^4) continued

Thorpe's trick

Let $\mathcal{R} \in S^2_B(\Lambda^2 \mathbb{R}^4)$ be an algebraic curvature operator. Then \mathcal{R} has sec $> 0 \ (\ge 0) \ \underline{\text{iff}} \ \exists \tau \in \mathbb{R}$ such that $\mathcal{R} + \tau * > 0 \ (\ge 0)$.

•
$$\sec_{g_0} \ge 0$$
, so $\exists \ au_0 : [0, L] \to \mathbb{R}$ such that $\mathcal{R}_{g_0} + au_0 * \ge 0$.

• Define $\tau_s(r) = \tau_0(r) + O(s)$ so that $\mathcal{R}_{g_s} + \tau_s * > 0$ for s sufficiently small.

 Same result in higher dimensions is not an immediate corollary since sec > 0 is not preserved under products, unlike sec ≥ 0.

• A first order perturbation of a sec ≥ 0 metric to attain sec > 0, can be obstructed, e.g. if the initial metric contains a flat totally geodesic embedded torus.

• Odd-dimensional example where $\sec > 0$ is not preserved under Ricci flow?

Thank You!